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Abstract—This paper deals with the problem of constant false alarm
rate (CFAR) target detection in high-resolution ground synthetic
aperture radar (SAR) images based on KK distribution. For
the parameter estimation of KK distribution, the semi-experiential
algorithm is analyzed firstly. Then a new estimation algorithm based
on the particle swarm optimization (PSO) is proposed, which takes the
discrepancies between the histogram of the clutter data and probability
density function (PDF) of KK distribution at some selected points as
the cost function to search for the optimal parameter values using PSO
algorithm. The performance of the two algorithms is compared using
Monte-Carlo simulation using the simulated data sets generated under
different conditions; and the estimation results validate the better
performance of the new algorithm. Then the KK distribution, which
is proposed for spiky sea clutter originally, is applied to model the
real ground SAR clutter data. The goodness-of-fit test clearly show
that the KK distribution is able to model the ground SAR clutter
much better than some common used model, such as standard K-
distribution and Gamma, etc. On this basis, a global CFAR target
detection algorithm is presented. The detection threshold is calculated
numerically through the cumulative density function (CDF) of KK
distribution. Comparing the amplitude of every SAR image pixel with
this threshold, the potential targets in ground SAR images can be
located effectively. Then target clustering is implemented to eliminate
the false alarm and obtain more accurate target regions. The detection
results of the proposed algorithm in a typical ground SAR image
show that it has better performance than the detector based on G0

distribution.
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1. INTRODUCTION

With the rapid development in the past years [1–5], the high-resolution
SAR is capable of producing very high quality images. It is reported
that typical sensor platforms is able to provide wide area search
coverage (approximately 100 km2 area per minute) at 1.0m × 1.0 m
resolution [6]. This attractive capability has opened new interesting
research fields in both civil and military contexts, such as target
detection [7, 8], target recognition [9, 10], navigation [11], etc.. Target
detection is one of the core applications of SAR remote sensing and
has received considerable attentions in the recent years, such as CFAR
method [12–18], the GLRT method [19], the extended fractal-based
method [20], the wavelet transform-based method [21], etc.. Among
these kinds of methods, the CFAR method has been most widely used
for it is capable of maintaining the constant false alarm probability
at a certain level in non-stationary background through an adaptive
threshold. The commonly used CFAR detection algorithms include
the cell-average CFAR (CA-CFAR), greatest-of CFAR (GO-CFAR),
smallest-of CFAR (SO-CFAR), order statistic CFAR (OS-CFAR), etc..
In general, a practical CFAR detector is a compromise of three aspects,
i.e., executive speed, detection precision and feasibility. Up to now,
the global CFAR detector based on the statistical character of the
background, which is actually a kind of CA-CFAR detector, is one of
the most practical CFAR algorithms in despite of its disadvantages [22].
It is considered in this algorithm that the target pixels account for a
very small proportion in the SAR images. As a result, the presence of
the target has scarcely any influence on the statistical characteristic of
the background. If the clutter background of the whole images could
be modeled accurately, it is easy to find out the brighter pixels, which
corresponding to the targets. This algorithm is simple to implement
and has low computational burden.

The CFAR detectors are based on a Neyman-Pearson likelihood
criterion, which requires the specification of an appropriate statistical
clutter model for the detection performance. An excellent statistical
clutter model should provide a good fitting to SAR image clutter
in many practical scenarios. Unfortunately, less attention has been
devoted to land scattering in high-resolution SAR, while many
investigations have been carried out in the statistical analysis and
modeling of high-resolution ocean SAR images [23–26]. Actually, as the
same as the sea clutter, the statistics of the SAR image clutter of the
ground areas depends on many complicated factors, such as the radar’s
operating mode, grazing angle and background operating environment,
etc.. As a result, it is very hard to found a universal model for all
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kinds of ground SAR clutter. A class of G distributions is presented
for the extremely heterogeneous clutter in [27], and its special case, G0

distribution, has been successfully applied to target detection scheme
design [28]. It is validated that the GK and LNT distributions are the
best models for some of the MSTAR ground SAR clutter among the
compared models [23]. In this paper, the KK distribution [29], which
is originally presented to model the heavy spikes in sea clutter as an
alternative to the KA distribution, is applied to model the ground SAR
image clutter.

As far as a parametric clutter model is concerned in target
detection schemes, the parameter estimation is an indispensable step;
since the PDF estimation problem is formulated as a parameter
estimation one. For the parameter estimation of KK distribution,
a semi-experiential algorithm is presented based on some real X-
band, high-resolution and high grazing clutter sea clutter data sets,
and its good performance for these clutter data sets has been
already validated [29]. This algorithm, however, is based on two
basic hypotheses: 1) the mixing coefficient is selected experientially
according to the characteristic of the data set and the spiky component
of the KK distribution is very small; 2) the shape parameters of the
two K components are considered to be equal. Actually, these two
hypotheses may be not reasonable for clutter obtained under different
conditions. A small mixing coefficient would weaken the capability of
KK distribution to model the spike in clutter. In this paper, a new
algorithm based on the PSO is proposed, which takes the discrepancies
between the histogram of the clutter data and probability density
function of KK distribution at some selected points as the cost function
to search for the optimal parameter values using PSO algorithm. This
algorithm is capable of estimating the parameter of KK distribution
without any pre-knowledge of the clutter.

The main contributions of the paper are threefold: 1) a new
parameter estimation algorithm for KK distribution is presented; 2)
the KK distribution is applied to model the ground SAR image; 3) a
global CA-CFAR target detection algorithm based on KK distribution
is proposed in ground SAR images.

The remainder of this paper is organized as follows. The KK
distribution is introduced in Section 2. The parameter estimation of
KK distribution, including the semi-experiential algorithm and the new
algorithm, is studied in Section 3. Then a CFAR detector based on KK
distribution is proposed in Section 4, followed by concluding remarks
in Section 5.
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2. THE KK DISTRIBUTION

At a low grazing angle, the K distribution has been validated in
many literatures that it is a proper model for the high-resolution sea
clutter returns [30, 31], which are subjected to shadowing, ducting and
multipath propagation [29, 32]. By contrast, the returns are affected by
Bragg scattering from rough sea surface and scattering from whitecaps
at higher grazing angles [29]. In this case the K distribution is no
longer a sufficient model because of the severe spike in clutter. The
KA distribution is presented to improve the adaptability to the sea
clutter distribution particularly in the tail region in [33, 34]. However,
the KA distribution cannot be expressed in closed form, and its PDF
and CDF have to be numerically computed, which absolutely increases
the difficulty for the analysis of the radar detection performance. As
an alternative, the KK distribution is proposed to model the sea
clutter distribution of high grazing angles in [29], where both the
Bragg/whitecap scatters and spikes are assumed to be K distribution.
The overall clutter distribution is the mixture of the two K distribution,
i.e.,

fKK (x) = (1− k) fK1 (x; v1, b1) + kfK2 (x; v2, b2) (1)

where fK1 and fK2 are both K distribution with parameters as specified
characterized by the densities

fKj (x; vj , bj) =
2

bjΓ (vj)

(
x

2bj

)vj

Kvj−1

(
x

bj

)
,

x ≥ 0, vj ≥ 0, bj ≥ 0, j = 1, 2
(2)

where vj and bj are the shape and scale parameters, respectively, and
Kvj−1(·) is a modified Bessel function. The first K distribution fK1

in (1), which is called K1 component in this paper, represents the
Bragg/whitecap scatters, and the second K distribution fK2 in (1),
which is called K2 component, represents the spike component. k ∈
[0, 1] is the mixing coefficient. If k = 0, fKK (x) = fK and it simplifies
to the standard K distribution without the spike component.

The nth moment of KK distribution in (1) is given by

E {Xn} = (1− k)
2nΓ (n/2 + 1) bn

1Γ (υ1 + n/2)
Γ (υ1)

+k
2nΓ (n/2 + 1) bn

2Γ (υ2 + n/2)
Γ (υ2)

. (3)
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The CDF of KK distribution can be obtained from the fact that

FKK (x) = (1−k)FK1(x)+kFK2(x)=(1−k)
[
1− 2

Γ(v1)

(
x

2b1

)v1

Kv1

(
x

b1

)]

+k

[
1− 2

Γ(v2)

(
x

2b2

)v2

Kv2

(
x

b2

)]
(4)

where FK1(x) and FK2(x) represent CDF of the component K1 and
K2, respectively.

Let x(k)
KK = {xi|i = 1, 2, . . . , N} denotes a group of clutter data

obeys KK distribution with mixing coefficient k and sample size N .
A simulated clutter data set x(0.2)

KK is generated with the parameters
with N = 10000, v1 = v2 = 2, b1 = 5 and b2 = 20. The histogram
of the data set is plotted in Fig. 1 along with the corresponding KK
distribution and K1 component. From Fig. 1, it is seen that the PDF
of KK distribution has a heavier tail than K distribution, which means
that it is capable of modeling much more spiky clutter.

Figure 1. The histogram of data set x and the corresponding KK
distribution and K1 component.

3. PARAMETER ESTIMATION OF KK DISTRIBUTION

3.1. Semi-experiential Algorithm

The semi-experiential algorithm† is proposed by Dong in [29] based
on the analysis of an X-band, high-resolution and high grazing clutter
data set. There are two basic hypotheses in this algorithm as have been
already summarized previously: 1) the mixing coefficient is selected
experientially; 2) the shape parameters of the two K components are
† This algorithm is named by the authors of this paper according to its characteristic.
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considered to be equal, i.e., v1 = v2. On this basis, the estimation
procedure of the five parameters of KK distribution is divided into
three steps: 1) select the mixing coefficient k experientially according
to the characteristic of the data set; 2) estimate the parameters v̂, b̂ of
the K distribution in (2) from the data set and assign them to the K1

component of KK directly, i.e., v1 = v2 = v̂, b1 = b̂; 3) estimate the
scale parameter b2 of K2 component by making use of the discrepancies
of the CDF of K and KK distribution.

In [29], the mixing coefficient is selected as k = 0.01 based on
the statistical character of the given data set, and it is validated this
algorithm is effective. However, for the radar clutter data obtained
under different conditions, the coefficient k is very hard to select quickly
and accurately. Up to now, there is no effective method to select k
automatically. The discrepancies between the KK distribution and its
K1 component increase if the value of k is getting larger. As a result,
it is not reasonable to assign the parameter value of K distribution to
the K1 component in step 2) when k is no longer as small as 0.01.

In order to illuminate the errors arisen from assigning the
estimates v̂ and b̂ to the parameters of K1 component in step 2)
directly, 8 groups of clutter data x

(k)
KK are generated with different

k and v1 = v2 = 2, b1 = 5, b2 = 20, N = 10000. The parameters
of K distribution are estimated through the method in [35] based on
the data sets. Then the errors between the estimates (v̂ and b̂) and
the true parameter values of the K1 component (v1 = 2, b2 = 5) are
calculated using Monte-Carlo simulation. The results are given in 2 by
means of the mean error (ME) and root mean square error (RMSE),
which are defined as

ME =
1
M

M∑

m=1

θ̂m − θ, (5)

RMSE =

√√√√ 1
M

M∑

m=1

(
θ̂m − θ

)2
(6)

where θ denotes the true parameter value of K1 component, and θ̂m

is the mth estimate result.
From Table 1, it can be seen that the MEs and RMSEs increase,

especially the scale parameter b1, while k changes from 0.01 to 0.7.
As a result, it is improper to assign v̂ and b̂ to the parameter of K1

component directly when k is large, which means the performance of
the semi-experiential algorithm is bad.

Table 2–Table 4 list the estimation errors of b2 based on three
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Table 1. The estimation errors of parameter v1 and b1 of KK
distribution with different k.

k
ME RMSE

v1 b1 v1 b1

0.01 −0.2099 0.4690 0.0830 0.1521

0.10 −1.0102 4.9520 0.0204 0.1897

0.20 −1.2130 9.3150 0.0136 0.2494

0.30 −1.3027 13.9721 0.0111 0.3595

0.40 −1.3416 18.6180 0.0082 0.4229

0.50 −1.3292 23.1933 0.0094 0.4212

0.60 −1.3292 27.2050 0.0097 0.4524

0.70 −1.2735 30.0711 0.0118 0.4705

Table 2. The estimation errors of b2 based on data set x(0.01)
KK for

different k.

k = 0.01 k = 0.10 k = 0.20 k = 0.30 k = 0.40 k = 0.50 k = 0.60

ME 0.9754 −4.9856 −6.0036 −6.5408 −6.9172 −7.3067 −7.3874

RMSE 1.0803 0.6945 0.7625 0.6739 0.7097 0.6291 0.7070

Table 3. The estimation errors of b2 based on data set x(0.3)
KK for

different k.

k = 0.01 k = 0.10 k = 0.20 k = 0.30 k = 0.40 k = 0.50 k = 0.60

ME 22.4356 9.0053 6.8776 5.5413 4.5917 4.0077 3.7935

RMSE 1.3339 0.9673 0.8174 0.7363 0.7245 0.7214 0.7743

Table 4. The estimation errors of b2 based on data set x(0.6)
KK for

different k.

k = 0.01 k = 0.10 k = 0.20 k = 0.30 k = 0.40 k = 0.50 k = 0.60

ME 9.1586 6.2581 5.5314 4.9443 4.6067 4.7659 4.6198

RMSE 13.2887 2.8818 2.0111 1.7421 1.8235 1.8378 2.0355

data sets x(0.01)
KK , x(0.3)

KK , x(0.6)
KK , respectively. In each table, the k is pre-

selected arbitrarily as k = 0.01, 0.10, 0.20, . . . , 0.60 in the estimation
of b2. From the three tables along with Table 1, it can be seen that the
performance of semi-experiential algorithm is bad especially when k is
selected improperly. In Table 2, the results for k = 0.01 is acceptable,
which is exactly the instance in [29].
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3.2. Parameter Estimation Algorithm Based on PSO

The PSO algorithm, which is an evolution algorithm based on swarm
intelligence, was presented by J. Kennedy and R. Eberhart in 1995 [36].
It is capable of solving the global optimal solution of non-linear
and non-differentiable problem and has been received considerable
attentions [37–39]. The PSO is initialized with a population of random
particles, and each particle is treated as a solution with two states:
the current position xi = (xi1, xi2, . . . , xiD) and the current velocity
vi = (vi1, vi2, . . . , viD) in a D-dimensional space. The fitness of each
particle is evaluated by the cost function and its current position.
Simultaneously, the orientation and displacement of each particle is
decided by its velocity. Each particle keeps track of its coordinates in
hyperspace which are associated with the best solution, which makes
the cost function minimum, it has achieved so far. This value is called
pbest denoted as pbest = (pi1, pi2, . . . , piD). The “global” version of the
particle swarm optimizer keeps track of the overall best value obtained
thus far by any particle in the population, which is called gbest denoted
as gbest = (g1, g2, . . . , gD).

At each iterative step, the particles change their positions and
velocities toward the pbest and gbest. In the (k + 1) step, for example,
the position and velocity of each particle is updated using following
formulas,

vk+1
i = wvk

i + c1r1

(
pi,j − xk

i,j

)
+ c2r2

(
gi − xk

i,j

)
, (7)

xk+1
i,j = xk

i,j + vk
i,j (8)

where w is the inertial weight, c1 and c2 are the acceleration constants,
r1 and r2 are random numbers uniformly generated from [0, 1].

In the PSO algorithm, the fitness of each particle is evaluated by
its cost function. An efficient cost function has intense influence on
the convergence speed and precision of the algorithm. The maximum
likelihood function [40], the equivalence of theoretical and experimental
statistical moments [41] and the second-kind cumulants [42] are
commonly used for the parameter estimation of the clutter models.
For the KK distribution, however, these are not appropriate because
1) the maximum likelihood function and the second-kind cumulants is
very complicated; 2) the KK distribution has heavy tail in its PDF,
which results in severe departure between the theoretical moments
and statistical moments especially when the moment order is high as
the same as the Pareto distribution [43]. The discrepancy between
the histogram of the clutter data and PDF of KK distribution are
considered as the cost function in this paper. Least-square fitting is
applied at specifically selected points of the histogram of the clutter
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data and the PDF of KK distribution. A total of G points are sampled
in this paper; and the cost function is given as,

fcost =
G∑

g=1

(fKK (g)− h (g))2 (9)

where fKK (g) and h(g) denote the amplitude of the gth special point
of the KK PDF and the amplitude of the same sample of the histogram
of the clutter data, respectively. Minimizing the cost function, which
means that the histogram of the clutter data is the most close to the
PDF of KK distribution in amplitude domain, the parameters of KK
distribution can be estimated, i.e.,

θ = arg min
θ

G∑

g=1

(fKK (g)− h(g))2 (10)

where θ = [k, v1, b1, v2, b2]T denotes the parameter vector of the KK
distribution. The estimation algorithm is summarized as the following
steps.

Step 1) Initialize the parameters of the PSO algorithm, such as the
size of random particles, the inertial weight w, the acceleration
constants c1 andc2, the maximum iterative time L, etc.. At the
beginning, set the initial iterative time as l = 1.

Step 2) Generate the initial population of random particles Θ =
{θi| i = 1, 2, . . . , I}, where θi = [k(i), v

(i)
1 , b

(i)
1 , v

(i)
2 , b

(i)
2 ]T denotes

the position vector of the ith particle.
Step 3) Calculate the fitness of each particle according to (9).
Step 4) Compare the fitness of each particle with its own best

solution pbest and the global best solution gbest obtained so far
and update the two kinds of best solutions.

Step 5) Update the positions and velocities of the particles according
to (7) and (8).

Step 6) Back to Step 3) while the iterative number l < L and finish
the optimization process if l = L.

It is reasonable to image that the smoothness of the histogram has
intense influence on the precision of the estimation for the discrepancies
between the histogram of the clutter data and probability density
function of KK distribution is taken as the cost function. The
smoothness of the histogram is mainly decided by two factors, i.e.,
the size of the clutter data N and the statistical interval δ. The larger
the data size is, the smoother the histogram is, and so is the statistical
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interval. In order to validate the influence of these two factors, two
experiments are carried out based on the data set x(0.2)

KK . Table 5
lists the estimation errors for different sample sizes with invariable
statistical interval δ = 2.0; and the estimation errors for different
statistical interval with a sample size N = 10000 are listed in Table 6.
These results are also given by means of ME and RMSE in (5) and (6).
It can be seen apparently that when the sample size and the statistical
interval increase, which means the histogram of the clutter data is
smoother, the entire MEs and RMSEs decrease, i.e., the estimation
precision becomes higher.

Table 5. The estimation errors of the proposed algorithm for different
sample size.

sample

size

ME RMSE

k v1 v2 b1 b2 k v1 v2 b1 b2

1000 0.0242 0.3001 0.1642 −0.2267 −1.0857 0.0765 0.6408 0.6554 0.9433 2.1028

2000 0.0235 0.2216 0.1445 −0.1803 −0.6107 0.0686 0.5186 0.7004 0.7839 1.5617

5000 0.0140 0.0989 0.0995 −0.0707 −0.3350 0.0536 0.3536 0.6004 0.5657 1.6367

10000 0.0078 0.0464 0.0985 −0.0078 −0.2819 0.0440 0.2674 0.5263 0.4202 1.4116

Table 6. The estimation errors of the proposed algorithm for different
statistical interval.

statistical 

interval 

ME  

k 1 v2 b1 b2 k 1 v2 b1 b2 

0.2 .0313 0.3623 0.1919 −0.3774 −1.3491 0.0713 0.6029 0.6130 0.9115 2.6377

0.5 .0086 0.1418 0.1551 −0.1068 −0.7881 0.0473 0.4482 0.5715 0.6818 2.0494

1.0 .0081 0.0949 0.1503 −0.0849 −0.7013 0.0450 0.3063 0.5665 0.5540 1.8786

2.0 .0078 0.0464 0.0985 −0.0078 −0.2819 0.0440 0.2674 0.5263 0.4202 1.4116

0

0

0

0

v

RMSE

v

The semi-experiential algorithm is affected strongly by the value of
k as shown in Table 1–Table 4. In order to investigate the performance
of the proposed algorithm for different k, the five parameters are
estimated based on the data sets x(0.01)

KK , x(0.2)
KK , x(0.4)

KK , x(0.6)
KK , and the

MEs and RMSEs are given in Table 7. From Table 7, it can be seen
that the MEs and RMSEs do not change evidently when k increases
from 0.01 to 0.60, which means the proposed estimation algorithm is
robust for different clutter data sets.

Although the KK distribution is proposed for the spiky sea clutter
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Table 7. The estimation errors of the proposed algorithm for different
k.

k
ME RMSE

k v1 v2 b1 b2 k v1 v2 b1 b2

0.01 0.0165 0.1583 −1.5599 −0.1286 −8.3819 0.0099 0.2687 0.1349 0.3611 5.5782

0.2 0.0067 0.0455 −0.0568 −0.0490 −0.2791 0.0315 0.2060 0.4526 0.3967 1.2724

0.4 0.0043 0.0419 −0.2173 −0.0224 −0.6034 0.0307 0.2554 0.4854 0.4644 1.6312

0.6 0.0014 0.1243 0.0907 −0.0532 −0.1843 0.0363 0.4202 0.4308 0.8117 1.6091

Figure 2. Grass field of the
HB06171 file.

Figure 3. Wood field of the
HB06192 file.

originally, it is capable of modeling clutter of some ground SAR images
because of the heavy tail in its PDF. Two clutter files of the MSTAR
SAR images [23], named HB06171 and HB06192 as show in Fig. 2
are Fig. 3, are tried to be modeled by KK distribution. The results
of statistical analysis performed by commonly used clutter models,
such as K distribution, Gamma distribution, G0 distribution etc., are
compared with KK distribution in Fig. 4 and Fig. 5.

The PDF expressions of G0 distribution and Gamma distribution
along with their moments of different order are given as follows,
respectively.

G0 model:

fG0(x) =
2nnΓ(n− α)γ−αx2n−1

Γ(n)Γ(−α)(γ + nx2)n−α
, −α, γ, n, x > 0, (11)

E {Xr} = (γ/n)r/2 Γ(−α− r/2)Γ(n + r/2)
Γ(−α)Γ(n)

. (12)
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Figure 4. Amplitude histogram
for image HB06171.

Figure 5. Amplitude histogram
for image HB06192.

Table 8. Parameter estimation results of the clutter models.

File

name

KK  K  G
0

Gamma 

k̂ 1̂
v

2
v̂

1
b̂

2
b̂ v̂ b̂ α̂ γ̂ n̂ â b̂

HB06171 0.1657 2.6115 2.5365 5.5407 5.9435 13.681 2.2834 −3.4633 738.845 2.9975  2 .9975 5.0031

HB06192 0.2474 1.5443 2.2365 4.364811.0062 1.7555 4.8663 −2.8083 365.752 1.5514  1 .5515 7.1484

Table 9. Goodness-of-fit test for grass field.

K G0 Gamma KK

K-S test 0.02018 0.05254 0.0225 0.01251

χ2 test 0.2500 4.5770 1.5040 0.0150

Gamma model:

fGamma(x) =
1

baΓ(a)
xa−1 exp(−x

b
), x > 0, (13)

E {Xr} =
brΓ(a + r)

Γ(a)
. (14)

Table 8 lists the parameter estimation results of the clutter models.
From Fig. 4 and Fig. 5, it is seen that the KK distribution can fit SAR
background clutter of grass field (HB06171) and wood field (HB06192)
much better than other models, especially in the tail region. Goodness-
of-fit tests are used to demonstrate the performance of the KK model
along with the K distribution, G0 distribution and Gamma distribution
and their fit to the experimental histograms. The chi-squared test and
K-S test [41] are employed for this purpose. Table 9 and Table 10 list
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Table 10. Goodness-of-fit test for wood field.

K G0 Gamma KK

K-S test 0.03042 0.05127 0.02879 0.009962

χ2 test 4.0030 8.7160 3.7210 0.000213

the goodness-of-fit test results. It is obvious from these results that
the KK distribution is the best model, and the proposed parameter
estimation algorithm has excellent performance for the SAR clutter
data.

4. CFAR TARGET DETECTION ALGORITHM

The CFAR detectors make use of the distinction between the
background noise or clutter power and the potential targets in
brightness; and thus to maintain an approximately constant false alarm
rate by adaptively changing the detection threshold. Theoretically, the
optimal decision whether a pixel of the SAR image belongs to target
or not can be made by Bayes rule. However, for 1) it is very hard to
obtain prior probability of the targets; 2) the probability that the pixel
belongs to target is far smaller than the one it belongs to background,
it is more reasonable to adopt the Neyman-Pearson rule to make the
decision,

Λ(x) ∆=
ft(x)
fb(x)

>
fb(T )
ft(T )

(15)

where x is the amplitude of a single pixel, and ft(·) and fb(·) denote the
target and background PDF, respectively. T is the detection threshold,
which is decided by the false alarm rate Pf :

Pf =
∫ ∞

T
fb(x)dx. (16)

Actually, the target pixels account for only a very small proportion
in the SAR images, which makes it hard to obtain the statistical
characters of the target pixels. As a result, a sub-optimal detection
strategy is often adopted, i.e., if

fb(x) > fb(T ) (17)

the current pixel is judged as a target one.
In this paper, the KK distribution is used to model the background

and the global CFAR detector based on the statistical character of the
background is employed to detect potential targets in ground SAR
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images. The relationship between the false alarm rate Pf and the
detection threshold T is given by

Pf =
∫ ∞

T
fKK (x)dx = 1− (1− k)FK1(T )− kFK2(T )

=
2− 2k

Γ(v)

(
T

2b

)v

Kv

(
T

b

)
+

2k

Γ(vsp)

(
T

2bsp

)vsp

Kvsp

(
T

bsp

)
. (18)

The detection threshold T can be finally determined by (18). The
equation defined in (18) includes modified Bessel function, which makes
it complicated in its expression. Fortunately, the right side of the
equation is a monotone function. Therefore, the threshold T can be
solved easily.

In high-resolution SAR images, for 1) the corresponding extended
target pixels in the binary image obtained from CFAR detector are
generally not capable of forming a connected region and may be
separated into several parts; 2) some smaller or larger regions in the
binary image, which are obviously unsuitable for the size of a target
region, will certainly cause false alarms; so it is necessary to cluster
target pixels in the binary image. In [28], a detailed target pixels
clustering method is presented. In this paper, this method is adopted
to eliminate the obvious false alarms.

The CFAR detection flow chart is given in Fig. 6. In the flow chart,
N1 and N2 denote the length and width of the input SAR image, xij

is the amplitude of the pixels whose coordinate are (i, j).
Figure 7 shows a typical high-resolution ground SAR image

containing 12 vehicles in a complex urban clutter scene, which is
collected in 2005 [28]. The airborne SAR platform operated at X-
band and collected the data in stripmap mode HH polarization, with
a resolution of 0.5m × 0.5 m. The 12 vehicle targets are labeled in
the image with white rectangles as show in Fig. 7. The parameter
estimation results of the clutter models are given in Table 11. The
amplitude histogram of the clutter is shown in Fig. 8 along with
the four PDF of the clutter models. The goodness-of-fit tests, the
chi-squared test and K-S test, are used again to demonstrate the
performance of these clutter models. From Table 12, it can be seen
that the KK is the best one of these four models.

The proposed global CFAR detection algorithm based on KK
distribution proposed in this paper is employed to implement the
vehicle targets detection task. The same detection algorithm based on
G0 distribution is also considered as a comparison. For the different
false alarm Pf = 10−5, Pf = 10−4 and Pf = 10−3, the detection
results of the global detection algorithm based on KK distribution,
and Figs. 9(g)–(m) show the detection results based on G0 distribution
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Inputted SAR image

Computing the global threshold T
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Estimate the parameters of the 

KK distribution

1 2( 1, 2, , , 1, 2, , )ijx     i N j N= =...                    ...

ijx

Is the whole

image finished?

N

Y

Target pixels 
clustering

Figure 6. Detailed flow of the proposed target detection algorithm.

Figure 7. Ground SAR image
containing vehicles.

Figure 8. Amplitude histogram
for image in Fig. 7.

with the same false alarm rate. Binary images numbered (a), (c), (e),
(g), (i), (k) give the detection results before target pixels clustering;
and the detection results after pixels clustering are given in (b), (d),
(f), (h), (j), (l). The detected results labeled with the white rectangles
are the potential targets in Fig. 7. Meanwhile, the ones labeled with
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Table 11. Parameter estimation results of the clutter models.

KK  K  G
0

Gamma

k̂ 1̂
v

2
v̂

1
b̂

2
b̂ v̂ b̂ α̂ γ̂ n̂ â b̂

0.0308 1.8439 6.6037 8.4551 18.8623 0.4042 26.2748 −2.2834 1432.51.9722 1.8722 14.2075

Table 12. Goodness-of-fit test for image in Fig. 7.

K G0 Gamma KK

K-S test 0.005287 0.005610 0.007378 0.002322

χ2 test 5.0380 7.6510 12.2310 0.6935

(a) (b)

(c) (d)

(e) (f) 
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(g) (h) 

(i) (j) 

(k) (l)

Figure 9. Results of target detection from an urban SAR image.
(a), (c), (e) Detection results based on KK distribution with Pf = 10−5,
Pf = 10−4, and Pf = 10−3 (before clustering); (b), (d), (f) Detection
results based on KK distribution with Pf = 10−5, Pf = 10−4, and
Pf = 10−3 (after clustering); (g), (i), (k) Detection results based on
G0 distribution with Pf = 10−5, Pf = 10−4, and Pf = 10−3 (before
clustering); (h), (j), (l) Detection results based on G0 distribution with
Pf = 10−5, Pf = 10−4, and Pf = 10−3 (after clustering)

the red rectangles are false alarms.
From Figs. 9(a)–(f), the 12 vehicle targets in the SAR image are

all well located using the CFAR detector based on KK distribution
proposed in this paper with the theoretical false alarm probability
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Pf = 10−5, Pf = 10−4 and Pf = 10−3. The detection results in
Fig. 9(a), Fig. 9(c), Fig. 9(e) also include 5, 6, 7 false alarms except for
the true targets before pixels clustering, respectively. Most of the false
alarms consist of very few pixels, which are obviously not unsuitable for
the size of a target. Fig. 9(b), Fig. 9(d) and Fig. 9(f) show the detection
results after pixels clustering. It is seen that most of the false alarms
are eliminated successfully, which means that the clustering step in
the detection algorithm is necessary. Correspondingly, Figs. 9(g)–(l)
show the detection results based on G0 distribution with the same
false alarm probability. Both for false alarm rate Pf = 10−5 and
Pf = 10−4, only 11 targets are detected before pixels clustering ((g)
and (i)). Some of the detected targets consist of only one pixel because
of the high detection threshold, which is caused by the improper choice
of G0 model. Three targets are lost in the pixels clustering, and
only 8 targets are left in (h) and (j). From these detection results
in Fig. 9, the proposed algorithm based on KK distribution has much
better performance than the one based on G0 distribution for the KK
distribution is has a higher precision to fit the ground SAR images.

5. CONCLUSION

In this paper, a global CFAR target detection algorithm is presented
for ground target detection in SAR image. The KK distribution is
employed to model the ground SAR clutter in the algorithm. In order
to obtain the precise parameter estimation of KK distribution, a novel
algorithm based on PSO is firstly proposed and the simulation results
based on simulated data sets generated under different conditions
clearly show its superiority to the semi-experiential one in estimation
performance. The KK distribution is then applied to model the
SAR clutter data from MSTAR dataset, and the experimental results
indicate that this mixture distribution has higher fitting precision than
the commonly used models such as K distribution, Gamma distribution
and G0 distribution. The effectiveness of the proposed CFAR detection
algorithm is finally validated by the test results for a typical real SAR
image containing 12 vehicle targets.
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