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Abstract—A technique is described for the electromagnetic recon-
struction of the location, shape, dielectric constant, and conductivity
of buried homogeneous cylinders of elliptic cross-section. The inver-
sion procedure is based on the Differential Evolution algorithm and the
forward problem is solved using the single boundary integral method.
Simulation results are presented which demonstrate that this hybrid
approach can offer a conceptually simple yet efficient and reasonably
robust method for the imaging of buried objects and voids.

1. INTRODUCTION

The electromagnetic (EM) imaging of unknown objects located in
inaccessible domains is a challenging problem with applications in
many areas, such as remote sensing, noninvasive testing, and landmine
localization — just to name a few [1–3]. Recently, genetic algorithms
(GAs) [4, 5], which belong to a class of stochastic search techniques,
have found extensive applications in the EM reconstruction of impe-
netrable and dielectric cylinders [6–10]. The advantage of GAs is that
they usually yield the global optimum, while being simple to apply,
because the derivatives of the objective function are not required. On
the other hand, GAs tend to be computationally expensive, which
prompted the development of many variants of the basic GA. One
of the recent significant developments in this area was the invention
of the Differential Evolution (DE) algorithm [11, 12], which has been
shown to outperform other known global optimization methods on a
number of synthetic problems [13, 14]. Since its introduction, DE is
rapidly gaining in acceptance and has already been applied to the
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solution of various challenging engineering tasks, including the EM
imaging of buried inhomogeneities [15, 16]. In [15], DE was shown
to outperform the state-of-the-art GAs in the imaging of circular-
cylindrical conductors and tunnels.

The EM imaging is an iterative procedure, in which the scattered
field from a trial object is compared with that of the target. The
computation of the field scattered by a known object is referred
to as the forward problem. For homogeneous objects, a boundary
integral equation (BIE) formulation is often the method of choice. A
standard BIE approach requires the solution of a coupled set of integral
equations for the equivalent electric and magnetic currents on the
surface of the object [17, 18]. These equations are then discretized and
solved by a boundary-element method (BEM) [19]. It is also possible to
formulate a single integral equation in terms of only one kind of current,
and thus reduce the number of unknowns by half [20–25]. In the present
paper, we combine the DE algorithm with the single boundary integral
equation method (SBIEM) and apply this DE-SBIEM to the problem
of EM imaging of buried dielectric cylinders of elliptic cross-section.

The problem under study is defined in Section 2. The single
integral equation (SIE) used to solve the forward problem is derived
in Section 3, with the details of the BEM procedure relegated to
Appendix A. The cost function used in the inverse problem and the
DE inversion algorithm are described in Section 4, with the details
of the DE included in Appendix B. In Section 5, numerical results
are presented, which illustrate the application of the DE-SBIEM to
the EM imaging of two sample targets. Conclusions are presented in
Section 6.

2. PROBLEM STATEMENT

The geometry of the problem is illustrated in Fig. 1. The cross-
section of the dielectric cylinder is assumed to be elliptic, with an
arbitrary tilt angle. Attention is limited to the two-dimensional (2-
D) case independent of the z coordinate. The bullets in Fig. 1
represent transmitter/receiver line sources, which are arranged in a
cross-borehole configuration [26–29]. The study is devoted to deep
inclusions, where the effect of the air-ground interface is unimportant.
The sources, which are time-harmonic (the ejωt time convention is
used), may be electric or magnetic, producing an incident field that
is, respectively, transverse-magnetic (TM) or transverse-electric (TE)
to the cylinder axis. We assume that medium i is characterized by
the permeability µi = µ0 and complex permittivity εi = ε0κi − jσi/ω,
where (µ0, ε0) are the free-space parameters and κi and σi denote the
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Figure 1. Cross-section view of the target cylinder and the line
sources.

dielectric constant and conductivity, respectively. With κ1 and σ1

specified, there are seven parameters to be recovered: the dielectric
constant κ2 and conductivity σ2 of the cylinder, the axis coordinates
x0 and y0, the major semi-axis a, the minor semi-axis b (or the aspect
ratio e = b/a), and the tilt angle χ.

3. FORWARD PROBLEM

Although a series solution is in principle possible for elliptic
cylinders [30], we have opted for a BIE formulation, because it can
easily be extended to arbitrarily shaped cylinders or cylinders in the
presence of an interface. To derive the SIE for the problem of Fig. 1
we apply the equivalence principle [31, 17], as illustrated in Fig. 2.
The original problem is shown in Fig. 2(a), where the surface S of
the object may be arbitrarily shaped and n̂ is the unit normal vector
pointing outward from S. The object is excited by known electric and
magnetic currents, Jinc and Minc, which, when immersed in an infinite
homogeneous medium with parameters (ε1, µ1), radiate the “incident
field” (Einc

1 , Hinc
1 ). The total field outside of the obstacle is the sum

of the incident field and the “scattered field” (Es
1, Hs

1). The total field
inside the object is denoted by (E2, H2).

In the external equivalent problem of Fig. 2(b), the equivalent
currents (J1, M1) reside on the surface S embedded in a homogeneous
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(a)

(b) (c)

Figure 2. Illustration of the equivalence principle. (a) Original
problem. (b) External equivalent problem. (c) Internal equivalent
problem.

medium with the parameters (ε1, µ1). These currents radiate a field
(E1, H1), which is identical to the scattered field exterior to S, and
which cancels the incident field inside S. From the latter condition we
obtain

n̂×E−1 [J1,M1] = −n̂×Einc
1 on S, (1)

where the superscript ‘−’ indicates that the field is evaluated on the
interior side of S. We refer to (1) as the electric field integral equation
(EFIE), because E1[·, ·] is an integral operator. This equation also
holds with the electric fields replaced by magnetic fields, in which case
it becomes the magnetic field integral equation (MFIE).

In the internal equivalent problem of Fig. 2(c), the effective current
J2 resides on the surface S embedded in a homogeneous medium
with the parameters (ε2, µ2). This current radiates the correct field
(E2, H2) inside S and an unspecified field exterior to S. In view of the
continuity of the tangential field components across S, the equivalent
currents of the exterior and interior problems are related as [17]

J1 = n̂×H−
2 [J2, 0] on S, (2)

M1 = E−2 [J2, 0]× n̂ on S. (3)
Hence, (1)–(3) constitute an integral equation with a single unknown,
J2.
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We now specialize the above to the 2-D case. For the TM
excitation, Ji = ẑJzi, i = 1, 2, and M1 = ˆ̀M`1, where ẑ is the unit
vector along the cylinder axis and ˆ̀denotes the unit vector tangential
to the boundary contour C of the cylinder, assumed to be oriented
counterclockwise. Also, the electric field is axial and the magnetic
field is transverse to z. As a result, we obtain the 2-D counterparts
of (1)–(3) as [18, 31]

−jk1η1〈G1Jz1〉+
〈

∂G1

∂n′
M`1

〉
− M`1

2
= −Einc

z1 on C, (4)

Jz1 = −
〈

∂G2

∂n
Jz2

〉
− Jz2

2
on C, (5)

M`1 = −jk2η2 〈G2Jz2〉 on C, (6)
where the brackets 〈〉 are used to denote integrals in the source
coordinate along the contour C, ki and ηi are the wavenumber and
intrinsic impedance of medium i, and the kernels are defined as

Gi =
1
4j

H
(2)
0 (kiR), (7)

∂Gi

∂n′
=

ki

4j
H

(2)
1 (kiR) n̂′ · û, (8)

−∂Gi

∂n
=

ki

4j
H

(2)
1 (kiR) n̂ · û. (9)

Here, H
(2)
n is the Hankel function of the second kind and order n.

R = |R| = |r − r′|, r and r′ are the position vectors of the field and
source points, respectively, and û = R/R. The 1/2M`1 and 1/2Jz2

terms in (4) and (5) are extracted from the singular integrals in the
limit as the field point approaches the boundary contour from the inside
of the cylinder [18]. The incident field in (4) is found as [31]

Einc
z1 = −k1η1

4
H

(2)
0 (k1R), (10)

where we assume a unit-strength line current at r′.
Upon substituting (5) and (6) into (4), we obtain an integral

equation with a single unknown, Jz2. Once Jz2 is determined, Jz1

and M`1 follow from (5) and (6), respectively, and the scattered field
exterior to the cylinder may be found as

Es
z1 = −jk1η1〈G1Jz1〉+

〈
∂G1

∂n′
M`1

〉
. (11)

The SIE (4)–(6) is transformed by a BEM into a linear algebraic
system, which is then solved using a classical LU decomposition. For
completeness, the details of the BEM are included in Appendix A.
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In TE case, where the cylinder in Fig. 1 is excited by magnetic line
currents, we use an SIE based on the MFIE and a magnetic effective
current. This TE SIE is dual to the TM SIE developed above, and
it may be obtained from the latter by the following replacement of
symbols: E → H, J → M , M → −J , and η → 1/η. We omit the
details in the interest of brevity.

Finally, we point out that both SIEs break down at the resonant
frequencies of a cavity formed by a perfect conductor covering the
surface S and filled with the exterior medium [25, 32]. Although it
is possible to derive an SIE free of these irregular frequencies [22],
this was unnecessary in the present case, as we limit attention to lossy
media, which do not admit real-frequency resonances.

4. INVERSE PROBLEM

Consider the situation as in Fig. 1, where each of the sources can
act as a transmitter or a receiver. Our task is to determine the
cylinder parameters from the measured fields. Hence, let f̃ij denote
the measured scattered field at receiver j due to transmitter i, where
f stands for Es

z1 (TM case) or Hs
z1 (TE case). Similarly, let fij denote

the predicted scattered field for some particular value of the cylinder
parameter vector x = (κ2, σ2, x0, y0, a, e, χ). Then, the solution to
the inverse problem may be found by minimizing the cost (or objective)
function

F (x) =

√√√√√√
∑NS

i=1

∑NS
j=i

∣∣∣f̃ij − fij(x)
∣∣∣
2

∑NS
i=1

∑NS
j=i

∣∣∣f̃ij

∣∣∣
2 . (12)

This function is multimodal, i.e., it possesses local minima in addition
to the global one, which poses a difficulty for many optimization
methods, as they may stagnate within a suboptimal valley. Therefore,
this problem is a good candidate for the DE algorithm [11, 13, 33],
which is an inherently parallel stochastic search technique.

Just as GAs [4, 5], DE operates on a population of NPOP
candidate solutions, or chromosomes. Each chromosome consists of
NPAR parameters, or genes, represented by floating-point numbers.
(Note that NPAR = 7 in the present case.) Associated with each
chromosme is its cost given by (12). The initial population is created
in a random fashion and it evolves through a number of generations
by mutation, crossover, and selection, with the mutation and crossover
controlled by user-specified coefficients CF and CR, respectively. The
evolution is terminated when either the best population cost falls below
the desired tolerance level TOL, or the generation count reaches the
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maximum allowed number MAXGEN. The best member of the final
population is then hopefully close to the global minimum.

For easy reference, the details of the DE algorithm used in this
work are included in Appendix B.

5. NUMERICAL RESULTS

We present sample results for the cross-borehole configuration of
Fig. 1, with the two wells located at x = ±2.5, each comprising
an array of 13 sources (hence NS = 26) with a separation of 0.5
and with the first source at the y = 0 level. (Here and henceforth,
all linear dimensions are given in meters.) The sources are either
electric (TM case) or magnetic (TE case) with the angular frequency
ω = 2π × 30 × 106 [rad/s]. The parameters of the host medium are
κ1 = 12.0, σ1 = 10−3 [S/m]. We consider two target cylinders of
elliptic cross-section: a water-filled tunnel (Target 1) and an air-filled
tunnel (Target 2). The target parameters and their lower and upper
bounds are listed in Tables 1 and 2, respectively.

It is desirable to gauge the accuracy of the forward solution before
it used in the inversion procedure. Hence, we have first applied the
SBIEM to a circular dielectric cylinder, for which an analytical series
solution is available [31]. The cylinder parameters are as given in
Table 1, except that e = 1 and χ = 0◦. We have taken as a measure
of the error the objective function (12), in which the reference fields
f̃ij are computed using the exact solution [15], and fij are obtained
by applying the BEM with an increasing number of segments N .
These computations were also repeated using the one-point rule in

Table 1. Cylinder parameters and inversion results for Target 1
(water-filled tunnel).

Parameter κ2 σ2 x0 y0 a e χ

Lower

bound
1.0 0.0 −2.0 −5.0 0.05 0.2 0.0◦

Upper

bound
99.0 1.0 2.0 −1.0 1.05 1.0 180.0◦

Target

cylinder
80.000 0.100 −0.500 −2.500 0.750 0.670 33.00◦

Recovered

(TM)
79.639 0.100 −0.501 −2.501 0.750 0.672 33.17◦

Recovered

(TE)
79.800 0.100 −0.500 −2.500 0.750 0.669 33.03◦
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Table 2. Cylinder parameters and inversion results for Target 2
(empty tunnel).

Parameter κ2 σ2 x0 y0 a e χ

Lower

bound
1.0 0.0 −2.0 −5.0 0.05 0.2 0.0◦

Upper

bound
10.0 0.1 2.0 −1.0 1.05 1.0 180.0◦

Target

cylinder
1.000 0.000 0.000 −2.500 0.750 0.500 120.00◦

Recovered

(TM)
1.094 0.000 0.000 −2.500 0.752 0.502 119.76◦

Recovered

(TE)
1.097 0.000 −0.001 −2.500 0.761 0.498 119.17◦

the evaluation of the BEM integrals. The resulting convergence plots
are shown in Fig. 3. As expected, the accuracy suffers with the one-
point approximation in effect. For the same circular cylinder, excited
by a unit-strength electric line current located at (x, y) = (−2.5, 0.0),
the exact equivalent surface currents are compared in Fig. 4 with those
obtained using the SBIEM with N = 40. The currents are plotted vs.
the arc-length coordinate ` (normalized to the free-space wavelength
λ0) along C, which is measured counterclockwise from the point χ = 0◦.

Figure 3. Convergence plots of the SBIEM-computed scattered fields
for a circular water-filled cylinder showing the effect of the one-point
rule approximation in the computation of the BEM integrals.



Progress In Electromagnetics Research B, Vol. 50, 2013 27

(a) (b)

Figure 4. Exact equivalent currents (solid and dashed lines represent
magnitude and phase, respectively) for a circular water-filled cylinder
are compared with those computed using the SBIEM (staircase lines).
(a) Jz1. (b) M`1.

In the examples that follow, we have used N = 40 as a compromise
between accuracy and efficiency.

We next turn attention to the inversion procedure. Since the
computation of the cost function involves a numerical solution of
an integral equation, it is a time consuming process, even with the
SBIEM. Hence, we have opted to use a small population size of
NPOP = 5 × NPAR = 35. In all cases presented here, we have
used the mutation and crossover coefficients CF = 0.7 and CR = 0.9,
respectively. These values were arrived at as a result of a limited
number of trial runs, and are not necessarily optimal. The termination
parameters are TOL = 2.5× 10−3 and MAXGEN = 50. The reference
(or “measured”) data were generated from (A8), using the parameters
of the target cylinder.

The performance of this inversion algorithm for Target 1 under
TM illumination is illustrated in Fig. 5, where the target cylinder is
shown as a shaded ellipse and the line sources are indicated by bullets.
The initial and final cylinder populations are shown if Figs. 5(a)
and 5(b), respectively. Observe that the final population is on top
of the target.

The DE convergence plots for Targets 1 and 2 under both the
TM and the TE illumination are shown in Fig. 6, and the inversion
results are included in the last two rows of Tables 1 and 2, respectively.
The number of cost function evaluations for the TM/TE cases was
1593/1736 for Target 1, and 1675/1805 for Target 2. In computing
these results, we have found that with the one-point approximation
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(a) (b)

Figure 5. Illustration of the inversion procedure for Target 1
(waterfilled tunnel) under TM illumination. (a) Initial population
of cylinders superposed on the shaded target. (b) Final cylinder
population superposed on the target.

(a) (b)

Figure 6. DE convergence plots. (a) Target 1 (water-filled tunnel).
(b) Target 2 (empty tunnel).

of the BEM integrals the numerical model is not accurate enough to
reflect the small changes in the chromosome values at the later stage of
the inversion, causing the DE to stagnate. The DE convergence plots
often exhibit a characteristic staircase behavior, with intervals where
the cost does not decrease from generation to generation. To mitigate
this drawback somewhat, we have implemented an ad hoc hybrid



Progress In Electromagnetics Research B, Vol. 50, 2013 29

method, which combines DE with an occasional deterministic descent
along the negative gradient of the cost function, with the gradients
computed by the finite-difference method [34, 35]. The descent is
triggered with a probability of 0.5 each time the best cost does not
decrease between consecutive generations. This accelerated DE was
used to obtain the results presented here.

From the two targets considered, Target 2 (the air-tunnel) proved
to be more challenging, presumably because it presents a much weaker
contrast to the incident field than Target 1. With the same parameter
bounds as those used for Target 1 (see Table 1) and the small
population size used, DE tends to get trapped in a local minimum
corresponding to a small-radius lossy cylinder, which apparently
produces a scattered field very similar to that of the target. Under the
TM illumination, the inversion of the air-tunnel was successful with
a narrower search space for the dielectric constant and conductivity,
as indicated in Table 2. In the TE case, however, the inversion failed
to converge within MAXGEN = 50 generations, as can be seen in
Fig. 6(b). This slow convergence may be explained by the fact that
the air cylinder of electrically small cross-section is weakly excited by
a TE polarized field. Hence, the numerical model employed in the
forward problem may be too crude in this case to accurately reflect
the minute parameter adjustments required as the inversion procedure
homes on the target.

In summary, our preliminary results have shown that the DE-
SBIEM-based imaging can be remarkably accurate and efficient.
Moreover, for a method which does not require a good “first-guess”
solution, the procedure is reasonably robust.

6. CONCLUSION

We have demonstrated simultaneous electromagnetic (EM) inversion of
the location, shape, and complex dielectric constant of two-dimensional
dielectric cylinders of elliptic cross-section using the differential evo-
lution (DE) algorithm combined with the single boundary integral
equation method (SBIEM). Simulation results have been presented
which demonstrate that the DE-SBIEM offers a conceptually simple
yet efficient and reasonably robust technique for the imaging of
buried objects and voids. The method requires a certain amount
of problem-dependent tuning, mainly to adjust the mutation and
crossover coefficients. Premature convergence or stagnation can occur
with the small population sizes likely to be employed if the cost function
is computationally expensive. This may require ad hoc devices, such
as deterministic descents and re-starts with refreshed populations, to
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improve the efficiency and reliability of the method. These drawbacks
notwithstanding, this study indicates that DE-SBIEM offers much
promise for EM imaging applications. Future research should explore
the feasibility of this method for the imaging of arbitrarily shaped
objects.

APPENDIX A. BOUNDARY-ELEMENT METHOD

In the BEM, the cylinder contour C is approximated by N straight
segments, as illustrated in Fig. A1, and the surface currents are
expanded as

Jzi =
N∑

n=1

Ii
nPn, M`1 =

N∑

n=1

K1
nPn, (A1)

where i = 1, 2, and Pn is a unit pulse over segment n [19, 36, 37].
Upon substituting (A1) into (4)–(6) and point-matching the resulting
equations at segment center points, we obtain an N × N algebraic
system [[

ZEJ1
][

ZHJ2
]
+

[
ZEM1

][
ZEJ2

]][
I2

]
= −[

V 1
]
, (A2)

with the matrix elements given as

ZEJi
mn = −kiηi

4

〈
H

(2)
0 (kiRm)

〉
n
, i = 1, 2, (A3)

ZEM1
mn =

k1

4j

〈
H

(2)
1 (k1Rm) sin(Ωn −Ψm)

〉
n
, m 6= n,

= −1
2
, m = n, (A4)

ZHJ2
mn =

k2

4j

〈
H

(2)
1 (k2Rm) sin(Ωm −Ψm)

〉
n
, m 6= n,

= −1
2
, m = n. (A5)

Here,
〈〉

n
indicates integration over the nth segment of C, Rm = |Rm|,

where Rm is the vector from the source point on segment n to the
center point of segment m, and Ωn and Ψm are the inclination angles
of segment n and Rm, respectively, as illustrated in Fig. A1. The
elements of the excitation vector in (A2) are given as

V 1
m = −k1η1

4
H

(2)
0 (k1Rm), (A6)

where Rm is the vector from the line source to the match point on
segment m.
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Figure A1. Straight-segment model of the boundary contour C of a
cylinder and the associated quantities.

Once (A2) is solved for
[
I2

]
, the current expansion coefficients of

the external equivalent problem are obtained as
[
I1

]
=

[
ZHJ2

][
I2

]
,

[
K1

]
=

[
ZEJ2

][
I2

]
. (A7)

Finally, the scattered field at the NS receiver locations is obtained from
[
Es

z1

]
=

[
ZEJ1

][
I1

]
+

[
ZEM1

][
K1

]
, (A8)

which is a discretized version of (11). In the above, the matrix elements
ZEJ1

mn and ZEM1
mn are given by (A3) and (A4), respectively, with the

understanding that m refers to the mth receiver location, and that the
first expression in (A4) is used for all indices m and n.

The integrals in (A3)–(A5) are computed by low-order Gauss-
Legendre quadratures, except for the case m = n in (A3), when
the integral is evaluated by a quadrature especially developed for
logarithmically singular integrands [38]. In a more efficient but less
accurate approach, the singular integrals are evaluated analytically
using a small-argument form of the Hankel function, and the remaining
integrals are approximated using a one-point rule [19].

APPENDIX B. DIFFERENTIAL EVOLUTION

DE operates on a population of candidate solutions by applying
mutation, crossover (or recombination), and selection. Each individual
(or chromosome) xP

i , i = 1, 2, . . . , NPOP, of population P is a vector
(xP

i,1, xP
i,2, . . . , xP

i,NPAR) of NPAR parameters (or genes) represented by
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floating-point numbers. The size of the population, NPOP, is selected
by the user, with typical values between 2× and 100×NPAR. The DE
algorithm [11, 13, 33] consists of the following steps:

(i) The initial population is generated according to

xP
i,j = xMIN

j + Rj

(
xMAX

j − xMIN
j

)
, j = 1, 2, . . . , NPAR, (B1)

where Rj ∈ [0, 1] is a random number with a uniform distribution,
where xMIN

j and xMAX
j denote the minimum and maximum

permissible values of the jth parameter, respectively. The costs
F

(
xP

i

)
of all individuals is evaluated.

(ii) For each target individual (or primary parent) xP
i , a mutant vector

vP
i is formed according to

vP
i = xP

iB
+ CF

(
xP

r2
− xP

r1

)
, (B2)

where iB is the index of the best individual (the one with the
lowest cost). r1 and r2 are randomly selected distinct indices
from the range [1, NPOP] and different from i, and CF is a user-
supplied mutation factor with the suggested range [0.4, 1]. In this
operation, a secondary parent xP

iB
is perturbed by a randomly

selected differential.
(iii) A trial vector (or child) uP

i is formed with the jth parameter
generated as follows:

uP
i,j =

{
vP
i,j if Rj ≤ CR,

xP
i,j otherwise,

(B3)

where Rj ∈ [0, 1] is a uniform random number and CR ∈ [0, 1] a
user-specified recombination constant, which is typically close to
1. The binary crossover (B3) is monitored to detect if uP

i gets at
least one gene from the mutant vector vP

i . Should this not be the
case, a random index j ∈ [1,NPAR] is generated and uP

i,j is set to
vP
i,j . If the newly generated parameter uP

i,j falls outside the range
[xMIN

j , xMAX
j ], it is replaced by a feasible value, which may be a

half-way point between the violated bound and the previous gene
value. Finally, the cost F (uP

i ) is evaluated.
(iv) The child competes with the parent for the right to propagate to

the next generation:

xP+1
i =

{
uP

i if F
(
uP

i

)
< F

(
xP

i

)
,

xP
i otherwise.

(B4)
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(v) The steps 2–4 are repeated until the best population cost falls
below the desired tolerance level TOL or the generation count
reaches the specified maximum number MAXGEN.

The algorithm just summarized is designated DE/best/1/bin [13],
because the best individual is used for the secondary parent, one
differential is involved in the mutation, and the crossover is binary.
There are other variants of DE, which use different strategies to form
the mutant vectors and different ways to perform the crossover (which
could be exponential, rather than binary) [11]. For example, in
DE/rand/1/bin, the secondary parent is selected randomly from the
current population.

It is perhaps worthwhile to point out some differences between the
DE and traditional, real-coded genetic algorithms (GAs) [33, 34, 39].
First, DE does not involve selection of parents based on fitness. The
primary parent is chosen deterministically: each individual of the
current generation becomes a primary parent exactly once. A crossover
with a mutated secondary parent creates one child, not two, as in most
GAs. This child is only compared to one individual: its primary parent,
not to all the individuals in the current population, and the fitter one
wins a spot in the next generation. As a result, all the individuals of
the next generation are as good or better than their counterparts in
the current generation, which obviates the elitist strategy widely used
in GAs.

The most important difference, however, is in the nature of the
mutation, which in DE is the first step, while in GAs it is the last. In
GAs, mutation takes the form of a random perturbation of a fixed type;
for example, in real-coded GAs, a gene value is augmented by a random
fraction of its allowed range. Such a perturbation, whose purpose is
to prevent premature convergence, can be needlessly destructive. DE
avoids this problem by mutating secondary parents with population-
derived difference vectors. As generations pass, these differentials
tend to adapt to the natural scaling of the problem. For example,
if the population becomes compact in one variable but remains widely
dispersed in another, the differentials sampled from it will be small in
the first variable yet large in the other. This automatic adaptation
significantly improves the convergence of the algorithm.
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