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Abstract—The range profile (RP) of an automobile is derived by
compressing the wideband radar signal, and it can be utilized for
the classification and thus contribute to lane change and collision
avoidance. However, the limited radar bandwidth due to the cost and
the system complexity impedes the successful classification. This paper
proposes an efficient method to construct an efficient feature vector
of the automobile RP through combined use of the central moment,
the information on the maximum-minimum and the peak information.
Simulation results using the five automobile models composed of point
scatterers and a simple nearest neighbor classifier prove that the
proposed method improves the classification result, especially in the
multi-aspect classification.

1. INTRODUCTION

Research on radar has been very active in the last few years; much
progress has been made, especially for the pre-crush warning radar at
24/26GHz and the cruise-control radar at 77GHz bands [1]. Among
several radar signatures, the range profile (RP) shows the unique
one dimensional distribution of the radar cross-section [2–9] of the
automobile and can be effectively used for classification of automobiles
which can contribute to anti-collision, lane-change, and automobile
control regardless of weather and day-night conditions [10]. RP
can also provide two-dimensional radar image of automobiles if the
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synthetic aperture radar (SAR) [11–18], the inverse SAR [19] and the
jet engine modulation [20] techniques are applied.

However, classification must be automated for this profile to be
useful. Moreover, the bandwidth of the radar is limited due to the
cost, system complexity and regulations. This impedes successful
classification of RPs because of reduced resolution of compressed
signal. Hence, it is needed to develop efficient features and classifiers
that can discriminate automobiles under low-resolution condition.
To date, most researches have focused on the development of the
classifier [21, 22]. However, high classification ratios can be achieved
by using a simple classifier once the features of each automobile are
properly separated in the feature space [23–25].

The central moment (CM) invariant to translation of RPs is a
very efficient method that has been recently developed [22]. Compared
with conventional methods such as the matching score [26] and the
Fourier transform [27] methods, CM is computationally more efficient
and robust to the dominant peak of RP especially in classifying
high-resolution RPs. This method regards the RP as a probability
distribution function (PDF) and utilizes CMs as elements of feature
vectors. However, the problem of this method is that high order CMs
are sensitive to the variation of RPs since small disturbance of RP
caused by the clutter may cause wider fluctuation of high order CMs.
The extended high order CM [28] proposed to overcome this fluctuation
does not fully improve the performance.

This paper proposes an efficient method of improving the
classification performance of low-resolution automobile RPs which uses
the feature vector constructed by combining CM and two forms of
useful features called maxima-minima information (MMI) and peak
information (PI). In simulations that use five automobiles composed
of point scatterers and a simple nearest neighbor classifier (NNC), the
proposed method is found to significantly improve the classification
ratios, especially in multi-aspect classification.

2. SIGNAL MODEL AND PROPOSED METHOD

2.1. Signal Model

For the radar signal, we assume the monostatic chirp waveform

r(t) = A0e
j2π(f0t+ B

2τ
t2) × rect

[
t

τ

]
, (1)

where r(t) is a transmitted signal at time t, A0 its amplitude, f0 the
start frequency, B the bandwidth, τ the pulse duration, and rect a
function whose value is 1 for t − τ/2 ≤ t ≤ t + τ/2 and 0 otherwise.
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The received signal reflected from a target composed of K scattering
centers is

g(t) =
K∑

k=1

Ake
j2π[f0(t−dk)+ B

2τ
(t−dk)2] × rect

[
t− dk

τ

]
, (2)

where Ak is the amplitude of scattering center k and dk the time delay
between the radar and scattering center k; dk is calculated using plane
wave approximation, in which the distance to a scattering center is
that projected onto the radar line-of-sight vector.

The received signal g(t) is compressed by the matched-filter which
is implemented by a correlation between the stored replica sr(t) and
g(t) as follows [29]:

sout(t) =
∫ ∞

−∞
sr(t)g∗(u− t)du. (3)

If we define the filter kernel by h(t) = g∗(−t), sout(t) is derived by the
following convolution filter,

sout(t) = sr(t)⊗ h(t) =
∫ ∞

−∞
su(t)h(t− u)du. (4)

Using the convolution-multiplication relationship between the time
and the frequency domains, (4) can be implemented in the frequency
domain as follows:

Sout(f) = Sr(f)Hr(f), (5)

where Sout(f), Sr(f) and H(f) are the Fourier transform of sout(t),
sr(t) and h(t). The compressed output which is the RP is then given
by the sum of the following sinc functions:

sout(t) =
K∑

k=1

Akτsinc(B(t− dk)). (6)

The 3-dB resolution of the matched filter is c/2B where c is the speed
of the light. Therefore, wide bandwidth is needed for high resolution
RPs.

2.2. Problem of the Existing Method and Proposed Method

In this paper, we utilize the CM as a part of the feature vector because
it has already been proven to be very effective for the classification
of targets [29]. The RP normalized by the sum of the total values in
the RP is regarded as a PDF, and the statistical characteristic of this
PDF is usefully characterized by CMs. Therefore, the feature vector
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composed of CMs can be effectively applied to automobile recognition.
CM of the order q is given by the following formula:

µq =
Nr−1∑

n=0

(n− ηr)q

[
p̄(n)∑Nr−1

i=0 p̄(i)

]
, ηr =

Nr−1∑

n=0

n

[
p̄(n)∑Nr−1

i=0 p̄(i)

]
, (7)

where p̄(n) is the amplitude of the component n in RP normalized by
the maximum value and Nr the number of range bins in RP.

The major problem of CM is that RPs of automobiles fluctuate
due to the effect of the road and other nearby automobiles. In this case,
high order CMs are not adequate because the difference in (n− ηr)q in
(7) between the training and the test data becomes larger as q increases.
Furthermore, at narrow bandwidth, i.e., at low resolution, automobiles
are represented by a small number of range bins; in this case, the low-
order CMs cannot uniquely represent the RP due to the information
loss. Thus, additional information is needed to construct the feature
vector. In this paper, we propose two forms of additional features that
can be used in combination with low-order CMs in constituting the
feature vector to classify low-resolution RPs. There can be many of
existing features such as histogram and correlation, etc., that can be
combined with CM. However, these features are not effective because
low-resolution RPs do not have many range bins and thus classification
performance can be degraded.

The first form proposed in this paper is MMI of RPs. This paper
uses the difference of the location and the amplitude among global
maximum (GM), local maxima and minima (LMM) larger than a
threshold. We denote GM + LMM by MM. Because the location
of MMs and the relative difference of MMs are more robust to the
fluctuation of RP than CMs, MMI can provide additional information
of automobiles. For example, when the number of MMs am = 4, we
can use additional useful elements amounting to 4C3 × 2 = 12.

Because the number of range bins in the RP of automobiles is very
small at narrow bandwidth, complicated peak detection algorithms [30]
are not required. Instead, assuming p̄(i)D1 = p̄(i + 1) − p̄(i) and
p̄(i)D2 = p̄(i + 1)D1 − p̄(i)D1, we utilized a simple second derivative
test of RP to find LMMs as follows:

a) If p̄(i + 1)D1 = 0 and p̄(i)D2 < 0, then p̄(i + 2) is a local
maximum.

b) If p̄(i + 1)D1 = 0 and p̄(i)D2 > 0, then p̄(i + 2) is a local
minimum.

To remove the effect of noise and small minor MMs, the detected
GM and LMMs are thresholded, and the highest l MMs are selected.
Because of the small number of range bins, the second derivative test
finds MMs accurately (Fig. 1). The amplitude difference MAij between
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Figure 1. Example of low-resolution RP and MM (B = 30MHz,
l = 3).

MM i and j is defined by
MAij = |p̄(ki)− p̄(kj)|, (8)

where ki and kj are the location of MM i and j. In a similar manner,
the location difference MDij between MM i and j is defined by

MDij = |ki − kj |. (9)
The second form of feature proposed in this paper is PI. At narrow

bandwidth, most of the energy is concentrated around the peak of
RP. Therefore, constructing the feature vector using PI can further
improve the classification result. Using the location of the peak ipe, we
developed the additional elements; the ratio Ep of the peak power and
the ratio Ea of the power around the peak with respect to the total
power, and the power difference E+

i and E−
i between the peak power

and the power at ±i from the peak, each of which is represented by
Epe = p̄(ipe)2, (10)

Ea =
a∑

m=−a

p̄(ipeak + m)2, (11)

E+
i = p̄(ipe)2 − p̄(ipe + i)2, E−

i = p̄(ipe)2 − p̄(ipe − i)2. (12)
When the proposed combination was used, the length of the feature
vector composed of CMs increased from (pm − 1) to lf = (pm + am ×
(am − 1) + 2nm + 2) as follows:

~f =
[
~C ~Ma

~Md
~E
]T

, (13)

where,
~C = [µ2µ3 . . . µpm ] , (14)

~Ma =
[
MA12MA13 . . . MA(am−1)(am)

]
, (15)
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~Md =
[
MD12MD13 . . . MD(am−1)(am)

]
, (16)

~E =
[
EpeEaE

+
nm

E+
nm−1 . . . E−

nm−1E
−
nm

]
. (17)

pm is the maximum order of CM, am the number of MMs selected, and
nm the number of range bins from the peak. Because of the increased
length of the feature vector, automobiles can be better separated in
the feature space.

Using the proposed feature vector, the total train data of Nc

automobiles and Na angles are obtained as follows:

F =




f11 f12 . . . f1,Nc×Na

f21 f22 . . . f2,Nc×Na

...
...

. . .
...

flf ,1 flf ,2 . . . flf ,Nc×Na


 , (18)

where fij is the ith element of the feature vector j, i.e., ~fj . Because
the range of each element in the feature is different, the magnitude of
element fij in (18) must be transformed to have the same weight in
the feature space. Thus, we used the following rule to construct the
normalized train matrix ~F whose elements are between zero and unity
as follows [31]:

f̄ij =
fij − fi,min

fi,max − fi,min
, (19)

where fi,max and fi,min are the maximum and minimum in the column
of F in (18).

To reduce the classification time and remove the redundancy, the
principal component analysis was applied [31]. This method first
derives the sample mean vector ~m and the covariance matrix R as
follows:

~m =
1
Q

Q∑

k=1

~fk, (20)

R =
1

Q− 1

Q∑

k=1

(
~fk − ~m

)(
~fk − ~m

)T
, (21)

where ~f is the kth column vector of the normalized train matrix F̄ ,
Q = Nc ×Na. Then, lf × O transformation matrix W is constructed
using the O eigen vectors of R corresponding to highest O eigen values
corresponding to highest O eigen values. The O × 1 feature vector
transformed by T matrix is as follows:

~x = WT ~f. (22)
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In the test phase, the test feature vector of an unknown target is
normalized using (19) and transformed using (22).

In classification, we used a simple NNC which utilizes a simple
Euclidean distance between two vectors as follows:

d (~xi, ~xj) =

√√√√
O∑

k=1

(~xi(k)− ~xj(k))2. (23)

Assuming that the test vector of an unknown automobile is ~xu and that
the train vector of the automobile i is ~xi, classification was conducted
based on the following rule:

i∗ = min
i

d (~xu, ~xi) . (24)

In other words, the train automobile whose feature vector yields the
shortest Euclidean distance to the test vector is judged to be the one
that the unknown automobile belongs to. To further improve the
classification result, we applied the multi-aspect classification method
using the test vectors derived at several aspects, which is

i∗ = max
k

Nk, (25)

where Nk denotes the number of kth class decisions made by (22). The
overall classification procedure is summarized in Fig. 2.

Figure 2. Classification procedure.
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3. SIMULATION RESULTS

In simulations, we used five automobiles consisting of isotropic point
scatterers (Fig. 3). To be realistic, we modeled the automobiles using
the 3D CAD data of the real-sized automobiles: a sedan, a compact
car, a bus, a minivan and a truck (www.3dcadbrowser.com). For the
radar system, we used a monostatic chirp radar with pulse repetition
frequency = 2 kHz, center frequency = 24 GHz, bandwidth = 30 MHz
and pulse width τ = 30 µs. Targets were represented by a small number

(a) Sedan (b) Compact car

(c) Bus (d) Minivan

(d) Truck

Figure 3. Automobiles used for simulation.
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of range bins because of the narrow bandwidth = 30 MHz (Fig. 4).
The training database was constructed using RPs derived at angles

sampled with an increment ∆θ in a given azimuth aspect angle between
−θR and θR, and the effects of various ∆θs and θRs were simulated.
The test data were derived at a random angle between −θR and θR.
Then the correct classification ratio Pc, which is the ratio between the
number of correctly classified test vectors and that of the number of the
total test vectors, was used as a performance measure. To simulate the

(a) Sedan (b) Compact car

(c) Bus (d) Minivan

(d) Truck

Figure 4. RPs of the automobiles in Fig. 3 (B = 30 MHz).
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effect of RP fluctuation caused by the clutter, a× p̄(n) was subtracted
from p̄(n) for each n, where a is a random number between −h and h.

Using am = 3 for MMI and nm = 2 for PI (see (13) ∼ (17)),
various classification results obtained by using feature vectors CM
only, CM + MMI, CM + PI and CM + MMI + PI were compared to
demonstrate the efficiency of the proposed method. To further improve
the classification result, a multi-aspect classification was conducted
using (25) and the test RPs collected from each automobile moving
for 1 sec at a random relative velocity between −11.11 and 11.11 m/s
(−40 and 40 km/h, respectively) and a random acceleration between
−2 and 2 m/s2. The test RPs were down-sampled to 20 to save the
computation time. To remove the effect of the randomness, each
simulation was conducted 10 times and the average was used as a
Pc. In selecting O for PCA, the number of the highest eigen vectors
whose the sum was larger than 99% of the total sum was selected.

In the single-aspect classification, Pc derived by using CMs only
with ∆θ = 0.1◦, θR = 10◦ and h = 0.1 was not seriously affected by the
Pm because of the narrow bandwidth (Fig. 5(a)); Pc ranged between
36.8 and 33.6%. Therefore, Pm was set to 5 in the following simulations
to save the memory space. In the single-aspect classifications using
h = 0.1, Pcs increased in proportion to SNR, and the classification
result obtained by using a combination of CM + PI + MMI was
considerably improved (Fig. 5(b)).

Compared with CM only, the result was improved with the amount
of improvement (∆Pc) 20.8% ≤ ∆Pc ≤ 27.2%. Pcs of CM + MMI was
higher than CM + PI because MMI utilized relative the information
between MMs and PI utilized the peak information only. Compared
with the single-aspect classification (Fig. 6(a)), Pcs of multi-aspect
classification derived by using SNR = 10dB, ∆θ = 0.1◦ and h = 0.1
for various θRs improved considerably (Fig. 6(b)); Pcs of CM + MMI
and CM + PI + MMI were approximately equal to 95%, those of

(a) P s for various P  sc m (b) P s for various SNRsc

Figure 5. Pcs for various Pms and SNRs.
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CM + PI and CM were approximately 75.0% ≤ Pc ≤ 80.0% and
65.0% ≤ Pc ≤ 70.0%. Pcs of CM + PI + MMI were slightly higher
than those of CM + MMI. Comparison of CM + PI and CM + MMI
proves that MMI contains more information that helps to discriminate
the targets than does CP.

Comparison of the results conducted by using SNR = 10 dB,
θ = 10◦ and h = 0.1 for various ∆θs shows a result similar to that in
Fig. 6 (Fig. 7); CM + PI + MMI and CM + MMI yielded much higher
results than CM + PI and CM did. As ∆θ increased, Pcs decreased
because of the reduction of the training data. However, the proposed
method still provided Pcs higher than 95%.

The proposed method was much more robust to fluctuation
(Fig. 8). As h becomes larger, the test RP can be more different
from the train RP because of the increased fluctuation, and this yields
discrepancy of high order CMs. Consequently, the classification result
of CM and MMI decreased considerably in both single- and multiple-
aspect classifications. However, the proposed method was unaffected
by fluctuation because of the increased information provided by PI

(a) Single-aspect (b) Multi-aspect

Figure 6. Comparison of Pcs for various θRs.

(a) Single-aspect (b) Multi-aspect

Figure 7. Comparison of Pcs for various θs.
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(a) Single-aspect (b) Multi-aspect

Figure 8. Comparison of Pcs for various hs; fluctuation of RP is
proportional to h.

and MMI. Similar to the results in Figs. 6 and 7, the increase of Pcs
by MMI was larger than that by PI.

4. CONCLUSION

CM of RPs has been proven a very efficient feature to classify
targets using the radar, and this can be effectively applied to the
recognition of automobiles. However, the major problem of CM is the
fluctuation of higher order CMs caused by the fluctuation of RPs of
an automobile influenced by its surroundings. In addition, the limited
radar bandwidth further degrades the classification performance. To
solve this problem, we proposed a combination of useful features
that improve the classification result using low-resolution RPs of
automobiles; in addition to CM, PI and MMI were combined to further
improve Pcs. In simulations that applied scatters modeled by using
the real-sized CAD data of five automobiles, the proposed method
yielded high classification results that were insensitive to the range
of aspect angle, the size of training database, and the fluctuation of
RPs. Compared with CM only, a significant improvement of Pcs was
achieved by the proposed method. At SNR = 10 and h = 0.1; Pcs
higher than 95% was provided by CM + PI + MMI in multi-aspect
classification. The improvement by MMI was much higher than that
by PI because of the relatively rich information between MMs.

In this paper, we proposed two simple types of features to improve
the classification of automobiles which yielded very impressive results.
Because there can be other efficient features such as the histogram,
combination of the proposed method and these other features may
further improve the classification result. Moreover, because the
NNC used in this paper is a very simple classifier, a more efficient
classifier such as the neural network classifier may be used for greater
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improvement of performance. Therefore, we are currently exploring
new features and new classifiers that can significantly improve the
classification result.
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