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Abstract—D′B′, DB′ and D′B boundary conditions are used to
investigate the resulting field patterns inside a parallel plate waveguide.
The D′B′ boundary conditions are accomodated by assigning the
behavior of perfect magnetic conductor (PMC) for transverse electric
mode (TE) and that of perfect electric conductor (PEC) for transverse
magnetic (TM) mode, to the boundary, respectively. Likewise, DB′
boundary conditions are incorporated by assuming the behavior of
boundary as PMC for both the TE mode and TM mode. Finally D′B
boundary conditions are realized by assigning PEC characteristic to the
boundary for both TE and TM modes. A general wave propagating
inside the parallel plate waveguide is assumed and decomposed into TE
and TM modes for the purpose of analysis. Fractional curl operator
has been used to study the fractional parallel plate D′B′, DB′ and D′B
waveguides for different values of fractional parameter α. Behavior of
the field patterns in the waveguides are studied with respect to the
fractional parameter α describing the order of the fractionalization.

1. INTRODUCTION

Fractional calculus is a branch of mathematical analysis which deals
with the differentiation and integration operators, of arbitrary real
(non-integer) or complex order [1]. It has been demonstrated that
these mathematical operators are useful mathematical tools in various
disciplines of science and engineering including Electromagnetic
theory [2–5]. Fractionalization of ordinary derivative and integral
operators motivated the researchers in electromagnetics to explore the
potential of fractionalization of other operators in the field [6–25].
Engheta proposed a recipe to fractionalize the curl operator, describing
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the differential form of Maxwell’s equations [24]. He regarded the new
solutions as intermediate between two dual solutions. In an isotropic,
homogeneous, and source free medium described by wave number k
and impedance η, the new set of solutions to the source-free Maxwell
equations may be obtained by using the following relations [24]

Efd =
[

1
(ik)α

curlαE
]

ηHfd =
[

1
(ik)α

curlα(ηH)
] (1)

From Eqs. (1) it can be seen that for α = 0, (Efd, ηHfd) reduces to
the original solutions whereas (Efd, ηHfd) gives dual to the original
solution to the Maxwell equations for α = 1. Therefore for all values
of α between zero and unity, (Efd, ηHfd) provides the new set of
solutions which can effectively be regarded as intermediate solutions.
These solutions are also called the fractional dual fields as expressed
with the subscript fd. Naqvi and Rizvi extended Engheta’s work
on fractional curl operator by determining sources corresponding to
the fractional dual solutions to the Maxwell equations. Results of
their work show that surface impedance of a planar reflector, an
intermediate between PEC and PMC, is anisotropic in nature [26].
Naqvi et al. further studied fractional dual solutions to the Maxwell
equations for reciprocal, homogenous, and lossless chiral medium [27].
Lakhtakia pointed out that any fractional operator that commutes
with curl operator may yield fractional solutions [23]. Naqvi and
Abbas studied the role of complex and higher order fractional curl
operators in electromagnetic wave propagation [28]. They also studied
the fractional dual solutions in double negative (DNG) medium [29].
Veliev et al. extended the work on the fractional curl operator by
finding the reflection coefficients and surface impedance corresponding
to fractional dual planar surfaces with planar impedance surface as
the original problem [30]. The work on this topic entered into new era
when concepts of fractional transmission lines, fractional waveguides,
and fractional resonators were introduced [31–40]. Modelling of
transmission of electromagnetic plane wave through a chiral slab using
fractional curl operator and fractional dual solutions in bi-isotropic
medium are also available [41, 42]. After the introduction of nihility
concept by Lakhtakia [43], Tretyakov et al. incorporated the nihility
conditions to chiral medium and proposed another metamaterial
termed as chiral nihility metamaterial [44, 45]. Study of nihility/chiral
nihility metamaterials is a topic of current research by several
researchers [46–57]. Naqvi contributed many research articles on chiral
nihility and fractional dual solutions in chiral nihility metamaterial [51–
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57].
In computational electromagnetics, special attention has been

paid to newly introduced DB and D′B′ boundary conditions. A
DB boundary requires that the normal components of electric and
magnetic flux densities vanish at a DB interface [58–65], i.e.,

n̂ ·D = 0
n̂ ·B = 0

(2)

where n̂ is normal vector to the interface. A D′B′ boundary is defined
such that the derivatives of the normal components of the flux densities
become zero, i.e.,

∂zDz = 0
∂zBz = 0

These conditions are in contrast with traditional boundary conditions,
like PEC (perfect electric conductor) or PMC (perfect magnetic
conductor) boundary conditions, which restrict the freedom of the
tangential field components only. It has been noted that PEC and
PMC boundary conditions are special cases of DB or D′B′ boundary
conditions. Another pair of boundary conditions, namely, DB′ and D′B
can also be introduced along similar lines. All boundary conditions
stated above are mathematical concepts. From the practical point
of view, they can be realized in terms of physical structures, very
precisely in many cases. In electromagnetics the PEC boundary
corresponds to an interface of an ideal conducting material, which
can be approximated by metals. In [66], it was shown that the
DB boundary can be realized by an interface of uniaxial anisotropic
medium, whose normal permittivity and permeability parameters
become zero simultaneously. Such a uniaxial medium was named as
zero axial parameter (ZAP) medium in [64]. Realization of the D′B′
boundary conditions is shown in [67], where it is suggested that the
planar D′B′ boundary is realized by transforming a DB boundary, by
means of a wave guiding quarter wave transformer. Such a device
is a quarter wave slab of uniaxial medium with infinitely large axial
parameter. It has been observed that DB interface behaves like perfect
reflector for the right handed circularly polarized (RHCP) and left
handed circularly polarized (LHCP) incident fields [65]. Moreover,
when field is reflected from top and bottom of chiral nihility coated DB
interface, it keeps on rotating its plane of polarization and it appears
as a circularly polarized field inside the core of the waveguide [68, 69].
Fractional dual solutions to the Maxwell equations for fields inside a
parallel plate DB waveguide have been discussed by Hussain et al. [70].

In the present work, to complete the study of set of boundary
conditions requiring vanishing of the normal components of the flux
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densities D and B (DB boundary) or their normal derivatives (D′B′,
DB′, and D′B boundary), we discuss fractional dual solutions to the
Maxwell equations for fields inside a parallel plate D′B′, DB′ and D′B
waveguide. A variety of field configurations (electric and magnetic) can
be obtained by applying either any of the D′B′, DB′, D′B boundary
conditions or the fractionalization operator. Such configurations may
be required for some particular applications, e.g., couplers. So if any
one desire to get some particular field pattern in any experiment or in
some device, this work can serve the purpose. In Section 2 behavior
of waves along a guiding structure is discussed. In Section 3 fractional
dual solutions of D′B′, DB′, D′B are derived. Section 4 deals with
results and discussions and paper has been concluded in Section 5.

2. GENERAL BEHAVIOUR OF WAVES ALONG A
GUIDING STRUCTURE

Consider a waveguide consisting of two parallel plates one located at
y = 0, other at y = b and separated by a dielectric medium having
constitutive parameters ε and µ. The plates are assumed to be of
infinite extent and the direction of propagation is taken along positive
z-axis as shown in Figure 1. Electric and magnetic fields propagating in
the source free dielectric region must satisfy the following homogeneous
vector Helmholtz equations

∇2E(x, y, z) + k2E(x, y, z) = 0 (3a)
∇2H(x, y, z) + k2H(x, y, z) = 0 (3b)

D'B'

x
z

y

y=b

y=0
D'B'

k1

k2

Figure 1. Plane wave representation of the fields inside the waveguide.
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where ∇2 = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 is the Laplacian operator and k = ω
√

µε

is the wave number. By taking z−dependance as exp(iβz), Eqs. (3a)
and (3b) reduce to two dimensional vector Helmholtz equations as

∇2
xyE(x, y) + h2E(x, y) = 0 (4a)

∇2
xyH(x, y) + h2H(x, y) = 0 (4b)

where h2 = k2 − β2, β is the propagation constant. Since propagation
direction is along z-axis and the waveguide dimensions are taken to
be infinite in xz-plane, so x-dependence can be ignored in Eqs. (4a)
and (4b). Under this condition, it will take the form of ordinary, second
order differential equation as

d2E(y)
dy2

+ h2E(y) = 0 (5a)

d2H(y)
dy2

+ h2H(y) = 0 (5b)

In general, for the waveguide problems, the Helmholtz equation is
solved for the axial field components only. The transverse field
components can be obtained by using axial components of the fields
and Maxwell equations. So scalar Helmholtz equations for the axial
components can be written as

d2Ez

dy2
+ h2Ez = 0 (5c)

d2Hz

dy2
+ h2Hz = 0 (5d)

General solution of the above equations is

Ez = an cos(hy) + bn sin(hy) (6a)
Hz = cn cos(hy) + dn sin(hy) (6b)

where an, bn, cn and dn are constants and can be found from the
boundary conditions. Using Maxwell curl equations, the transverse
components can be expressed in terms of longitudinal components (Ez,
Hz), i.e.,

Ex =
1
h2

(
iβ

∂Ez

∂x
+ ik

∂ηHz

∂y

)
(7a)

Ey =
1
h2

(
iβ

∂Ez

∂y
− ik

∂ηHz

∂x

)
(7b)
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Hx =
1
h2

(
iβ

∂Hz

∂x
− ik

η

∂Ez

∂y

)
(7c)

Hy =
1
h2

(
iβ

∂Hz

∂y
+

ik

η

∂Ez

∂x

)
(7d)

where η =
√

µ
ε is impedance of the medium inside the guide.

3. FRACTIONAL DUAL WAVEGUIDES

A wave of general polarization propagating in positive z-direction
through a parallel plate waveguide can be written as a linear sum of
the transverse electric (TEz) and transverse magnetic (TM z) modes.
A D′B′ boundary can be simulated as the boundary which behaves
like perfect electric conductor (PEC) for (TM z) and perfect magnetic
conductor (PMC) for (TEz) modes. Therefore fields inside a parallel
plate D′B′ waveguide may be obtained by linear superposition of two
canonical solutions which are transverse electric (TEz) mode solution
for PMC waveguide and transverse magnetic (TM z) mode solution for
PEC waveguide.

3.1. D′B′ Waveguide

3.1.1. Case 1: Transverse Electric (TEz) Mode Propagation through
a PMC Waveguide

Let us first consider that (TEz) mode is propagating through a PMC
waveguide. For this mode, axial component of the electric field becomes
zero and the corresponding transverse components can be found by
using Eqs. (7a)–(7d).

Ex =
(

ik

h

)
[−cn sin(hy) + dn cos(hy)] (8a)

Hy =
(

iβ

h

)
[−cn sin(hy) + dn cos(hy)] (8b)

Ey = 0 (8c)
Hx = 0 (8d)

Using boundary conditions for PMC boundary, that is, Hx,z = 0|y=0,b,
we get solutions as

Ex =
(

ik

h

)
[Dn cos(hy)] (9a)

ηHy =
(

iβ

h

)
[Dn cos(hy)] (9b)
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ηHz = [Dn sin(hy)] (9c)
Ey = 0 (9d)
Hx = 0 (9e)

where Dn = dnη h =
nπ

b
n = 1, 2, 3 . . .

By taking again the z-dependance exp(iβz) and writing Eqs. (9) in
exponential form. Electric and magnetic fields inside the dielectric
region will be obtained as sum of two plane waves given as

E = E1 + E2 (10a)
ηH = ηH1 + ηH2 (10b)

where (E1, H1) are the electric and magnetic fields associated with one
plane wave, and (E2, H2) are the electric and magnetic fields associated
with the second plane wave. These fields are given as following

E1 =
(

Dn

2

)(
ik

h
x̂
)

exp(ihy + iβz) (11a)

ηH1 =
(

Dn

2

)(
ẑ

i
+

iβ

h
ŷ
)

exp(ihy + iβz) (11b)

E2 =
(

Dn

2

)(
ik

h
x̂
)

exp(−ihy + iβz) (11c)

ηH2 =
(

Dn

2

)(−ẑ

i
+

iβ

h
ŷ
)

exp(−ihy + iβz). (11d)

This situation is shown in Figure 1.
Once we have obtained electric and magnetic fields inside

the dielectric region in terms of two plane waves, recipe for
fractionalization [24, 32] can be applied to get the fractional dual
solutions as

ETE
PMCfd = Dn

(
k

h

)[
i cos

(απ

2

)
cos

(
hy +

απ

2

)
x̂

−β

k
sin

(απ

2

)
sin(hy +

απ

2
)ŷ

−i
h

k
sin

(απ

2

)
cos

(
hy+

απ

2

)
ẑ
]

exp
[
i
(
βz−απ

2

)]
(12a)

ηHTE
PMCfd = Dn

(
k

h

)[
sin

(απ

2

)
sin

(
hy +

απ

2

)
x̂

+i
β

k
cos

(απ

2

)
cos

(
hy +

απ

2

)
ŷ

+
h

k
cos

(απ

2

)
sin

(
hy +

απ

2

)
ẑ
]
exp

[
i
(
βz−απ

2

)]
(12b)
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3.1.2. Case 2: Transverse Magnetic (TM z) Mode Propagation
through a PEC Waveguide

Similar to the treatment done in Case 1, using Eqs. (7a)–(7d) results
for transverse magnetic mode propagating through a PEC waveguide
can be written as,

ETM
PECfd = Bn

(
k

h

)[
sin

(απ

2

)
sin

(
hy +

απ

2

)
x̂

+i
β

k
cos

(απ

2

)
cos

(
hy +

απ

2

)
ŷ

+
h

k
cos

(απ

2

)
sin

(
hy +

απ

2

)
ẑ
]

exp
[
i
(
βz − απ

2

)]
(13a)

ηHTM
PECfd = Bn

(
k

h

) [
−i cos

(απ

2

)
cos

(
hy +

απ

2

)
x̂

+
β

k
sin

(απ

2

)
sin

(
hy +

απ

2

)
ŷ

+i
h

k
sin

(απ

2

)
cos

(
hy+

απ

2

)
ŷ
]

exp
[
i
(
βz−απ

2

)]
(13b)

Fractional dual solutions for the D′B′ waveguide can be written by
taking linear sum of the fractional dual fields of the above two cases as

Efd = ETE
PMCfd + ETM

PECfd

ηHfd = ηHTE
PMCfd + ηHTM

PECfd

which give

Efd =
(

k

h

)
exp

[
i
(
βz − απ

2

)]
[(BnSαSy+α + iDnCαCy+α) x̂

+
β

k
(iBnCαCy+α −DnSαSy+α) ŷ

+
h

k
(BnCαSy+α − iDnSαCy+α) ẑ

]
(14a)

ηHfd =
(

k

h

)
exp

[
i
(
βz − απ

2

)]
[(DnSαSy+α − iBnCαCy+α) x̂

+
β

k
(BnSαSy+α + iCαCy+α) ŷ

+
h

k
(iBnSαCy+α + DnCαSy+α) ẑ

]
(14b)
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with

Sα=sin
(απ

2

)
Sy+α = sin

(
hy +

απ

2

)

Cα=cos
(απ

2

)
Cy+α = cos

(
hy +

απ

2

)

Bn, Dn are the constants to be determined from the initial conditions.

3.2. DB′ and D′B waveguides

In DB′ waveguide, the DB′ boundary behaves like PMC boundary for
the both modes, i.e., (TEz) and (TM z). After solving on similar lines
as for D′B′ waveguide, fractional dual solutions for the DB′ waveguide
can be written as

Efd =
(

k

h

)[(
iDnCαCy+α exp

[
i
(
βz − απ

2

)]

−AnSαCy+α exp
[
i
(
βz +

απ

2

)])
x̂

−
(

β

k

)(
DnSαSy+α exp

[
i
(
βz − απ

2

)]

+iAnCαSy+α exp
[
i
(
βz +

απ

2

)])
ŷ

+
(

h

k

)(
−iDnSαCy+α exp

[
i
(
βz − απ

2

)]

+AnCαCy+α exp
[
i
(
βz +

απ

2

)])
ẑ
]

(15a)

ηHfd =
(

k

h

)[(
DnSαSy+α exp

[
i
(
βz − απ

2

)]

+iAnCαSy+α exp
[
i
(
βz +

απ

2

)])
x̂

+
(

β

k

)(
iDnCαCy+α exp

[
i
(
βz − απ

2

)]

−AnSαCy+α exp
[
i
(
βz +

απ

2

)])
ŷ

+
(

h

k

)(
DnCαSy+α exp

[
i
(
βz − απ

2

)]

+iAnSαSy+α exp
[
i
(
βz +

απ

2

)])
ẑ
]

(15b)

In D′B waveguide, the D′B boundary behaves like PEC boundary
for the both modes, i.e., (TEz) and (TM z). After solving along
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similar lines as for D′B′ waveguide, fractional dual solutions for the
D′B waveguide can be written as

Efd =
(

k

h

) [(
BnSαSy+α exp

[
i
(
βz − απ

2

)]

−iCnCαSy+α exp
[
i
(
βz +

απ

2

)])
x̂

+
(

β

k

) (
iBnCαCy+α exp

[
i
(
βz − απ

2

)]

+CnSαCy+α exp
[
i
(
βz +

απ

2

)])
ŷ

+
(

h

k

)(
BnCαSy+α exp

[
i
(
βz − απ

2

)]

−iDnSαSy+α exp
[
i
(
βz +

απ

2

)])
ẑ
]

(16a)

ηHfd =
(

k

h

)[(
−iBnCαCy+α exp

[
i
(
βz − απ

2

)]

−CnSαCy+α exp
[
i
(
βz +

απ

2

)])
x̂

+
(

β

k

) (
BnSαSy+α exp

[
i
(
βz − απ

2

)]

−iCnCαSy+α exp
[
i
(
βz +

απ

2

)])
ŷ

+
(

h

k

) (
iBnSαCy+α exp

[
i
(
βz − απ

2

)]

+CnCαCy+α exp
[
i
(
βz +

απ

2

)])
ẑ
]

(16b)

The fields given in Eqs. (14a)–(16b) are plotted in Figures 2, 3
and 4 by varying values of α between [0, 1] at an observation point
(hy, βz) = (π/4, π/4).

From Figures 2, 3 and 4 it can be seen that principle of duality is
being satisfied by fractional dual fields, i.e., for α = 0

Efdx = Ex, ηHfdx = ηHx

Efdy = Ey, ηHfdy = ηHy

Efdz = Ez, ηHfdz = ηHz

and for α = 1
Efdx = ηHx, ηHfdx = −Ex

Efdy = ηHy, ηHfdy = −Ey

Efdz = ηHz, ηHfdz = −Ez
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Figure 2. Plots of fractional dual fields for D′B′ waveguide, (a) real
parts, (b) imaginary parts.

4. RESULTS AND DISCUSSION

In order to analyze the behavior of fractional fields inside the
waveguides, plots of electric and magnetic field lines in the yz-plane
are presented and are shown in Figures 5, 6 and 7. We have taken yz-
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Figure 3. Plots of fractional dual fields for DB′ waveguide, (a) real
parts, (b) imaginary parts.
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Figure 4. Plots of fractional dual fields for D′B waveguide, (a) real
parts, (b) imaginary parts.

plane as an observation plane. The instantaneous field expressions are
obtained by multiplying the phasor vector expressions with exp(jωt)
and taking the real part of the product. Equation that describe the
behaviour of fractional fields at a given time t can be found from the
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following relation.
dy

Efdy
= dz

Efdz
(17)

Field lines behavior is obtained by integrating above equation. These
plots are for the mode propagating through the guide at an angle π/6
so that β/k = cos(π/6), h/k = sin(π/6). Initial conditions for both
the modes are taken same. Electric as well as magnetic field plots for
waveguides are shown by solid lines. From Figure 5 we see that there is
no tangential component of the electric or the magnetic field for α = 0.
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Figure 5. Field lines in yz-plane at different values of α; for D′B′
waveguide.
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Figure 6. Field lines in yz-plane at different values of α; for DB′
waveguide.

This is because for D′B′ waveguide, the plates of the guide behave as
perfect magnetic conductors for transverse electric components while
they behave as perfect electric conductor for transverse magnetic mode.
For the DB′ waveguide at α = 0, there is no normal component of the
electric filed at the guide surface while magnetic field has no tangential
component. This is because for DB′ waveguide, the plates of the
guide behave as perfect magnetic conductors for both, the transverse
electric mode and transverse magnetic mode. For the D′B waveguide
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Figure 7. Field lines in yz-plane at different values of α; for D′B
waveguide.

at α = 0, there is no tangential component of the electric filed at
the guide surface while magnetic field has no normal component.
This is because for D′B waveguide, the plates of the guide behave
as perfect electric conductors for both, the transverse electric mode
and transverse magnetic mode. For all three cases at α = 1, we can
see clearly that electric field lines have attain the shape of magnetic
field lines of α = 0, and magnetic field lines have attain the shape
of electric field lines of α = 0 with opposite direction of arrows, i.e.,
solutions corresponds to dual waveguides. While for 0 < α < 1, the
electric and magnetic field distributions corresponds to fractional dual
waveguides.
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5. CONCLUSIONS

Fractional dual solutions to the Maxwell equations for the fields inside
a parallel plate D′B′, DB′ and D′B waveguides are derived using
fractional curl operator. The purpose of this work was to complete
the study of set of boundary conditions requiring vanishing of the
normal components of the flux densities D and B (DB boundary)
or their normal derivatives (D′B′, DB′ and D′B boundary). Electric
and magnetic field distributions for limiting value of α corresponds to
D′B′, DB′ or D′B waveguide and dual waveguide, while for 0 < α < 1
distributions of fractional dual fields are obtained. This work can serve
the purpose to get a variety of field distributions.
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