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Abstract—Focusing of electromagnetic plane wave from a large
paraboloidal reflector, composed of layers of chiral and/or chiral
nihility metamaterials, has been studied using Maslov’s method.
As a first step, the transmission and reflection of electromagnetic
plane wave from two parallel layers of chiral and/or chiral nihility
metamaterials are investigated using transfer matrix method. The
effects of change of angle of incidence, chirality parameters and
impedances of layers are noted and discussed. Special cases by taking
extreme values of permittivity of second layer, while assuming value of
corresponding chirality equal to zero, are also obtained for validating
the methodology. These special cases are equivalent to reflection from
a perfect electric conductor backed chiral layer and nihility backed
chiral layer, respectively. Results of reflection from parallel layers have
been utilized to study focusing from a large paraboloidal reflector.
The present study, on focusing from a paraboloidal reflector, not only
unifies already published work by various researchers but also provides
better understanding of the problem.

1. INTRODUCTION

Chiral media have been well known in the optical frequency range
because of its special properties. Of these properties, optical activity
and circular dichroism are of particular interest [1–6]. Chiral medium
can be thought as composed of numerous randomly oriented chiral
objects which can never be brought into congruence with their mirror
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images by any translation or rotation [7–10]. Many objects found in
nature can be regarded as chiral: such as irregular tetrahedrons, sugar
molecules and wire helices. In fact the word “chirality” is derived from
the Greek word “cheir” having meaning of hand; an object possessing
above mentioned property of incongruence with its mirror image. In
science particular word “chirality” instead of dissymmetry was first
introduced by Lord Kelvin, Professor of natural philosophy in the
University of Glasgow. Now this word is used to describe the media
microscopically composed of the chiral objects.

When linearly polarized wave falls on a slab of chiral medium, it
splits into two circularly polarized waves: one left circularly polarized
and the other right circularly polarized [8–10]. After passing through
the slab the two waves combine to yield a linearly polarized wave
whose plane of polarization is rotated with respect to that of the
plane of polarization of the incident wave. Effect of chirality of the
medium which rotates the plane of linearly polarized wave passing
through it is studied by Arago [1], Biot [2] and Fresnel [3]. This
phenomenon is named as optical activity of the medium. The amount
of rotation depends upon the distance traveled by the wave in the slab.
This phenomenon is named as circular birefringence. The phenomena
circular dichroism alludes to the fact that different amount of field
absorbtion for the left and right circularly polarized waves occurs as
they pass through the chiral media. The constitutive relations for
chiral metamaterial [8] are given below,

D = εE + iκH (1)
B = µH − iκE (2)

The behavior of propagation and radiation of the field in chiral medium
has been investigated by several authors [8–10].

Left-handed or double negative (DNG) materials are metamateri-
als in which electric, magnetic and the wave vectors follow the so called
left hand rule. In fact the behavior of electromagnetic waves in “left
handed media” goes back a long way, e.g., Lamb [11], Schuster [12],
Pocklington [13] and Malyuzhinets [14] contributed on this topic. The
actual study of waves in media with simultaneously negative permittiv-
ity and permeability was first done by Sivukhin [15]. Veselago in detail
studied the interesting property of negative refraction in left handed
materials [16]. In chiral medium, negative real parts of the permittiv-
ity and permeability lead an isotropic chiral medium to exhibit circular
dichroism that is reverse with respect to that exhibited by an identical
medium but with positive real parts of permittivity and permeabil-
ity. Left handed materials exhibit some other interesting properties,
namely, backward wave and double negative parameters [17]. Negative
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refraction can also be achieved by using the chiral metamaterials [18–
21]. In chiral matematerials strong enough chirality produces negative
refractive index for one of the eigenwaves [22, 23].

In electromagnetics, Lakhtakia introduced the concept of nihility
metamaterial for a material whose permittivity and permeability
approach to zero [24]. Constitutive relations for nihility metamaterial
are,

D = 0 (3)
B = 0 (4)

Lakhtakia showed that propagation is not possible in nihility
metamaterial. Later, Tretyakov et al. [25] extended this concept of
nihility for the isotropic chiral medium. A chiral nihility metamaterial
is one for which, at certain value of frequency, real parts of permittivity
and permeability both are simultaneously zero. That is, ε → 0, µ → 0
and κ 6= 0 at nihility frequency. Constitutive relations for chiral nihility
metamaterials are,

D = iκH (5)
B = −iκE (6)

Chiral nihility metamaterial has two wavenumbers of equal magnitude
but opposite signs. When a dielectric-chiral nihility half space is
excited by an oblique incident linearly polarized plane wave, two
circularly polarized plane waves having opposite handedness are
produced. One of them is forward wave while the other is backward
wave which gives rise to the phenomenon of negative refraction in chiral
nihility metamaterial.

If a perfect electric conductor (PEC) interface placed in chiral
nihility metamaterial is excited by a forward plane wave. Only one
reflected wave parallel to the incident wave is produced, i.e., negative
reflection happens. The reflected wave is backward wave which
cancels the incident forward wave to produce zero power propagation.
Interestingly, if a chiral nihility slab backed by PEC interface is excited
by linearly polarized plane wave, effect of each eigenwave in chiral
nihility after reflection from PEC interface is canceled leading to a
situation as if front face of the geometry is PEC and there is no chiral
slab [26]. A PEC waveguide coated with chiral nihility metamaterial
confines propagation of power within un-coated region of the guide [27].

In electromagnetics, Brewster angle is defined as angle of
incidence for which reflection power is zero. In all introductory
text books on electromagnetic theory [28, 29], reflection of vertically
polarized (parallel polarized or transverse magnetic (TM)) plane
wave and horizontally polarized (perpendicular polarized or transverse
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electric (TE)) plane wave from a dielectric-dielectric half space
boundary is usually presented to explain the concept of Brewster
angle. It is mentioned that vertically polarized wave experiences zero
reflection at one incident angle whereas, reflection is non-zero for
horizontal polarization for all angles. This means that if dielectric-
dielectric half space is excited by a wave, having both the vertical and
horizontal polarizations, at the Brewster angle the reflected wave will
be linearly polarized with horizontal polarization only. The angle of
incidence that allows total reflection of power from a planar dielectric-
dielectric interface is known as critical angle. Critical angle exists only
for perpendicular polarization if the wave propagates from a denser
dielectric medium to a rare dielectric.

In the same context, reflection of plane wave from an interface
of an achiral dielectric and a chiral/chiral nihility metamaterial was
discussed by Qiu et al. [30]. Their study reveals that for certain values
of constitutive parameters, the results opposite to that of conventional
dielectric-dielectric interface can also be achieved. That is, existence of
zero reflection for only parallel polarization in the dielectric-chiral case
is possible. They also showed that, for certain values it is possible to
have no Brewster angle for both polarizations and total reflection can
be achieved for a wide range of incident angles. Power corresponding
to the electromagnetic waves associated with a planar interface of two
chiral and/or chiral nihility metamaterials excited by a plane wave
was studied by Ahmad et al. [31]. Their results suggest interesting
characteristics such as complete power transmission/rejeection and
band pass/band reject filter of the interface.

2. GO FIELD AND MASLOV’S METHOD

Geometrical optics (GO) is a powerful tool for the study of wave motion
at high frequencies [32–34]; however, it fails at the caustics. A caustic
is a region where area of a ray tube is zero and hence introduces a
mathematical singularity when ever intensity per unit area is needed to
be counted, though physically this is not the case. Physically the field
is always finite at caustics and caustics are of practical interest in many
applications including defense and medical sciences. Maslov proposed
an alternative method to find the fields in the caustic region [35].
Maslov’s method combines the simplicity of asymptotic ray theory and
the generality of the Fourier transform method. This is achieved by
representing the GO fields in terms of mixed coordinates consisting
of wave vector coordinates and spatial coordinates. Maslov’s method
have been applied to study the field near the caustics of the focusing
systems by many authors [36–45]. Focusing from a PEC cylindrical and
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spherical reflectors using Maslov’s method was first treated by Ji and
Hongo [38]. Faryad and Naqvi extended this work for reflector coated
with chiral metamaterial [44]. Illahi and Naqvi studied the focusing
from chiral nihility coated PEC and perfect electromagnetic conductor
(PEMC) cylindrical reflector [46]. In the present work, one interest is
also to unify all these cases so that these become special cases of the
geometry, under investigation.

Consider a three dimensional vector wave equation, in cartesian
coordinates r = (x, y, z), describing the field in medium having
wavenumber k0

∇2U(r) + k2
0U(r) = 0

Expressing the solution U(r) of wave equation in terms of well
known Luneberg-Kline series yields Eikonal equation for phase s(r)
and transport equation for amplitude. For homogeneous and lossless
medium, Eikonal equation reduces to Hamiltonian equation as

H(r,p) = (p · p− 1)/2 = 0, p = ∇s (7)
where p is the wave vector. The solution of Hamiltonian equation is
given below
x=ξ+pxt, y=η+pyt, z=ζ+pzt, px =px0 , py =py0 , pz =pz0

where (ξ, η, ζ) and (px0 , py0 , pz0) are the initial values of cartesian
coordinates (x, y, z) and wave vector coordinates (px, py, pz)
respectively and t is parameter along the ray. Finite field around
caustic may be obtained using following expression obtained from
Maslov’s method [34, 40]

U(r) =
k0

2π

∫ ∞

−∞

∫ ∞

−∞
E(r0)

[
D(t)
D(0)

∂(px, py)
∂(x, y)

]−1/2

exp(−ik0(s0 + t− x(px, py, z)px − y(px, py, z)py

+xpx + ypy))dpxdpy

where U(r) denotes the electric field strength. D(t)
D(0) is the Jacobian

for transformation from ray coordinates to cartesian coordinate and s0

represents the initial phase. Above equation provides uniform solution
around the caustic.

In this paper, transmitted and reflected powers from two parallel
layers of chiral and/or chiral nihility metamaterials with changing angle
of incidence and chiralities of the layers are analyzed. Limiting cases
of permittivity, with value of chirality fixed to zero, are also taken
into account and their interpretation given. Focusing from a large size
paraboloidal reflector, composed of two layers of chiral and/or chiral
nihility metamaterials, is studied by utilizing the Maslov’s method to
give the remedy of GO which fails at caustic.
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3. FORMULATION

Consider a geometry consisting of two infinite parallel layers of chiral
metamaterials placed in air as shown in Figure 1. Physical width of the
two layers is taken as d1 and d2, respectively. Constitutive parameters
for the two layers are denoted by (ε1, µ1, κ1) and (ε2, µ2, κ2),
respectively. Air in which layers are placed have constitutive
parameters ε0 and µ0.

Figure 1. Fields representation inside and outside the layers.

The above mentioned geometry is excited by an oblique incident
linearly polarized electromagnetic plane wave. θi, θr and θt are the
angles of incidence, reflection and transmission with respect to the
walls of layers, respectively. As chiral medium supports two circularly
polarized eigen waves having different wavenumbers so fields in each
layer are written as linear combination of left circularly polarized
(LCP) and right circularly polarized (RCP) plane waves. Both LCP
and RCP waves propagate in forward as well as backward direction in
each layer. The wavenumbers of both eigen waves in a chiral media are
different. Refractive indices, wavenumbers and intrinsic impedance of
the medium for first chiral layer are

n1(R,L) =
√

εr1µr1 ± κ1 (8)
k1(R,L) = ω (

√
ε1µ1 ± κ1) (9)
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η1 =
√

µ1

ε1
, (10)

where n1R and k1R are refractive index and wavenumber for RCP wave,
respectively. Quantity εr1 = ε1/ε0 is the relative permittivity of the
medium occupying first layer.

For second chiral layer, these quantities are

n2(R,L) =
√

εr2µr2 ± κ2 (11)
k2(R,L) = ω (

√
ε2µ2 ± κ2) (12)

η2 =
√

µ2

ε2
. (13)

Wavenumber and intrinsic impedance of the host medium are given as,

η0 =
√

µ0/ε0 (14)
k0 = ω

√
µ0ε0. (15)

Expressions for the incident and reflected fields and the field
transmitted after passing through both the layers are given in the
following:

Einc= [Ei‖(az sin θi + ax cos θi) + Ei⊥ay] exp[−ik0(z cos θi − x sin θi)] (16)
Hinc=1/η0[−Ei⊥(az sin θi+ax cos θi)+Ei‖ay] exp[−ik0(z cos θi−x sin θi)] (17)
Eref = [Er‖(−az sin θr + ax cos θr) + Er⊥ay] exp[ik0(z cos θr + x sin θr)] (18)
Href =1/η0[Er⊥(−az sin θr+ax cos θr)−Er‖ay] exp[ik0(z cos θr+x sin θr)] (19)
Etra= [Et‖(az sin θt + ax cos θt) + Et⊥ay] exp[−ik0(z cos θt − x sin θt)] (20)
Htra=−1/η0[Et⊥(az sin θt+ax cos θt)−Et‖ay] exp[−ik0(z cos θt−x sin θt)] (21)

In the above equations, Er‖, Er⊥, Et‖, and Et⊥ are unknown
coefficients corresponding to parallel and perpendicular components
of the respective fields.

Expressions of fields inside each chiral layer can be written as,

Ep+ = EfL[(ax cos θpL + az sin θpL) + iay]
exp[−ikpL(z cos θpL − x sin θpL)]
+EfR[(ax cos θpR + az sin θpR)− iay]
exp[−ikpR(z cos θpR − x sin θpR)] (22)

Hp+ =−(i/ηp)EfL[(ax cos θpL + az sin θpL) + iay]
× exp[−ikpL(z cos θpL − x sin θpL)]
+(i/ηp)EfR[(ax cos θpR + az sin θpR)− iay]
× exp[−ikpR(z cos θpR]− x sin[θpR)] (23)

Ep− = EbL[(−az sin θpL + ax cos θpL) + iay]
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exp[ikpL(z cos θpL+x sin θpL)]
EbR[(−az sin θpR + ax cos θpR)− iay]
exp[ikpR(z cos θpR + x sin θpR)] (24)

Hp− =−(i/ηp)EbL[(−az sin θpL + ax cos θpL) + iay]
× exp[ikpL(z cos θpL + x sin θpL)]
+(i/ηp)EbR[(−az sin θpR + ax cos θpR)− iay]
× exp[ikpR(z cos θpR + x sin θpR)] (25)

where kpL and kpR represent the wavenumbers for LCP and RCP
waves, respectively. Value of p, either 1 or 2, describes fields for first
or the second layer, whereas, subscripts b and f are used to represent
forward and backward waves, respectively. In the above equations, EfL,
EfR, EbL, and EbR are unknown coefficients. Tangential components of
fields are continuous at interfaces located at z = 0, d1, d1+d2 and these
boundary conditions are used to find the unknown coefficients. Snell’s
law is used to determine the relation among the angles of incidence,
reflection and transmission by using following relations:

θr = θi

k0 sin θi = k1(R,L) sin θ1(R,L) = k2(R,L) sin θ2(R,L) = kt sin θt,

where k0 and kt denote the wavenumbers for medium before and
after the layers and are equal when these two layers are placed in
air. Using transfer matrix method (TMM) discussed in [47], three
matching matrices each relating the fields at an interface are obtained.
Moreover, two 4 × 4 propagation matrices, linking fields between two
consecutive interfaces are also obtained. Numerical results for powers
corresponding to parallel and perpendicular components of transmitted
and reflected fields are obtained in the following. In Section 2, it is
assumed that optical width of each layer is λ0/4, where λ0 is wave
length in air corresponding to the operating frequency.

4. RESULTS AND DISCUSSION

In this section, numerical results for powers corresponding to parallel
and perpendicular components of the reflected and transmitted fields
are presented and analyzed. Four different cases, summarized below,
are considered for this purpose.

i. Both layers are of chiral metamaterials (c-c).
ii. First layer is of chiral nihility and second is of chiral metamaterial

(cn-c).
iii. First layer is of chiral whereas second is of chiral nihility

metamaterial (c-cn).
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iv. Both layers are of chiral nihility metamaterials (cn-cn).

Results corresponding to above cases are shown by Figure 3 to Figure 9.
In addition to the above, the limiting cases of permittivity of

second layer while keeping κ2 = 0 are also considered for the discussion.
In these situations, the above four cases essentially present following
scenario.

a. First layer is of chiral metamaterial whereas permittivity of second
layer is taken very large with chirality κ2 equal to zero making it
essentially a PEC boundary (c-PEC).

b. First layer is of chiral nihility metamaterial whereas permittivity
of second layer is taken very large with chirality κ2 equal to zero
(cn-PEC).

c. First layer is of chiral. metamaterial whereas permittivity of
second layer is taken very small with chirality κ2 equal to zero
making it essentially a nihility interface (c-n).

d. First layer is of chiral nihility metamaterial whereas permittivity
of second layer is taken very small with chirality κ2 equal to zero
(cn-n).

Results corresponding to above situations are depicted through
Figure 10 to Figure 13. ‖ and ⊥ signs are used to represent power for
parallel and perpendicular components, respectively. For example: c-c‖
and c-c⊥ represent parallel and perpendicular components of power for
chiral-chiral cases, respectively.

In Figure 2, power corresponding to parallel and perpendicular
components of reflected fields versus angle of incidence is shown.
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Figure 2. ehavior of the
reflected power for parallel and
perpendicular field components.
κ1 = 0.25, κ2 = 0.75, η1 = η2 = 2.
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Figure 3. Behavior of transmit-
ted power for parallel and perpen-
dicular field components. κ1 =
0.25 κ2 = 0.75, η1 = η2 = 2.
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It is assumed that the intrinsic impedances of metamaterials filling
both layers are same. Figure contains plots for four different cases,
i.e., c-c, cn-c, c-cn, and cn-cn. Brewster angle is defined as the
angle of incidence for which reflection of power, both for parallel
and perpendicular components, is zero. Reflected powers for c-c case
are zero for θi < 23◦ and this gives a range of brewster angles. In
the case of cn-cn, a range of Brewster angles exists for θi < 17.5◦.
After this range, power for parallel component increases whereas
power for perpendicular component remains negligible for the entire
range of incident angles. In the case of cn-c, parallel component is
nonzero everywhere and near grazing incidence almost total reflection
of power happens whereas power for perpendicular component remains
negligible through the entire range of incident angles. It may be noted
that range of Brewster angles exist only for c-c and cn-cn cases and
range of angles yielding almost total reflection exists only for parallel
component of cn-c case. For c-cn case, power only for perpendicular
component is zero for θi < 27.5◦ and corresponding parallel component
is nonzero everywhere.

Figure 3 describes behavior of the parallel and perpendicular
components of transmitted powers for impedance matching of both
layers. For c-c case, power for parallel and perpendicular components
have same initial amplitude, i.e., 0.5. Considering cn-c case, power
of both parallel and perpendicular components of transmitted power
follow each other and decrease gradually with incidence angle. In c-cn
case, perpendicular component is dominant over parallel component
whereas for cn-cn case, it is observed that power of parallel component
is dominant over the perpendicular component.

Figure 4 shows the behavior of reflected power for layers having
different intrinsic impedances. For c-c and cn-c cases, no Brewster
angle exists and power for parallel component is dominant over
corresponding perpendicular component. For c-c case, reflected power
only for perpendicular component is zero for θi < 34.3◦ and θi > 85◦.
For cn-c case, when θi > 22◦, power for parallel component of reflected
field starts increasing and after θi = 80◦, almost total reflection is
observed because perpendicular component has insignificant reflected
power. Perpendicular component has very low value between θi =
34.3◦ and θi = 78◦ and is zero elsewhere. Both c-cn and cn-cn cases
have same range of Brewster angles, i.e., θi ≤ 11.46◦.

Figure 5 is about transmitted power in case of impedance
mismatch. For c-c case, both components of power have equal
contribution at θi = 31.5◦. For cn-c and cn-cn cases, power for parallel
component has higher values and follows the power for corresponding
perpendicular component.
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Figure 4. Behavior of reflected
power for parallel and perpendic-
ular field components. κ1= κ2 =
0.25, η1 = 1 and η2 = 2.
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Figure 5. Behavior of trans-
mitted power for parallel and
perpendicular field components.
κ1=κ2 = 0.25, η1 = 1 and η2 = 2.
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Figure 6. Behavior of reflected
power for parallel and perpendic-
ular field components. κ2 = 0.25,
θi = π/4 and η1 = η2 = 2.
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Figure 7. Behavior of transmit-
ted power for parallel and perpen-
dicular field components. κ2 =
0.25, θi = π/4, η1 = η2 = 2.

Figure 6 shows plots of power for impedance matching case versus
chirality of the first layer. For the purpose of analysis chirality
values are considered between 0 and 5. For cn-c case, almost total
power reflection in terms of parallel component occurs at very low
values of chirality and perpendicular component is almost zero for
considered range of chirality. For c-cn case, zero reflection of parallel
power component is obatined at chirality value κ1 = 1.9 whereas at
κ1 = 1.8, 2.2, 4 perpendicular component of reflected power is zero. In
cn-cn case, oscillating behavior is observed for both components with
periodic behavior for cn-cn⊥. At κ1 = 0, 2, 4 perpendicular component
of power becomes zero and at κ1 = 1, 3, 5 parallel component of power



378 Shah et al.

is zero. At κ1 = 0, total reflection occurs. Zeros of parallel and
perpendicular components of power at specific values of chirality can
be used to get or avoid particular component of polarization.

Figure 7 gives transmission behavior of power. It is noted
that both components for each case contain either zeros or values
approaching to zero. These findings may be used to get or avoid
particular component of polarization. In Figure 8, no Brewster
angle exist for all four cases except for cn-c case where both
components are negligibly small at k2 = 1.9. It is also noted that
perpendicular components of power for cn-cn and cn-c are negligibly
small. Conclusions similar to Figure 7 may be drawn from Figure 9.
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Figure 8. Behavior of reflected
power for parallel and perpendic-
ular field components. κ1 = 0.25,
θi = π/4, η1 = η2 = 2.
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Figure 9. Behavior of transmit-
ted power for parallel and perpen-
dicular field components. κ1 =
0.25, η1 = η2 = 2, and θi = π/4.

Figure 10 shows the plots for reflected power assuming very high
value of permittivity of second layer. This situation may be considered
as a chiral layer backed by perfect electric conductor interface. In
general reflected power has both components, i.e., both c-PEC‖ and
c-PEC⊥ are nonzero. But for certain values of chirality of first layer,
reflected field contains only co-polarized component. Contribution of
parallel component is very large as compared to the perpendicular
component of reflected power. For cn-PEC case, complete reflection
in terms of parallel component is observed. Figure 11 shows zero
transmission of power for c-PEC and cn-PEC cases.

Another interesting case is shown in Figure 12 where second layer
is assumed of nihility metamaterial. This has been achieved by taking
κ2 = 0 and setting very low value of permittivity of second layer. This
situation may be seen as a chiral layer backed by nihility interface.
For c-n case, almost total reflection in terms of parallel component of



Progress In Electromagnetics Research B, Vol. 51, 2013 379

c-PEC

c-PEC

cn-PEC

cn-PEC

0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

 1

po
w

er

 1reflected power vs chirality κ

κ

 || and

 ||

 ||

 | |
 | |

| |

Figure 10. Behavior of reflected
power for parallel and perpendic-
ular field components. θi = π/4,
η1 = 2, ε2 = 105, κ2 = 0.
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the reflected power is observed. For the case of cn-n, perpendicular
component of reflected power has also significant contribution for
certain range of chirality. It is noted that for certain range of chirality,
overlap of cn-n and c-n cases happen. Figure 13 shows plots of
transmitted power for c-n and cn-n cases and no transmission of power
is obtained. It may be noted that conclusions drawn from Figure 10
to Figure 13 agree with published work.

Focusing of electromagnetic waves from a paraboloidal reflector
composed of chiral and/or chiral nihility metamaterial using the
Maslov’s method is studied in next section. PEC and nihility backed
chiral/chiral nihility paraboloidal reflector are also discussed.
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5. EVALUATION OF FINITE FIELD AROUND FOCUS

Consider a bilayer paraboloidal reflector placed in air as shown in
Figure 14. The equation for the surface of a paraboloidal reflector
is given by,

ζ = g(ξ, η) = f − ρ2

4f
= f − ξ2 + η2

4f
(26)

where (ξ, η, ζ) are the Cartesian coordinate of any point on the surface
of paraboloidal reflector. f is the focal length of the paraboloidal
reflector and ρ2 = ξ2 + η2.

The incident field traveling along z axis is expressed as,

Ei = ax exp (−ik0z) (27)

The incident plane wave makes an angle α with surface normal, where
surface normal is given as,

an = sin α cos γax + sinα sin γay + cos αaz (28)

where α and γ are given as,

sinα =
ρ√

ρ2 + 4f2
, (29)

cosα =
2f√

ρ2 + 4f2
, (30)

tan γ =
η

ξ
(31)

The wave reflected from paraboloidal reflector is given below,

Er = E0 exp[ik0(x sin 2α cos γ + y sin 2α sin γ + z cos 2α)] (32)

Figure 14. Reflection from a paraboloidal reflector placed in air.
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Rectangular components of field E0, at the surface of reflector, are
given below,

Ex0 = B⊥ sin2 γ −B‖ cos2 γ cos 2α (33)
Ey0 = − cos γ sin γ(B‖ cos 2α + B⊥) (34)
Ez0 = B‖ sin 2α cos γ (35)

where B‖ and B⊥ are parallel and perpendicular components of GO
reflected field from planar layers of chiral and/or chiral nihility layers.
The field expression in polar coordinates which is valid around the
focal point is given below [40],

Er =
i2k0f

π

∫ H

0

∫ 2π

0
×Er0 tanα exp[−ik0(2f−r sin θ sin 2α cos(φ−γ)

−r cos θ cos 2α)]dαdγ (36)
The upper limit of integration with respect to α is taken as,

H = tan−1 (
D

2f
)

where D is the height of the paraboloidal reflector from horizontal axis.

6. NUMERICAL RESULTS AND DISCUSSION

The field behavior around the focal region of a paraboloidal reflector
are obtained by solving the equation, obtained using Maslov’s
method. Numerical results are presented with the variation of different
parameters, i.e., chirality, relative permittivity and thickness of the
layer. Chiral nihility is introduced as limiting case of chiral medium
where value of relative permittivity and relative permeability of the
chiral medium is assumed as 10−5, keeping nonzero chirality whereas
for nihility material, the value of chirality parameter is taken equal
to zero. In all the simulations, parameters (k0, f, H) are taken as
(1, 100, π/4). For all cases, permeability of each chiral layer is taken
as unity. All plots deal with behavior of |U(r)| versus kz.

6.1. Chiral-chiral Paraboloidal Reflector

From Figure 15 and Figure 16, it is noted that increasing the
permittivity of each layer of the paraboloidal reflector increases the
strength of electric field around the focus. Comparison of Figures 15
and 16 also shows that strength of field around focus is more dependent
on the permittivity of second layer.

In Figure 17 and Figure 18, effects of variation of thickness of each
layer of paraboloidal reflector are presented. It is noted that increase
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around focus for different values
of thickness of first layer: d2 = λ0
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Figure 18. Field behavior
around focus for different values
of thickness of second layer: d1 =
λ0
4 , c-c case.

of thickness of first or second layer also increases the strengths of field
around focus. It is noticed that first layer has more impact on the field
strength as compared to the variation of thickness of the second layer.

Figures 19 and 20 show the effect of change of chirality parameter
of each layer while keeping all the other parameters fix. It is observed
that increase in chirality of each layer also strengthen the field around
focal point of the paraboloidal reflector. Change in chirality of first
layer produces greater change in reflected field strength around the
focal point as compared to chirality variation for second layer.
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6.2. Chiral-PEC and Chiral-nihility Paraboloidal Reflector

In this section two special cases for paraboloidal reflector are discussed
one by one: paraboloidal reflector composed of c-PEC and c-n cases.
Figure 21 shows reflected field strength for three different values of
permittivity of the first layer when second layer is considered as PEC
(very large value of permittivity, i.e., 105). It is noted that increase
in permittivity of first layer also increases the field strength at the
focal point. Figure 22 shows that increase in the chirality of first layer
correspondingly increases the field strength at the focus. In Figures 23
and 24, second layer is considered as nihility (by assuming very small
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values of permittivity and permeability, i.e., 10−5). From Figures 23
and 24, it is observed that by increasing the values of permittivity
and chirality, the field strength around the focal point also increases
correspondingly.

7. CONCLUSIONS

Characteristics of reflected and transmitted powers from a structure
of two parallel layers filled with chiral and/or chiral-nihility
metamaterials are studied. Special cases of PEC and nihility backed
chiral/chiral nihility layer are also discussed. It is observed that the
behavior of reflected or transmitted powers strongly depend on the
angle of incidence and values of constitutive parameters describing
the metamaterials. For specific values and ranges of incident angles,
total reflection of power has been observed hence structure can yield
range of Brewster angles. Parallel or perpendicular component of
reflected/transmitted power may be selected. That is, either co-
polarized or cross polarized field is produced. Similarly for some values
of chirality, total reflection/transmission of power is also observed.
This arrangement of parallel layers can also be used as a power divider.

Arrangement of two parallel layers mentioned above is utilized
to study the behavior of field around the focal region of a large size
paraboloidal reflector. Paraboloidal reflector, composed of c-c, c-
PEC and c-n layers is discussed for this purpose. PEC and nihility
backed cases give higher values of reflected field around the focus as
compared to composed of chiral-chiral layers. Nihility material has
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been introduced in the design of paraboloidal antenna for the purpose
of analysis. It is noted that, it provides higher strength around focus
as it is a requirement for focusing systems. Use of chiral layers provides
an additional parameter, i.e., “chirality”, which helps in adjusting the
field strength around the focal point. It is concluded that increase
in the relative permittivity of each layer also increases field strength
around the focus. An increase in the thickness and chirality parameter
of the layer also have the same effect, i.e., increase in values of these
parameters yields correspondingly higher focusing of the field. It
is also noted that different parameters, mentioned above, affect the
strength of the field differently. Moreover in the case of c-c paraboloidal
reflector, variation of a parameter for first and second layer yields
different reflected field strength when all other parameters are kept
constant. In this case, change in permittivity of second layer produces
more variation in the reflected field strength around the focal point
as compared to the first layer, whereas for change in chirality and
thickness, field strength of the reflector is more sensitive for the first
layer. Study of focusing field strength is of great importance in defence
and other electronic systems. This study provides an investigation
to design an efficient reflector coated with materials having different
material properties. This whole discussion suggests to get control
over the focusing of the reflected field by bringing variations in the
permittivity, thickness or the chirality of the corresponding layer.
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