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Abstract—Random antenna array (RAA) that uses the conventional
beamforming method produces a poor beam pattern with high sidelobe
level. This greatly reduces the performance and the efficiency of
the antenna. The use of Genetic Algorithm (GA) to find the best
positions for the antenna elements in RAA to lower the sidelobes
has been widely researched. However, there has been no solution
proposed for the reduction of sidelobes when the user has no autonomy
over the position of the radiating elements, for instance in cases such
as emergency communications. This paper proposes a novel Pareto
Elite Selection Genetic Algorithm (PESGA) optimization method to
reduce the sidelobes in an RAA that has fixed elements’ position. The
proposed method uses a single fitness function (peak sidelobe level)
for parent selection while an additional function (number of sidelobes
above a threshold level) is introduced to select the elitist in every
generation via Pareto Front (PF) selection. Results indicate that the
proposed PESGA method is best used for scenarios where the array size
is small. In such cases, the proposed method provides much reduced
sidelobe compared to the conventional RAA beamforming method and
up to 200% improvements in terms of mainlobe to peak sidelobe ratio
compared to GA weight optimized beamforming method.
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1. INTRODUCTION

Antenna array beamforming is a subset of smart antenna technology.
It is used to improve the signal-to-noise and interference ratio (SINR)
of a communication by directing the array’s radiating power to
specified bearings [1]. The recent roll-out of WiMAX and Long Term
Evolution-Advanced (LTE-A) networks, which incorporates multiple
input multiple output (MIMO) and beamforming capabilities has
piqued the interest of communication scholars on antenna array
beamforming techniques and performance analysis [2–6].

Initially, the research works on antenna array beamforming
revolved around antenna arrays with elements set in uniform
arrangements [1, 7]. The scope has now been extended to include
arbitrarily placed antenna elements too, which form a random antenna
array (RAA) [8–13]. An RAA consists of randomly placed antenna
elements over a specified radius, which collectively forms an array
for beamforming purposes. The applications of RAA can be broadly
classified into two main classes: spatially perturbed RAA and spatially
unperturbed RAA.

In spatially perturbed RAA, the arrangement of the antenna
elements is deliberately computed and synthesized to be random.
Though placed without a uniform arrangement, the position of each
element is carefully calculated and chosen to achieve desired properties
for the antenna radiation pattern. For example, the random element
arrangement synthesis in [14] achieves accurate pointing and nulling in
the beam pattern. The same author also presented an antenna pattern
synthesis to attain broad nulling in [15]. The work in [16] meanwhile
manipulated the spatial arrangement of the antenna to suppress the
grating lobes in the beam pattern while [12] focused on achieving
narrow beam and low side lobe level (SLL) in the radiation pattern.

On the other hand, spatially unperturbed RAA is a condition
where the position of the elements in the array is random by nature,
and it is not feasible to arrange elements of an array in a pre-computed
fashion. The elements in the antenna array are fixed at random
positions, and beamforming has to be achieved by using these randomly
placed elements. An example of such application can be seen in
the case of emergency communications as reported in [11]. Here,
arbitrarily placed wireless transceivers act as an array that radiate
a signal to emergency responders. Non-spatially perturbed RAA is
also common in sensor networks [8]. Since the usually scattered sensor
nodes’ position cannot be changed, the array formed to beamform is
random by nature and beamforming has to be achieved using these
randomly placed elements. Seismic, ocean and air acoustic also applies



Progress In Electromagnetics Research B, Vol. 51, 2013 409

non-spatially perturbed RAAs [10].
Though the RAAs have its niche applications, it has to be noted

that the SLLs of the RAAs also usually tend to be higher compared
to uniform antenna arrays. One of the first articles describing the SLL
problem in RAA was published in [17]. The author concluded that the
number of elements influences the level of the largest SLL, or the peak
sidelobe level (PSLL) to be higher compared to the PSLL of uniform
arrays. Having high SLLs causes the antenna to incur interference
with/to other radiating sources. This reduces the transmission and
beam collection efficiency of the antenna.

Numerous approaches have been proposed to reduce the SLLs
in antenna arrays. However, most works focus on SLL reduction for
either arrays with uniform element arrangement [18–22], or on RAAs
that fall into the first classification, namely the spatially perturbed
RAA [10, 12, 14, 15, 20, 23, 24]. Literatures available on SLL reduction
proposals for spatially unperturbed RAAs are fairly limited. An
element selection method to reduce the SLLs for spatially unperturbed
RAAs has been suggested in [25]. However, this scheme does not fully
utilize all the available elements and power resources in the RAA,
as some of the elements will be switched off during the beamforming
process to achieve lower SLLs. Furthermore, the node selection method
is only suitable to be used when the number of elements in the array
is high.

A popular method in the literature to reduce the SLL in
antenna arrays is by strategically placing the elements according
to a set of pre-calculated optimum positions using optimization
algorithms such as Genetic Algorithms (GA) [14, 20, 21], Particle
Swarm Optimization [14, 20, 21, 26], Differential Evolution [27–31] and
convex optimization [10, 12]. The position of the elements in the
array is optimized via iterative procedures until the cost function
of the algorithm, which is the PSLL, is minimized. This solution
works well for spatially perturbed RAA. However, element positioning
optimization is not a possible solution for the spatially unperturbed
RAA, since the position of its elements cannot be manipulated.

The aforementioned optimization algorithms have also been used
to optimize the weights that multiply the signals at each element,
instead of optimizing the element position, to achieve a reduced
SLL [18, 19, 22]. However, these approaches have only been adopted
for arrays with uniform element arrangement. The works in [29–31]
suggested a differential evolution optimization method to effectively
beam towards angle of arrival and null out interferences in the presence
of geometry estimation errors in uniform linear arrays. Nevertheless,
the approach was not extended to achieve a lower overall SLL in the
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radiation pattern.
In this paper, a solution to reduce the SLL for spatially

unperturbed RAAs by optimizing the weight vector of the RAA is
proposed. The proposed optimization technique, called Pareto Elite
Selection Genetic Algorithm (PESGA), is a variant of the conventional
GA.

Pareto optimal solution is an optimization approach that is used
when multiple objectives exist in a problem. This approach ensures
that the solution more or less equally satisfies all the objectives. In
Pareto GA the objective functions are mapped against each other,
and the non-dominated, optimal solutions form a Pareto Frontier
(PF) in the objective function space [32–34]. The population is then
ranked according to its dominance of the objective function map and
consequently used for parent selection and crossover in GA.

Though the problem of reducing SLLs for spatially unperturbed
RAAs is a single objective optimization, it is treated as a multi-
objective optimization method in this paper by introducing a sub-
objective in the existing GA. The sub-objective is to ensure that the
number of SLLs above a fixed threshold is kept to a minimum. Unlike
the existing Pareto GA that uses the Pareto mapping as the fitness
function for parents selection purposes, the proposed PESGA selects
the PF chromosomes as the elite that will be retained for its next
generation.

The proposed method is applied to RAA set against 4 different
scenarios, modeled to relate to practical applications. The array
radiating power obtained using PESGA is compared to the radiating
power of the original AF and the conventional GA. Further result
analysis on PSL, gain and half power beamwidth (HPBW) is
investigated out to prove the efficacy of the proposed solution.

2. MATHEMATICAL FORMULATION OF RANDOM
ANTENNA ARRAY BEAMFORMING

The array factor (AF) for RAA is presented in this section. The AF
presented here is simplified into a 2-dimensional (2D) AF from the
original 3D representation in [35]. Consider a total of K elements
in an RAA, with a geometrical composition as depicted in Figure 1,
scattered within a radius of R meters. It is assumed that each element
is equipped with a single isotropic antenna.

One of the elements in the array is engaged as the reference
element, n1. The element n1 is referenced as the origin (0, 0) and is
the geometrical reference point for all the other elements in the system.
The radius position, rk of the k-th element in the array, nk is within
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Figure 1. Geometrical configuration of collaborative beamforming.

the range of 0 ≤ rk ≤ R. Meanwhile, the elevation angle, Ψk of nk is
within the range of −180◦ ≤ Ψk ≤ 180◦.

All the elements in the array is required to produce a beam towards
a position, a, situated A meters with an elevation angle of φ relative to
n1. Far field position is assumed, hence A À R. The elevation angle
φ can be assumed as the angle of arrival (AOA) for downlink transmit
beamforming and as the signal of interest (SOI) for uplink receive
beamforming. When far field condition is assumed, the resultant AF
at θ ∈ [−180◦, 180◦] is:

AF (θ, σ) =
1
K

∑K

k=1
wk e−j 2π

λ
rk[cos(θ−ψk)] (1)

where wk is the weight at the element k, represented by:

wk = σke
j 2π

λ
rk[cos(φ−ψk)] (2)

The energy, σk governs nk’s excitation amplitude, whereas cos(φ−
ψk) determines its excitation phase.

Each element multiplies the signal the corresponding weight to
align the phase of the signal. This will ensure that signals from all
the elements will be in-phase towards the direction a when radiated.
Therefore the produced main beam will be directed towards a.
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3. PARETO ELITE SELECTION GENETIC
ALGORITHM FORMULATION

The procedure of implementing the proposed PESGA algorithm is
explained in this section. With this method, dual objectives: the PSLL
and the number of SLLs above a fixed threshold are treated as the cost
functions.

The GA creates a population of solutions and applies genetic
operators such as mutation and crossover to evolve the solutions in
order to find the best solution. In the conventional RAA beamforming
explained in the previous section, radiation pattern is produced with
unity excitation amplitude. Both GA and PESGA is applied to obtain
the optimum antenna elements excitation weight at each element of the
RAA to shape the beam pattern with minimized SLL. The proposed
PESGA in our system works to obtain the best weight for each element
through series of populations as described here:

Step 1: Initial Population and Chromosome Construc-
tion. In a GA, a chromosome, c is a set of input variables consisting
of K number of variables. The kth input variable corresponds to the
excitation energy (amplitude) of weight at the kth antenna element,
σk in the RAA. Each generation consists of P number of chromosomes,
where P is the size of the population. Assuming that the GA is evalu-
ated for a maximum of G generations, the chromosome population at
the gth generation is represented as:

POP (g) = [c1 . . . cp . . . cP]T (3)

where [·]T is a transpose operator and

cp =
[
σ(p,1) . . . σ(p,k) . . . σ(p,K)

]T (4)

with p = [1, 2, . . . , P ] and k = [1, 2, . . . ,K].
The initial power of each weight is set to be unity to represent

a beamforming solution for RAA without optimization. Hence, the
chromosome population during the initial generation, POP(1) is a
unity matrix of P rows and K columns.

Step 2: Fitness Evaluation. Fitness function is formulated to
evaluate the SLL power and get possible lowest PSLL power compared
to the desired SLL power.

The angles of the local maxima (SLL peaks) for the AF are:

[θSL] = arg max {AF (θ, cp)} (5)

where θ ∈ [−180◦, 180◦]; θ 6= φ.
The first fitness function is the value of the PSLL:

f1 (cp) = max {20 log10 AF (θSL, cp)} (6)
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A second fitness function is introduced to determine the number of
SLL which is T dB lower than the PSLL.

f2 (cp) = |[20 log10 AF (θSL, cp) > (f1 (cp)− T )]| (7)

The term | · | represents the size of the vector.
Step 3: Parent Selection. Once initial population is generated,

the parent selection process takes place. For this paper, ranking
selection method was used. The ranking selection method chooses
the chromosome with high fitness level from the parent and discards
the lower fitness level. Hence, with a selection rate of Xrate , the top
Xrate ∗ P of the chromosomes are chosen as the parents and the rest
are discarded.

Step 4: Crossover and Mutation. A crossover point is
randomly chosen and the part of chromosomes beyond and after the
crossover points is swapped to form the offspring. After that, mutation
process randomly changes some of the values in the genes into a random
floating point within the range of 0 and 1, with a mutation rate of
µ. These gene values correspond to the excitation energy (amplitude)
of weight of the antenna elements. The recently mutated offspring
population is evaluated based on the fitness function and ranked.

Step 5: Elite Selection. The fitness function f1 and f2 are
mapped together. A chromosome has a Pareto optimal solution if no
other chromosome dominates that solution with respect to the fitness
functions. Chromosome c1 is said to dominate c2 if c1 has a lower
cost than c2 for f1, and is not worse with respect to f2. This can be
expressed as:

f1 (c1) < f1 (c2) and f2 (c1) ≤ f2 (c2) (8)

Once the set of Pareto optimal solutions is found, the chromosomes
of this set are chosen as the elite for the next generation. These
chromosomes are not subjected to the crossover and mutation process.

Step 6: Convergence Check. The algorithm is stopped when
the maximum number of iteration, G is reached or when the cost
function, f1(cp) is smaller than the user defined threshold, PSLLmin.

Step 7: Projection and re-iteration. The iteration index is
updated to g = g + 1, and go to Step 2.

4. NUMERICAL RESULTS

Four scenarios are formulated to analyze the performance of the
proposed PESGA weight selection algorithm for PSLL reduction in
RAA. Each element is equipped with an omni-directional antenna. It
is assumed that the controller has knowledge on the position of the
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all nodes a priory. The scenarios and the practical examples which
corroborates with each scenario are as follows:

Scenario 1: 5 elements (N = 5) are randomly distributed over a
disk with radius R = λ, and SOI/AOA at−35◦. This scenario depicts a
case where low number of closely spaced elements is available to form a
RAA for beamforming purpose, such as in emergency communications.

Scenario 2: 100 elements (N = 100) are randomly distributed
over a disk with radius R = λ, and SOI/AOA at 0◦. A clear example
of such scenario is the case of beamforming in wireless sensor networks
(WSNs).

Scenario 3: 7 elements (N = 7) are randomly distributed
over a disk with radius R = 1000λ, and SOI/AOA at −10◦. This
scenario gives a picture of a case where low numbers of sparsely and
randomly spaced elements collaboratively beamform. An example of
such scenario is collaborative beamforming between base stations in
cellular communications.

Scenario 4: 100 elements (N = 100) are randomly distributed
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Figure 2. Arrangement of elements or the following scenarios.
(a) N = 5, R = λ. (b) N = 7, R = 1000λ. (c) N = 100, R = 1000λ.
(d) N = 100, R = λ.
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over a disk with radius R = 1000λ, and SOI/AOA at 35◦. This scenario
depicts a case where high density of elements distributed in a large
space forming an RAA to beamform. An example of such scenario is
collaborative beamforming among nodes in a hotspot/Wi-Fi area to
communicate with the access point (AP).

All random distributions follow a uniform distribution function.
Sample of arrangement of elements for each scenario is illustrated
in Figure 2. The four distributions shown in the figure represent
N number of elements and disk size R that has been explained in
Scenarios 1 to 4, accordingly.

To illustrate the PF elite selection method, the plot of objectives at
the 2nd, 20th and 200th generation for Scenario 4 is shown in Figure 3.
The lines that connect the points in the figure are the Pareto front of
each generation. The chromosomes of the points which form the Pareto
front in each generation is retained as the elitist in the next generation.
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Figure 3. Plot of objectives and the corresponding Pareto front for
Scenario 4 at the 2nd, 20th and 200th generation.

The parameters used for the GA weight optimization algorithm
are P = 100, G = 200, Xrate = 0.5, µ = 0.01. For the proposed T is
set to 3 dB.

The proposed PESGA-RAA beamforming method is compared to
the conventional RAA beamforming and GA-RAA beamforming. The
resultant optimal excitation weights for the Scenario 1 and Scenario 3
are compared in Table 1 and Table 2, respectively. These weight values,
along with the provided element position (rk and φk), can be used to
recreate the optimized beampattern using Equation (1). The weights
of Scenario 2 and 4 are not shown due to the large number of elements.
We can observe from the weights of RAA, GA-RAA and PESGA-RAA
in the Tables 1 and 2 that not all elements undergo changes in its final
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Table 1. Optimal weights values for Scenario 1.

k r φ WRAA WGA-RAA WPESGA-RAA

1 0 0◦ 1.0000 + 0.0000i 1.0000 + 0.0000i 1.0000 + 0.0000i

2 0.258λ 32.44◦ −0.2881 + 0.9576i −0.2881 + 0.9576i −0.2881 + 0.9576i

3 0.130λ 26.58◦ 0.3971 + 0.9178i 0.2668 + 0.6105i 0.1801 + 0.4095i

4 0.099λ −8.64◦ −0.1151 + 0.9934i −0.1151 + 0.9934i −0.1151 + 0.9934i

5 0.092λ 173.0◦ 0.0426− 0.9991i 0.0426− 0.9991i 0.0428− 0.9965i

Table 2. Optimal weights values for Scenario 3.

k r φ WRAA WGA-RAA WPESGA-RAA

1 0 0◦ 1.0000− 0.0000i 1.0000− 0.0000i 0.8090 + 0.5878i

2 272.4λ 162.6◦ 0.5574− 0.8303i 0.0322− 0.0443i 0.0165− 0.0199i

3 217.5λ 140.7◦ 0.7357 + 0.6773i 0.7357 + 0.6773i 0.7357 + 0.6773i

4 23.6λ −175.3◦ −0.9808− 0.1953i −0.9808− 0.1953i −0.0288− 0.0074i

5 239.0λ 49.92◦ −0.8565− 0.5162i −0.8565− 0.5162i −0.8565− 0.5162i

6 292.9λ −76.9◦ 0.8266− 0.5628i −0.0504 + 0.0375i 0.8266− 0.5628i

7 261.1λ 43.67◦ −0.9839 + 0.1786i −0.0156− 0.0281i 0.0611− 0.0139i

weight. For example only element 3 and 5 differs for the weights of
Scenario 1. Similarly for Scenario 3 from Table 3, elements 3 and 5
retain the same weight as conventional RAA beamforming in both
GA-RAA and PESGA-RAA. The weights of the elements not only
determine the SLL, but also steers the main lobe level (MLL) towards
the SOI/AOA. Since the SOI/AOA of the array is kept constant,
certain level of similarity between the RAA, GA-RAA and PESGA-
RAA weights is natural.

Meanwhile, the radiation patterns for Scenarios 1 to 4 are shown in
Figure 4. From Figure 4(a), it is evident that PESGA could suppress
the PSLL at the angle 140◦ better than the GA method and incurs
minimal loss of gain at the MLL. The scenario for the radiation pattern
Figure 4(b) differs from that of Figure 4(c) in terms of element density.
The radiation pattern shows that PESGA successfully suppressed the
PSLL by 24 dB. However, degradation in the MLL is also noticed for
this case (−5 dB), though minimal when compared to the overall PSLL
reduction.

The radiation pattern for a large disk RAA with low number of
elements is shown in Figure 4(c). Result shows 2 dB of improvement in
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Table 3. HPBW, MLL and MLL : PSLL improvement comparisons
for Scenarios in Figure 2.

Scenario 1st 2nd 3rd 4th

Number of elements, N 5 100 7 100

Radius, R λ λ 1000λ 1000λ

AOA and SOI, φ −35◦ 0◦ −10◦ 35◦

HPBW θ3dB

Initial 54.0◦ 39.0◦ 0.35◦ 0.25◦

GA 58.0◦ 39.1◦ 0.68◦ 0.30◦

PESGA 58.5◦ 42.5◦ 0.80◦ 0.32◦

MLL (dB)

Initial 0 0 0 0

GA −0.0300 −3.3512 −0.5195 −0.6670

PESGA −0.1922 −4.5513 −0.5413 −0.7513

MLL : PSLL (dB)

Initial 5.8700 12.4650 0.9485 10.8485

GA 8.9530 28.8044 2.3513 13.9345

PESGA 9.8427 31.7022 2.6647 14.5760

the PSLL and −0.3 dB degradation in the MLL for PESGA compared
to the conventional RAA beamforming. Figure 4(d) illustrate the
result for an RAA of the same size but higher number of elements. The
result records 5 dB improvement in the PSLL and around −0.7 dB in
MLL degradation for PESGA when compared with the conventional
RAA beamforming.

All the cases show that PESGA produces beampattern with
lower PSLL over conventional GA and also beamforming without
any optimization. Taking Scenario 1 in Figure 4(a) for example,
the both GA and PESGA effectively produce radiation pattern lower
than the initial PSLL of −5.87 dB. The result of PESGA manages
to achieve PSLL lower than that produced by GA method by almost
1 dB, whereby GA achieves a −8.95 dB PSLL while PESGA achieves
−9.84 dB.

A main point to note from Figures 4(a)–(d) is that elements which
are positioned close to each other will produce radiation pattern with
wide beamwidth, as can be seen in Figures 4(a) and (b) (Scenario 1
and 2, respectively). Wider beamwidth results in lower directivity of
the antenna array, causing the system to be more susceptible to noise
and interferences which are located close to SOI/AOA. However, the
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Figure 4. Radiation pattern for (a) Scenario 1, (b) Scenario 2,
(c) Scenario 3, (d) Scenario 4.

wide beamwidth could be advantageous if the noise and interference
level is low, since array with wider beamwidth is less affected by
pointing errors. On the other hand, the total number elements in
the array will affect the PSLL of the array, where higher number of
elements would result in lower PSLL. This can be observed from the
Figure 4(b) and Figure 4(d) (N = 100), which have much lower SLLs
compared to Figure 4(a) and Figure 4(c) (N = 5 and 7, respectively).

The convergence graphs of the four methods are recorded to
investigate the success of implementing conventional GA and PESGA
on RAA beamforming (see Figure 5). From the graph, the convergence
rate for PESGA is better than the GA for all cases and gives better
PSLL towards the end.

However, both the GA and PESGA optimization methods cause
reduction in the MLL’s gain and increase of the half power beamwidth
(HPBW) of the produced radiation pattern. The increase in HPBW is
small enough to ignore, amounting to about 5◦ in Figure 4(a), for
example. Meanwhile, the MLL’s gain loss caused by the GA and
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Figure 5. Comparative PSLL convergence graphs for GA and PESGA
of scenarios in Figure 2. (a) Scenario 1. (b) Scenario 2. (c) Scenario 3.
(d) Scenario 4.

PESGA method is compensated by the much lower PSLL produced
by these methods, which ultimately provides better MLL to PSLL
(MLL : PSLL) ratio.

Table 3 summarizes the properties for the normalized power
(radiation patterns) for the 4 results illustrated in Figures 4(a)–(d),
with elements arrangements shown in Figure 2. For all the cases, GA
and PESGA are able to produce radiation pattern with suppressed
PSLL, whereby PESGA solutions provide lower PSLL compared to GA
solutions. The PESGA solution however suffers slightly higher MLL
gain degradation compared to GA. Nevertheless, since the MLL : PSLL
ratio of PESGA is higher compared to that of GA method, it can be
concluded that the PESGA method can result in better SINR for the
scenarios discussed. Better SINR improves the quality of the wireless
communication as it ensures that the signal from SOI/AOA has much
higher power compared to interferences and noise from other directions.

PESGA-RAA also records a slightly higher HPBW compared to
the GA-RAA optimization method. However, the increase is very
minimal and is less likely to cause any disadvantage to the overall
system.

Due to the arbitrary crossover and mutation process in the GA, the
weight distribution and the obtained optimized beam pattern may not
be the same even if the process is repeated on the same arrangement of
RAA. To acquire a better overall view and to validate the consistency
on the improvement provided by the proposed algorithm, Monte Carlo
approach for 100 different sets of array arrangement, repeated 10 times
for each arrangement, for the 4 scenarios analyzed in this paper. The
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(a) (c) (d)(b)

Figure 6. Average PSLL convergence graphs for GA and PESGA
of scenarios 1 to 4, with 95% confidence limits. (a) Scenario 1.
(b) Scenario 2. (c) Scenario 3. (d) Scenario 4.

Table 4. Average HPBW, MLL and MLL : PSLL improvement
comparisons for the four scenarios.

Scenario 1st 2nd 3rd 4th

Number of elements, N 5 100 7 100

Radius, R λ λ 1000λ 1000λ

AOA and SOI, φ −180◦ < φ < 180◦

HPBW, θ3dB

Initial 50◦ 37◦ 0.50◦ 0.27◦

GA 52◦ 40◦ 0.54◦ 0.27◦

PESGA 55◦ 40◦ 0.58◦ 0.28◦

MLL (dB)

Initial 0 0 0 0

GA −1.7457 −3.8683 −0.2583 −0.5355

PESGA −2.0664 −3.0310 −0.2348 −0.4737

MLL : PSLL (dB)

Initial 2.2629 12.4075 1.3534 11.9437

GA 4.5175 39.0362 2.2816 14.2673

PESGA 6.9253 42.3821 2.5629 14.5861

results are recorded in Figure 6 and Table 4.
The convergence graph for the average PSLL improvements with

95% confidence limits is shown in Figure 6 and the average values for
the MLL, HPBW and MLL : PSLL ratio are tabulated in Table 4. It
is evident that the proposed PESGA-RAA method outperforms the
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GA-RAA optimization method in all 4 scenarios in terms of PSLL.
The increase in the HPBW for all cases is small enough to be ignored.

Both the GA and PESGA optimization methods cause degrada-
tion in the MLL to a certain extent. The effect of MLL degradation is
more prominent when elements are positioned close to each other. This
is however compensated by the improvement shown in the MLL : PSLL
ratio. The average results shows that PESGA-RAA could provide bet-
ter MLL : PSLL ratio for all the four scenarios compared to conven-
tional RAA beamforming and GA-RAA.

Though PESGA method provide better result for all the scenarios,
the MLL : PSLL improvement for the cases when the array size is large
(Scenarios 3 and 4) is minimal compared to the GA method, amounting
to less than 0.3 dB (∼107% improvement). On the other hand, when
array size is small (Scenarios 1 and 2), we can obtain an improvement
up to 3 dB (∼200%) in the MLL : PSLL ratio, compared to the GA
method. This improvement in MLL : PSLL ratio ensures a better
SINR and hence improves the quality of the communications system.

Since the proposed method is a form of evolutionary technique,
it is expected to have high computational complexity. Therefore,
more CPU time will be needed to execute the algorithm compared
to the conventional beamforming method. An Intel(R) Core i7-
3770 processor with 3.4 GHz speed and 32 GB RAM was used to run
the simulations in this paper. The execution time for conventional
RAA, GA and PESGA beamforming for Scenario 1 with 5 elements
were measured around 0.084 seconds, 7.67 seconds and 7.73 seconds
respectively. The execution time increases as the number of elements
in the array increases due to the additional signal processing required.
Therefore, the execution time for conventional RAA, GA and PESGA
beamforming for Scenario 4 with 100 elements were comparatively
higher, measuring around 0.730784 seconds, 131.492253 seconds and
131.502486 seconds respectively.

Both GA and PESGA record much higher computational time
due to the iterative procedures involved in these two algorithms. The
proposed PESGA’s computational time is only slightly higher than the
conventional GA method. For applications of the algorithm, a Graphic
Processing Unit (GPU) or Field Programmable Gate Array (FPGA)
can be used to make the algorithm execution much faster [30, 36, 37].

5. CONCLUSIONS

A procedure for reducing the level of the PSLL of RAAs made
of random spacing arrays has been presented in this paper. A
new algorithm-PESGA, which efficiently determines the optimum
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excitation weight vector of the antenna element to produce beam
pattern with lower SLLs has been proposed. Results for optimized
random AFs having suppressed SLLs are compared with those of the
conventional beam pattern and the conventional genetic algorithm
optimization method. Four setting of RAA with varying element
number and array size were analysed. In all cases, the proposed
method suppresses the PSLL more effectively than the conventional
GA method. Although the gain of MLL of PESGA-RAA is reduced
compared to that of GA-RAA, the PESGA-RAA remains as the better
solution as it yields better MLL to PSLL ratio, which assists in
achieving better SINR in the communication system. Results show
significant improvement in the MLL:PSLL for cases where the size of
the RAA is small.
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