
Progress In Electromagnetics Research B, Vol. 52, 57–78, 2013

WAVE PACKETS SCATTERED BY NON-PERIODIC
BRAGG-TYPE LAYERED STRUCTURES

Valentine F. Borulko, Oleg O. Drobakhin,
and Dmitry V. Sidorov*

Department of Physics, Electronics and Computer Systems, Oles
Honchar National University of Dnepropetrovsk, 72, Gagarin Ave.,
Dnepropetrovsk 49010, Ukraine

Abstract—The time delay, space shift and widening of wave packet
transmitted and reflected by structures with Bragg mirrors have
been investigated. The specific structures such as Bragg mirrors,
resonators, and structures with chirp variation of thickness of the
“period” have been considered. The calculation has been carried out
under the conditions that carrier frequency, and incidence angle is
in the vicinity of the Bragg resonance. Integral (mass center) and
differential (group) estimates of the delay time and space shift have
been compared. The conditions for the appearance of anomalous
(negative) mass center delay or mass center shift (Goos-Hänchen
shift) of the reflected wave packet have been determined. The
shape transformations of the wave packet illuminating periodic and
quasiperiodic apodized Bragg reflectors have been under consideration.
Spatial apodization of permittivity contrast yields much smaller shape
deformation of the transmitted wave packet upon incidence at angles
and carrier frequency near the edges of reflection band, as well in Bragg
reflection band, in comparison with phenomena in similar periodic
structures. The values of group delay for layered structures with a
small chirp variation of optical (electrical) thickness of the period
along longitudinal coordinates have been experimentally obtained in
microwave range.
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1. INTRODUCTION

The structure periodicity is inherent to many media in nature. The
trivial properties of reflection and transmission of electromagnetic
waves under periodic structures irradiation are well known, being
used in a wide range of applications [1–4]. In case of periodicity
perturbation, the Bragg reflection becomes more complicated and
gains great practical value [5]. The step disturbance of phase of
periodic parameters results in a high quality eigen oscillation within
the Bragg reflection bandwidth [6, 7]. The smooth perturbation of the
amplitude of periodic parameters can ensure relative decrease of the
quality factor of collateral resonance frequencies (these being outside
the Bragg reflection band). For small numbers of Bragg reflection
frequencies, we may achieve relative decrease of the quality factor of
parasitic resonances by introducing small linear phase perturbation
of periodicity parameter. The Bragg structures with spatially varied
optical (electrical) thickness of the “period” are called chirped mirrors.
The unit cell of two adjacent layers is considered as “period” of
the structure. These structures are well known and widely applied
in sources of ultra-short laser pulses to compensate the group delay
dispersion (GDD) [8].

Based on applied problems, we have to consider the wave packets
being some group of waves rather than a plane monochromatic wave.
In this case, it is reasonable to consider the packets carrying the
information, i.e., the signals [9]. The packets are strictly limited in
time and space.

Propagation of packets in a medium, their reflection and
transmission through structures are always accompanied by distortions
via dispersion which can be neglected only within specified frequency
and incident angle intervals for some certain propagation times and
ranges. The dispersion phenomena are related with the proximity
between the parameters of media or structures and the parameters of
an electromagnetic wave. For the media, such parameters are distances
between the energy states of atoms, molecules; whereas in structures,
such parameter is the period. The normal and anomalous dispersion
regions are distinguished by the sign of derivative of the refractive index
(reflectivity phase). Nonequilibrium media with amplification usually
have the negative dispersion [10].

The investigation of transformation of wave packets form with
increasing the number of media boundaries becomes more complicated.
If the permittivity and/or permeability slowly changes from layer to
layer, the expressions that relate forms of the incident and transmitted
packets can be obtained analytically using approximate methods of
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solution of the Helmholtz equation [11]. For the rigorous calculation of
the shape of the reflected and transmitted packets we have to use either
the recurrence relations [12] or the transmission matrix method [13],
which allow obtaining numerical values of the amplitudes of the field at
the boundaries of layered structures. The presence of anisotropy and
chirality additionally complicates form of the spatial distribution of the
amplitude and polarization characteristics of the scattered packets [14].
Under oblique incidence the shift of reflected wave packet can be
observed (Goos-Hänchen shift). Generally, magnitude of the shift is
comparable with the wavelength at carrier frequency of the incident
packet; however, with approaching the incident wave frequency to the
resonant frequency of the medium with the permittivity dispersion the
value of the shift may increase by orders, while near the Brewster angle
negative values can be obtained [15]. In the most cases the anomalous
(negative) values of lateral shift are caused by dispersion of material
parameters [16], but in Bragg layered structures the anomalous values
of lateral shift occur due to constructive interference [2].

The propagation, reflection and transmission of wave packets with
the spectrum central frequency lying near one of the eigenfrequencies
of media or structures cannot be analyzed just in terms describing the
pulse as a whole (its velocity, shift, delay time). The packet widening
and distortion should also be estimated, as well as specific limits, where
the characteristics maintain physical meaning.

In this paper, we consider the reflection and transmission of
wave packets for quasiperiodic apodized Bragg reflectors, symmetric
and asymmetric resonators in the vicinity of the frequency and
incidence angle of Bragg resonance, structures with linear modulation
of the “period” thickness (chirp structures). Integrated (energy) and
differential (group) estimates for time delay and the shift value will be
compared.

Dependences of the skewness and kurtosis of the reflected wave
packet versus carrier frequency in the Bragg reflection band for chirp
structures will be calculated. Conditions for negative time delay
and the magnitude of the shift of the reflected wave packets will be
under consideration. The experimentally obtained values of group
delay for layered structures with a small linear variation of optical
(electrical) thickness of the period along the longitudinal coordinate
will be presented.
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2. METHODS OF INVESTIGATION

2.1. Transmission Matrix Method

In the formal description of the method of transmission matrices
for electromagnetic wave propagation in multilayer structures, any
isotropic homogeneous layer can be described by the second order
square matrix which associates electric and magnetic field components
on the boundaries of one layer [13]. The transmission matrix expression
which holds for the case of thermal losses and materials with negative
permittivity and permeability is of the form:

Mj =
(

cos (kzjhj) i
pj

sin (kzjhj)
ipj sin (kzjhj) cos (kzjhj)

)
(1)

where hj is the geometric thickness of j-th layer, and εj and µj

are the j-th layer permittivity and permeability. θ is the wave
incidence angle in XOZ plane, k0 the wave number of free space, and

kzj = k0

√
εjµj − sin2 θ the longitudinal wave number. It is assumed

that the direction of stratification coincides with the z axis. The pj

parameters are determined by the following expressions for TE and
TM polarizations, respectively

pTE
j = kzj/ (µjk0) =

√
εjµj − sin2 θ/µj ,

pTM
j = kzj/ (εjk0) =

√
εjµj − sin2 θ/εj .

For TE polarization, vector H lies in XOZ-plain, and vector E is
perpendicular to this plain, but for TM polarization vector E lies in
XOZ-plain, and vector H is perpendicular to it.

The resulting characteristic matrix M of a layered structure
is determined by the product of characteristic matrices of separate
layers of the structure [1, 13]. Using the matrix components yields
the expressions for the structure reflection R and transmission T
coefficients, viz.

R (ω, kx)

=
[m11 (1−Γ)+m12pl (1+Γ)] p1−[m21 (1−Γ)+m22pl (1+Γ)]
[m11 (1−Γ)+m12pl (1+Γ)] p1+[m21 (1−Γ)+m22pl (1+Γ)]

(2a)

T (ω, kx)

=
2p1

[m11 (1−Γ)+m12pl (1+Γ)] p1+[m21 (1−Γ)+m22pl (1+Γ)]
(2b)

where muv is the u-th line element in v-th column of the resulting
transmission matrix, Γ the reflection coefficient of a structure load,
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and pl the parameter of the material of the last structure’s layer (or
of the half-space in case of Γ = 0). If a layered structure ends with
a metal plane, then |Γ| is equal to 1. Hereinafter, the normalized
frequency f/f0 dependence will be used, where f0 means the first Bragg
resonance frequency. Because dielectric materials (µ1 = µ2 = 1) will
be under consideration, f0 should be represented in following form of
f0 = c/(2(h1

√
ε1 + h2

√
ε2)), where h1

√
ε1 and h2

√
ε2 are electrical

thicknesses of layers of a structure period, c is the speed of light in
vacuum.

2.2. Group Shift and Delay of Wave Packets

To analyze the wave packets shape transformation, let us use the
Fourier integral representation. This approach provides that all
incident, reflected and transmitted waves are a superposition of plane
harmonic waves with different frequency and angle of incidence.
The spectrum of the incident packet F (ω, kx) can be obtained
from the amplitude distribution f(τ, x) with the direct Fourier
transform [9, 13, 17]:

F (ω, kx) =

∞∫

−∞

∞∫

−∞
f (τ, x) exp (−iωτ + ikxx) dτdx.

where ω is the cyclic frequency and kx the transverse wave number.
Using well-known expressions for the reflection coefficient (RC)
R(ω, kx) (2a) and transmission coefficient (TC) T (ω, kx) (2b), we can
find the dependence of the reflected r(τ, x) and transmitted t(τ, x) wave
packets, respectively. For example, for the reflected wave packet, we
have:

r (τ, x) =
1

4π2

∞∫

−∞

∞∫

−∞
R (ω, kx) F (ω, kx) exp (iωτ − ikxx)dωdkx

Phase ϕ(ω, kx) = arg(R(ω, kx)) can be represented as a series in
powers (ω − ω0) and (kx − kx0) [9, 17]:

ϕ (ω, kx) = ϕ (ω0, kx0) + (ω − ω0)
(

∂ϕ (ω, kx)
∂ω

)

ω=ω0
kx=kx0

+ (kx − kx0)
(

∂ϕ (ω, kx)
∂kx

)

ω=ω0
kx=kx0

+ . . . (3)

If the spectrum of the wave packet is concentrated near the center
frequency ω0 and wave number kx0, then it can be considered a
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quasimonochromatic highly directed group of waves. By limiting
in (3) with the zero and first order terms and considering that at
the spectrum width the reflection coefficient absolute value changes
but little, |R(ω, kx)| ≈ const, the packet group delay (GD) can be
determined as the frequency derivative of the reflection (transmission)
coefficient phase as in [9, 17]:

∆τg (ω0, kx) = −
(

∂ϕ (ω, kx)
∂ω

)

ω=ω0

. (4)

The wave packet group shift (GS) is similarly introduced, provided
that the wave packet is paraxial and highly directional one [12]:

∆xg (ω, kx0) =
(

∂ϕ (ω, kx)
∂kx

)

kx=kx0

. (5)

For overcoming the discontinuity of a formally determined phase, the
reflected packet group delay time (4) and group shift (5) are convenient
to calculate through derivatives of the real and imaginary parts of the
reflection coefficient, viz.

∆τg (ω0, kx) =
(
|R(ω, kx)|−2

[
Im (R(ω, kx))

∂

∂ω
Re (R(ω, kx))

−Re (R(ω, kx))
∂

∂ω
Im (R(ω, kx))

])

ω=ω0

Similarly, according to (5), GS of the wave packet can be written as:

∆xg (ω, kx0) =
(
|R(ω, kx)|−2

[
−Im (R(ω, kx))

∂

∂kx
Re (R(ω, kx))

+Re (R(ω, kx))
∂

∂kx
Im (R(ω, kx))

])

kx=kx0

Group shift and group delay are differential estimates, which determine
the maximum shift and packet delay through the known reflection
characteristics of the structure.

It will be observed that formulas Equations (4) and (5)
characterize the packet delay time and shift only in the case when
the displacements of all parts of the packet are equal, i.e., the packet
propagates as a whole. Otherwise, the next term in expansion (3)
which describes the group delay and group shift dispersion cannot
be neglected. Generalizing, we may say that the account for
the n terms of expansion (3) is sufficient to fulfill the condition
ϕ

(n)
ω (ω0, kx0)/ϕ

(n−1)
ω (ω0, kx0) ¿ T and ϕ

(n)
kx (ω0, kx0)/ϕ

(n−1)
kx (ω0, kx0) ¿

L, where T is the incident packet duration, L is the extent of the
packet [17].
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2.3. Integral Parameters of Wave Packet

For the wave packets distortion and fuzziness, we may introduce the
delay time for each part of the packets: maximum, front, tail, etc. Let
us consider the packets energy center mass delay (CMD) and center
mass shift (CMS). The packet delay (or energy center delay) CMD and
packet shift (or energy center shift) CMS can be calculated as the first
order ordinary initial mathematical moment [9]:

∆x′e =

+∞∫

−∞

+∞∫

−∞
xS (τ, x) dxdτ,

S (τ, x) = |s (τ, x)|2
/ +∞∫

−∞

+∞∫

−∞
|s (τ, x)|2 dxdτ

(6)

where s(τ, x) is the envelope surface of the packet under consideration.
The quantity ∆x′e determines the Goos-Hänchen shift, and for highly
directional wave packets it coincides with differential estimate ∆xg

given by (5). Similarly to CMD, the wave packet CMS we introduce
in the following form:

∆τ ′e =

+∞∫

−∞

+∞∫

−∞
τS (τ, x) dxdτ (7)

In the general case, the time delay ∆τ ′e in Equation (7) and
shift ∆x′e in Equation (6) do not characterize the energy transport
velocity and they are a sort of effective estimate of a packet delay and
shift. Only in the case when the linear approximation holds and the
wave packet form is unchanged, the time ∆τ ′e and ∆τg, and also shift
∆x′e and ∆xg values coincide and correspond to the energy transport
velocity.

Let the packet duration σ
′2
τ and extent σ

′2
x be introduced as the

second order central moment to quantitatively estimate the width of
reflected and transmitted packet:

σ
′2
τ =

+∞∫

−∞

+∞∫

−∞
(τ −∆τe)

2 S (τ, x) dxdτ

σ
′2
x =

+∞∫

−∞

+∞∫

−∞
(x−∆xe)

2 S (τ, x) dxdτ

(8)
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The shift and delay of the reflected and transmitted wave packets
will be considered with respect to the corresponding parameters of the
incident packet:

∆xe =
(
∆x′e −∆xinit

)
/λ0, ∆τe =

(
∆τ ′e −∆τinit

)
f0, (9)

where ∆xinit and ∆τinit are the delay and shift of initial packet.
Instead of packet width (8) we considered wave packet widening
(duration or extent with respect to the incident packet):

σ = σ′/σinit − 1, (10)

where σ′ is the width of reflected (transmitted) packet and σinit the
width of initial packet. Thus, positive value of σ corresponds packet
widening, but negative value of σ corresponds packet narrowing. It
is clear that the method of determining the parameters of the wave
packet shape distortion with the different order mathematical moments
is meaningful only for the case when the corresponding integrals
Equations (6)–(8) converge. For the wave packets limited in time
domain and space, this condition is fulfilled by itself.

3. THE REFLECTION OF THE WAVE PACKETS FROM
ASYMMETRIC BRAGG RESONATORS

A Fabry-Perot interferometer is typically made of a transparent
plate with two reflecting surfaces, or two plane parallel highly
reflecting mirrors. We can introduce Bragg resonators as Fabry-
Perot interferometers with Bragg mirrors; however the thickness of the
resonant transparent layer is equal to the half of Bragg wavelength. If
Bragg mirrors have the same number of layers, one has a symmetric
Bragg resonator. In opposite case the resonator is asymmetric one.
For numeric simulation the structure with M = 25 layers was chosen,
permittivity of layers was ε2n−1 = 2 and ε2n = 1, respectively, and
permeability was µ2n−1 = 1, µ2n = 1, electrical thickness of layers was
hn
√

εn = λ0/4. Let us consider the transformation of wave packet
shape at oblique incidence for asymmetric Bragg resonators (Figure 1)
than layer with resonance thickness has asymmetric location and its
number was 15 (Figure 1(b)) or 11 (Figure 1(c)). For comparison
structures of incident packet (Figure 1(a)) and one reflected from
symmetric resonator (Figure 1(d)) are also presented.

The incident wave packet with π-cosinusoidal envelope is given by
the following expression (Figure 1(a)):

f (τ, x) = (Φ (τ + a)− Φ (τ − a)) (Φ (x + b)
−Φ(x− b)) cos (πτ/2a) cos (πx/2b) sin (ωτ − kxx) ,
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(a) (b)

(c) (d)

Figure 1. The reflection of the wave packet from Bragg resonators:
(a) is the envelope of incident wave packet; (b) is the wave packet
envelope reflected by an asymmetric Bragg resonator with far location
of the resonance layer; (c) is the wave packet envelope reflected by
an asymmetric Bragg resonator with near location of the resonance
layer; (d) is the wave packet envelope reflected by symmetric Bragg
resonator.

where Φ is the Heaviside step-function, a the absolute packet duration,
and b the absolute extent of the wave packet.

In the case of reflection from the Bragg resonator, the wave
packet is formed by two partial packets. One of them is reflected
from the front face of the resonator but another is reflected from the
back mirror formed by the back reflector. These partial packets are
in antiphase due to satisfaction of the Bragg resonance conditions
hm

√
εm − sin2 θ = λ0/2, where m is the number of resonance layer.

Calculations are based on the standard algorithm for the discrete
Fourier transform [18]. Discretization parameters of wave packet had
following values: Nτ = 2000 is the number of samples in the time-
domain, Nx = 500 is the number of samples in the space, dτf0 = 0.17
is the sampling step in the time-domain, and dx/λ0 = 0.5 is the
sampling step in the space. The initial incident wave packet with TE
polarization (Figure 1(a)) had length of b = 7, duration of a = 70,
incident angle was determined by kx/k0 = 0.1 (θ ≈ 5.7 degrees)
and the carrier frequency was f/f0 = 1.005. If the resonator is
symmetric, the delay and the shift of the reflected wave packet are
always positive, and in the case of m = 13, the parameters have
got the values: delay ∆τe = 20.03, shift ∆xe = 1.46, time widening
στ = 1.13, space widening σx = 0.79. Moreover, as can be seen from
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Figure 1(d) the wave packet has been split and has two parts localized
as in time domain so in space one. The first local part has the largest
amplitude and has greater part of energy. For asymmetric resonator
with m = 11 (Figure 1(c)) the value of CMD has been ∆τe = 52.24
and CMS has been ∆xe = 4.25. They have been greater than ones
in the case of the symmetric resonator. The splitting of the wave
packet also appears upon reflection of asymmetric Bragg resonator.
For asymmetric resonator with far location of the resonance layer with
m = 15 (Figure 1(b)) the CMD value for reflected packet has become
negative ∆τe = −0.24, the CMS has been ∆xe = 0.03, estimates of
widening have been στ = 0.17, σx = 0.11.

The symmetric Bragg resonators, even with small number of
layers, have high Q-factor (it has been defined as Q = f ′/2f ′′ where
f ′ is the real part of resonance frequency and f ′′ is the imaginary
one), thus GD and GS of reflected packet become large for them
(Figures 2(a)–(b), line 1) if the condition of proximity of the carrier
frequency and the incidence angle to value of Bragg resonance is
fulfilled. The Q-factor of the asymmetric resonator is always lower
than corresponding one for the symmetric resonator but GD and GS is
being as smaller so larger in comparison with ones for the symmetric
resonator. In the vicinity of Bragg resonance angle or (and) frequency,
GD and GS of reflected packet take either large positive (Figures 2(a)–
(b), line 2) or large negative (Figures 2(a)–(b), line 3) values. The
frequency intervals with negative value of GD and GS are observed
only for asymmetric resonators and always located near the resonance
frequency or angle of incidence (Figures 2(a)–(b), line 3).

Let us consider the variation of CMD and CMS (or Goos-Hänchen
shift), and widening of the wave packet with π-cosinusoidal envelop

(a) (b)

Figure 2. Group delay (GD) and group shift (GS) of reflected wave
packet: (a) GD and (b) GS in cases of symmetric Bragg resonator with
m = 13 (line 1), asymmetric Bragg resonator with near location of
resonance layer with m = 11 (line 2), and asymmetric Bragg resonator
with far location of resonance layer when m = 15 (line 3); total number
of layers of the Bragg resonator is M = 25.
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versus the carrier frequency and angle of the incidence under reflection
from asymmetric Bragg resonator with far resonance layer location.
And also we will compare differential and integral parameters of delay
and shift for wave packets with different duration and extent. The
resonator parameters are the same as for case presented in Figure 1. At
the first let us analyze the delay of the wave packet at normal incidence
kx/k0 = 0 (θ = 0 degrees) (Figure 3(a), lines 1–3). When the duration
of the packet has been a = 75 (Figure 3(a), line 1), in the vicinity of the
Bragg resonance CMD has take small negative values and this packet
simultaneously has become wider along the time axis (Figure 3(b), line
1). With increasing packet duration up to a = 150 (Figure 3(a), line 2),
at the Bragg resonance frequency CMD has been approaching to the
group delay (∆τg − ∆τe)/σinit ≈ 0.406 (Figure 2(a), line 3), and the
widening στ has had non-monotonic frequency dependence near the
Bragg resonance. For packet duration a = 300 in the Bragg reflection
band CMD and GD response coincide with greater accuracy (on the
Bragg frequency (∆τg − ∆τe)/σinit ≈ 0.074), and besides reflected
packet has had shorter duration (Figure 3(b), line 3).

And now let us proceed to the analysis of shift of the wave packet
with duration a = 100 versus angle of incidence for variation of packet

(a) (b)

(c) (d)

Figure 3. Parameters of delay, shift and widening of reflected wave
packets: (a) CMD and (b) widening of reflected wave packet with
extent b = 15 at normal incidence for the Bragg resonator with the
far location of the resonance layer, line 1 for duration a = 75, line 2
for a = 150, line 3 for a = 300; (c) CMS and (d) space widening of
reflected wave packet with duration a = 100 for the Bragg resonator
with the far resonance layer location, line 1 for extent b = 75, line 2
for b = 150, line 3 for b = 300.
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extent and compare these values with the values of group shift. Carrier
frequency of the packet was f/f0 = 3.1, as in the previous case,
the structure was asymmetric Bragg resonator with far location of
resonance layer. Negative (anomalous) shift values have been observed
at the angles of incidence in the vicinity of kx/k0 ≈ 0.3 (θ ≈ 17.5
degrees) (Figure 3(c)). When the spatial extent of the incident packet
was b = 75, reflected packet became broader (Figure 3(d), line 1)
and had a small negative shift (Figure 3(c), line 1). This value
of the mass center shift corresponds to anomalous Goos-Hänchen
effect. Further with increasing the extent of packet to b = 150, the
negative shift increases (Figure 3(c), line 2), and the widening near
the angle of Bragg resonance became a sharply nonmonotonic behavior
(Figure 3(d), line 2). If the width of packet increased to the value of
b = 300, the reflected packet became narrower (Figure 3(d), line 3), and
the integral (CMS) and differential (GS) estimates have close values
(∆xg −∆xe)/σinit ≈ 0.079 (Figure 3(c), line 3).

For single incident wave packet the reflected wave packet is formed
by two antiphase wave packets corresponding to reflections from the
front and back mirrors. Even if the reflected wave packet consists of
two parts, under condition of a rather narrow spectrum of the initial
packet and corresponding essential overlapping of reflected packets
they form integral whole packet. Under the last condition, CMD and
CMS can take negative values if the reflection from the front mirror
is dominant in comparison with the reflection from the back mirror.
If the reflectivity of the back mirror reduces because of decreasing the
number of layers in it, the center of mass of the reflected package
is moving ahead of the position of the center of mass for the initial
resonator. The similar effect can be observed under increasing the
reflectivity of the front mirror. This phenomenon occurs in a number
of numerical simulations with various numbers of layers in mirrors.

Summarizing, we can say that when the layer with resonance
thickness has asymmetric location with respect to the edges of the
structure and it is closer to the front m < (M + 1)/2 (near location of
resonance layer), CMD and CMS are always positive, otherwise, when
the layer of resonance thickness is closer to the end of the structure
and m > (M + 1)/2 (far location of resonance layer) CMD and CMS
can take negative values if the frequency and angle of incidence are
in vicinity of Bragg resonance for the packets with the duration and
extent which provide a rather narrow spectrum. This effect occurs
if reflections from the front and back mirrors can not be observed
separately.

According to the packet’s GD and CMD, GS and CMS definitions,
it is clear that they can take any value: either positive or negative,
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that gives the value of speed larger or smaller than the speed of
light in vacuum. The negative GD and GS values do not in any
way conflict with the special relative theory and do not violate the
causality principle, as in the general case, they do not correspond
either to the energy transmission, or to the signal propagation. For
carrier frequency and angle of incidence belonging to the frequency
and angle intervals where GD and GS possess either negative values
or values corresponding to the superluminal propagation, the form of
informative packets (signals) is strongly distorted. Thus, application of
GD and GS, which have been defined for the condition of packet shape
constancy, as an estimate of signal propagation parameters is incorrect
in the vicinity of such values of frequency or angle of incidence.

Analytical closed form for widening response can be computed
only for simple cases of reflectors (with simple dispersion) and trivial
wave packet envelope. For Bragg reflectors and casual (space-time
limited) wave packets with smooth envelope we have to use the
numerical calculation for obtaining of widening estimates.

The packet CMD and CMS can also take on anomalous values
if losses or amplification are present. In this case, along with the
incident packet center of mass it is convenient to consider the center
of losses (or center of amplification). Following to [9], let the center of
losses be considered as a loss-power packet energy center. The center
of amplification is introduced similarly. Then, in dependence on the
relationship between positions of the packet center of mass and the
center of losses in the time-space plane, the reflected (transmitted)
packet CMD and/or CMS will possess either positive or negative
values. For example, the CMD is negative in case, when in the time
domain the center of losses follows the center of mass of a packet
propagating in vacuum. In case of amplification, the CMD takes
negative value, when the center of amplification advances the packet
center of mass [9, 10].

4. TRANSMISSION OF WAVE PACKETS THROUGH
THE QUASIPERIODIC APODIZED BRAGG
STRUCTURE

In this section, we consider the quasiperiodic apodized Bragg structure,
which is a structure with a smooth perturbation permittivity of one
of the two layers that form the period. If the contrast of permittivity
increases smoothly from the edges to the center of the structure in
accordance with law ε(n), then this type of perturbation of structure
periodicity leads to the suppression of the side maxima (Figures 4(a)–
(b), line 2 and line 3) in the frequency domain, as well as in the domain
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(a) (b)

Figure 4. Reflection characteristics of apodized Bragg structure: (a)
frequency response and (b) angle response of periodic reflector (line
1), quasiperiodic reflector with apodization law ε(n) ∼ sin2(n) (line
2), and quasiperiodic reflector with ε(n) ∼ sin(n) (line 3).

of incidence angle [2, 6, 19].
Choice of an apodization function form is most often determined

by specific tasks of application, such as the achievement of the lowest
level of the first side lobe of reflection (transmission) band (Figure 4(a),
line 3), or the maximum suppression of peaks in the interval between
adjacent Bragg reflection bands (Figure 4(a), line 2). We have
investigated apodized structure with total number of layers M = 25,
permittivity of the even layers ε2n = 1 geometrical thickness h2n =
0.25λ0, and the parameters of the odd layers for line 3 in Figure 4(a),
and Figure 4(b) are ε2n−1 = 1 + sin(π(2n − 1)/(M + 1)), h2n−1 =
0.25λ0/

√
ε2n−1, for line 2 in Figure 4(a), and Figure 4(b) are ε2n−1 =

1 + sin2(π(2n− 1)/(M + 1)), h2n−1 = 0.25λ0/
√

ε2n−1. Apodization
introduction leads to eigenoscillations quality factor decreasing, and
the influence of apodization is stronger if the frequency closer to the
center of the interval between adjacent Bragg reflection bands.

Further let examine transmitted packets of different duration
and extent for periodic and quasiperiodic Bragg reflectors at normal
incidence with the center frequency of a spectrum near the edge of the
Bragg reflection band with value of f/f0 = 1.134. For transmission
through strictly periodic Bragg reflector (M = 25, ε2n−1 = 2, ε2n = 1,
µ2n−1 = 1, µ2n = 1) relatively wide packet with b = 15 and with short
duration of a = 5 has been split and has had two localized maximum,
in addition, the packet has become broader with σx = 0.0008, delay
of ∆τe = 10.2075, and its duration has become larger στ = 2.5562
(Figure 5(a)). The wave packet transmitted in case of quasiperiodic
apodized reflector has had larger amplitude and less spreads σx =
0.0003, στ = 0.3038, and moreover, the delay has been much smaller
∆τe = 7.1605 (Figure 5(b)).

Further, let us consider the CMD and CMS, and also let us analyze
deformation versus carrier frequency and angle of incidence for the
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(a) (b)

Figure 5. Transmission of wave packets through quasiperiodic
apodized Bragg reflector: the wave packet (a = 5; b = 15) with the
carrier frequency near the edge of the Bragg reflection band (a) for
strictly periodic reflector, and (b) for quasiperiodic apodized reflector.

(a) (b)

(c) (d)

Figure 6. Parameters of delay, shift and widening of transmitted
wave packets: (a) CMD and (b) widening of transmitted wave packet,
a = 30 is the duration, b = 15 is the extent for normal incidence
on a periodic Bragg reflector; (c) CMS and (d) space widening of
transmitted wave packet with a carrier frequency f/f0 = 5, a = 30
is the duration, b = 15 is the extent. (Line 1 for strictly periodic
Bragg reflector and line 2 for quasiperiodic apodized Bragg reflector
ε2n−1 = 1 + sin2(π(2n− 1)/(M + 1)).)

transmitted wave packets with initial duration of a = 30 and extent
of b = 15 for quasiperiodic apodized Bragg reflector. In the Bragg
reflection band for periodic Bragg reflector at the normal incidence
transmitted wave packet has the value of CMD that corresponds
exceeding the speed of light velocity propagation.

At the edges of the reflection frequency band, the center mass
delay gains large value, much greater than the propagation time of
packet for the free-space distance which is equal to the electrical
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thickness of the structure (Figure 6(a), line 1). In the Bragg
transmission frequency band the CMD slightly oscillates near the level
which is determined by the propagation time of packet for the free-
space distance which is equal to the electrical thickness of the structure
(Figure 6(a), line 1). The wave packet widening takes maximum value
at the edges of the Bragg reflection frequency band (Figure 6(b), line 1).
Bragg structure apodization leads to more uniformly CMD frequency
characteristic in the Bragg transmission band (Figure 6(a), line 2), and
transmitted wave packet is much less distorted (Figure 6(b), line 2).

Similarly with the center mass delay, the center mass shift (Goos-
Hänchen shift) of the wave packet transmitted through apodized
Bragg reflector increases more smoothly (Figure 6(c), line 2), and the
widening is much smaller (Figure 6(d), line 2) in comparison with the
CMS and widening of wave packet transmitted through periodic Bragg
reflector (Figure 6(d), line 1). Thus, the apodization implementation
leads to reducing the space-time distortion of wave packets.

5. THE PULSES REFLECTION FROM QUASIPERIODIC
CHIRP-APODIZED STRUCTURES

Let us consider the example of a specific structure with chirp variation
of thickness of the “period” having characteristic properties of GD
nonuniformity within a reflection band. We use quotation marks
for the term period, because in opposite to the strictly periodic and
quasiperiodic Bragg structures (Sections 3 and 4) the electric thickness
of double-layer unit cell, forming a chirp structure is changed. In
view of complexity which may arises in measurements, the number
of structure layers is taken small namely M = 13, however it is
sufficient that the expected phase behavior effects could be detected.
The structure “period” consists of the polystyrene layer (ε2n−1 = 2.2,
µ2n−1 = 1) with the constant geometric thickness h2n−1 = 0.8 (mm)
and the air layer (ε2n = 1, µ2n = 1) with a chirp varying thickness
h2n = 8 + 0.2(n− 1) and h2n = 9 − 0.2(n− 1) (in millimeters),
where n is number of current “period”. Additionally, we introduce
the deformation parameters such as pulse envelope skewness η and the
coefficient of kurtosis ξ:

ητ =

+∞∫

−∞
(τ −∆τe)

3 S (τ) dτ/σ3
τ ,

ξτ = ξinit −
+∞∫

−∞
(τ −∆τe)

4 S (τ) dτ/σ4
τ ,

(11)
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where ξinit is the kurtosis coefficient of initial pulse.
Properly speaking, the linear variation of Bragg structure leads

to destroying of Bragg reflection. But for weak disturbance of layer
thickness and small total number of layers the reflection is strongly
similar to Bragg one. This type of variation is also called chirp-
apodization. Now let us consider the pulse distortion with the π-
cosinusoidal envelope and absolute duration a = 10 (ns) for the
reflection from the given structure with chirp variation of thickness
of the “period” in the directions toward the increase (Figures 7(a)–
(d), line 1) and decrease (Figures 7(a)–(d), line 2) of the electrical
thickness of the “period”.

In the Bragg reflection band, the CMD has monotonically
decreased in the case of a linear increase of the “period” (Figure 7(a),
line 1) and monotonically increased otherwise (Figure 7(a), line 2).
Pulse widening and coefficient of kurtosis have been varying but just
slightly within the Bragg reflection band and shown similar behavior
either for the direct or inverse directions of variation of the “period” at
the Bragg reflection band edges. However, at frequencies close to Bragg
reflection band edges, the skewness has changed its sign remaining close
to zero within the band if the direction of “period” growth has been
changed (Figure 7(c), lines 1 and 2).

The structure with chirp variation of thickness of the “period”

(a) (b)

(c) (d)

Figure 7. Reflected pulse distortion parameters: (a) time delay, (b)
widening, the coefficients of (c) skewness and (d) kurtosis of a pulse
with initially π-cosinusoidal envelope reflected from a layered structure
of M = 13 layers with a linearly increasing (blue line 1) and decreasing
(red line 2) thickness of the “period”.
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described in the above mentioned example of investigation of CMD
and pulse distortion with the π-cosinusoidal envelope in the case
of reflection from a structure with chirp variation of thickness of
the “period” was experimentally investigated. The pulse GD for
reflection from the Bragg structure with small chirp variation of an
electrical thickness of the “period” either monotonically increases
or monotonically decreases (in the center of Bragg reflection band),
similar to the CMD for such a structure. Then, if −dϕdir/dω was GD
(measured in ns) for the reflection from a structure with increasing
“period” (forward direction), and −dϕinv/dω was GD for the reflection
from the structure with linearly decreasing “period” (inverse direction),
the difference dϕdir/dω − dϕinv/dω monotonically increases within
the Bragg reflection band and passes through zero near the Bragg
reflection frequency (Figure 8(a), line 2). The composition of the
difference dϕdir/dω − dϕinv/dω allowed us to obtain greater accuracy
in detection of GD asymmetric behavior within the Bragg reflection
band in measurements (Figure 8(a), line 1). Figure 8(b) shows the
simulated (line 2) and measured (line 1) dependences of the squared
absolute value of reflection coefficient for such a structure.

(a) (b)

Figure 8. Frequency-response characteristics of pulse reflection
from the structure with chirp variation of thickness of the “period”:
(a) is the GD difference for the decrease and increase directions of
the “period” d(ϕdir − ϕinv)/dω, (b) is the squared absolute value of
reflection coefficient. (Blue line 1 is the measured, while red line 2 the
simulated data.)

The reflection coefficient phase-response characteristics were
measured with the measuring-computer system [20] which employs the
Fourier-holography principle within the frequency band 40–48 GHz.
In making measurements, a pyramidal horn with the gain factor of
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G = 25 dB was used that allowed us to carry out measurements
at greater distance in the comparison with the case of open-ended
waveguide radiator. Hence, investigation of structures with greater
electrical thickness became possible [21]. The reference signal was the
reflection from the horn throat. The distance from the horn throat to
the front edge of investigated structure was 420 mm. According to [21],
in the time signal synthesized by inverse Fourier-transform of the data
measured in frequency domain there are the autocorrelation function
(ACF) of time dependence of reflection from investigated structure and
the cross-correlation function (CCF) of this reflection and the reference
signal. The CCF keeps the information about the structure phase
characteristics, but because of essential reference signal dependence on
frequency the determination of frequency dependence of the squared
absolute value of reflection coefficient is accompanied by significant
distortions, while the ACF allows us to determine it with sufficient
precision. The useful signal can be separated in the time domain by a
window under condition that the corresponding CCF and ACF belong
to different time intervals and are not overlapping each with other [21].
In Figure 8(a) the experimentally obtained phase against frequency
is presented by line 1. This phase has been calculated by discrete
Fourier-transform of the part of time-domain synthesized signal under
preceding extraction of CCF by windowing. One can observe the
analogous behavior of calculated (line 2) and experimentally obtained
data.

Different from [21], the squared absolute value of the reflection
coefficient (Figure 8(b), line 1) was calculated with Prony’s
method [22]. This method is a numerical algorithm of the
determination of the complex-valued factors of exponents and the
corresponding magnitude factors for data given in equidistant points
if the data can be represented as a sum of exponential components.
The frequency dependence of the reflection coefficient of the layered
structure satisfies the mentioned requirements [12, 23]. Prony’s
algorithm was performed with the use of the moving rectangular
window with size of w = 13 samples and for order of model of q = 3.
Squared absolute value of the reflection coefficient was estimated as
modulus of magnitude factors of exponential component with zero-
valued exponent. This set of exponents can be considered as function
of frequency due to implementation of moving window in frequency
domain. This approach has an advantage over the method of ACF
extraction by time-domain windowing and successive Fourier transform
for obtaining reflection coefficient dependence versus frequency. This
effect is determined by elimination of influence of the window edges as
in frequency domain so in time one (so-called the Gibbs phenomenon).
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6. CONCLUSION

GD and GS packet negative values are inherent to asymmetric Bragg
resonators and observed under the condition that a resonance thickness
layer is located closer to the end of a structure, m > (M + 1)/2. For
case of large wave packet durations and extent, integral and differential
packet estimates take approximately equal values. CMD and CMS
have anomalous values via packet distortions: widening, variation of
asymmetry, coefficient of kurtosis.

Significant relative reduction of the side maximum level can be
achieved by spatial permittivity contrast apodization of multilayer
structures. It provides a much smaller distortion of the reflected
or transmitted wave packet with the angle of incidence and carrier
frequency near the edge of the Bragg band reflection in comparison
with similar periodic structures.

Experimentally obtained phase-response and amplitude-frequency
response characteristics of layered structures with a chirp varying
thickness of the “period” have confirmed GD and CMD behavior that
has been obtained by calculation with the harmonic wave expansion
and transmission matrix methods. GD and CMD determination
permits to obtain negative values and those corresponding to
propagation velocities exceeding the speed of light. For the pulses
with insufficient frequency localization, neither GD nor CMD can be
used as a unique estimate of delay time of the transmitted and reflected
pulses under Bragg structures irradiation.
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