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Abstract—It has been known through some examples that parameters
of an electromagnetic medium can be so defined that there is no
dispersion equation (Fresnel equation) to restrict the choice of the
wave vector of a plane wave in such a medium, i.e., that the dispersion
equation is satisfied identically for any wave vector. In the present
paper, a more systematic study to define classes of media with no
dispersion equation is attempted. In addition to the previously known
examples, a novel class of Case 1 media with no dispersion equation
is seen to emerge through the analysis making use of coordinate-free
four-dimensional formalism in terms of multivectors, multiforms and
dyadics.

1. INTRODUCTION

Time-harmonic plane waves in linear (bi-anisotropic) electromagnetic
media are characterized by dispersion equations [1] (or Fresnel
equations [2]) restricting the choice of the k vector of the plane wave
for any given frequency ω. In the general case the dispersion equation
is of the fourth order. For a restricted class of media the fourth-order
equation can be reduced to two second-order equations, in which case
the field solutions can be decomposed in two independent sets obeying
certain polarization properties [3, 5, 6]. A simple example of such a
medium is the one defined by uniaxial permittivity and permeability
dyadics. In a still more restricted case, e.g., that of isotropic media,
the two equations coincide to a single second-order equation, whence
the medium appears free of birefringence [4, 7–10]. Finally, one can
define media for which the dispersion equation is satisfied identically.
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In such a case, the medium imposes no restriction on the choice of the k
vector of the plane wave. It appears that this property has been widely
neglected in the literature. However, media belonging to this cathegory
have recently emerged in various studies [11–14]. Interestingly, it has
been shown that novel types of boundary conditions may arise at the
interface of some media of this kind [12, 15]. It is the purpose of the
present paper to define, in a more systematic manner, classes of media
in which fields are not restricted by a dispersion equation.

Because of its compactness, the analysis will apply the four-
dimensional differential-form formalism of reference [16] empowered
by coordinate-free dyadic representations for linear mappings [17]. The
source-free Maxwell equations can be expressed in simple form as

d ∧Φ = 0, (1)
d ∧Ψ = 0, (2)

where the electromagnetic two-forms Φ,Ψ ∈ F2 are defined by

Φ = B + E ∧ ε4, (3)
Ψ = D−H ∧ ε4, (4)

in terms of the spatial 3D one-forms E, H ∈ F1 and two-forms B, D.
The temporal one-form

ε4 = dτ, τ = ct, (5)

can be completed by spatial one-forms ε1, ε2, ε3 to a basis of one-
forms. The complementary basis vectors e1, e2, e3, e4 ∈ E1 satisfy
ei|εj = δij . Details of the notation and operational rules applied in
this paper can be found in [17]. For similar equations in tensorial
notation one may visit the references [2, 14].

2. DISPERSION DYADIC

A plane wave can be defined by fields depending on the space-time
vector x = r + e4τ as

Φ(x) = Φf(ν|x), (6)
Ψ(x) = Ψf(ν|x). (7)

Here, f(·) is any differentiable scalar function and ν ∈ F1 is the
wave one-form which contains the wave vector k and the frequency
ω of the Gibbsian 3D vector notation. For a plane wave the Maxwell
Equations (1) and (2) imply

ν ∧Φ = 0, (8)
ν ∧Ψ = 0. (9)
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Applying the identity [17]

ac(ν ∧Φ) = ν ∧ (acΦ) + (a|ν)Φ, (10)

and similarly for Ψ, valid for any vector a, assuming a|ν 6= 0, we can
express the field two-forms in terms of potential one-forms φ,ψ as

Φ = ν ∧ φ, φ = −acΦ
a|ν , (11)

Ψ = ν ∧ψ, ψ = −acΨ
a|ν . (12)

A linear medium can be represented in terms of a linear mapping
between the electromagnetic two-forms. Let us assume that the
medium is homogeneous and time-invariant, i.e., independent of x.
In terms of a bidyadic M ∈ F2E2, mapping two-forms to two-forms,
one writes

Ψ = M|Φ. (13)

Another, equally valid representation, makes use of another bidyadic
N ∈ F2E2 as

Φ = N|Ψ. (14)

M and N may be expanded in any given bivector basis and two-form
basis as 6 × 6 matrices, each involving 36 scalar parameters in the
general case [18]. When the two bidyadics are of full rank, they
are inverses of each other, while in the converse case only one of the
two representations (13) and (14) may exist. The medium equations
can be equally well expressed in terms of modified medium bidyadics
Mm, Nm ∈ E2E2 as bivector equations

eNbΨ = Mm|Φ, (15)

eNbΦ = Nm|Ψ, (16)

in terms of the quadrivector eN = e1234 and

Mm = eNbM, Nm = eNbN (17)

mapping two-forms to bivectors.
According to Hehl and Obukhov [2], the general medium bidyadic

can be decomposed in three components as

M = M1 + M2 + M3, (18)

respectively called the principal, skewon and axion parts of M. The
axion part is a multiple of the unit bidyadic, M3 = M3I

(2)T , while
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M1 and M2 are trace free. The skewon part is characterized by the
modified bidyadic Mm2 = eNbM2 which is the antisymmetric part of
Mm, while the principal modified bidyadic Mm1 = eNM1 is symmetric.
The other medium bidyadic N can be given a similar decomposition.

Condition (9) defines an equation for the potential one-form φ as

ν ∧Ψ =
(
ν ∧Mbν

)
|φ = 0. (19)

The dyadic in brackets belongs to the space F3E1 mapping one-forms
to three-forms. An equivalent equation can be formed in terms of the
dyadic D(ν) ∈ E1E1 mapping one-forms to vectors

D(ν) = eNb
(
ν ∧Mbν

)
= −νc

(
eNbM

)
bν = Mmbbνν, (20)

and called the dispersion dyadic, as

D(ν)|φ = 0. (21)

From the form of (20) it follows that the dispersion dyadic also satisfies

D(ν)|ν = 0 (22)

for any ν. Assuming non-vanishing field two-forms Φ = ν ∧ φ 6= 0,
the one-forms φ and ν are linearly independent, whence the rank of
the dispersion dyadic is demanded to be less than 3. Thus, D(ν) must
satisfy the equation [17]

D(3)(ν) =
1
6
D(ν)∧∧D(ν)∧∧D(ν) = 0, (23)

for any ν characterizing a plane wave in such a medium. One can show
that we can expand

D(3)(ν) = (eNbν)(eNbν)D(ν) = 0, (24)

so that (23) is actually equivalent to a scalar equation which can be
given the following explicit form [19],

D(ν) =
1
3
εNεN ||

(
Mm

∧∧D(2)(ν)
)

=
1
6
εNεN ||

(
Mm

∧∧
(
ννcc

(
Mm

∧∧
(
ννccMm

))))
= 0. (25)

(25) (or its equivalent dyadic form (23)) is called the dispersion
equation, because for time-harmonic fields it defines the relation
between the wave number and the frequency of the wave. Alternatively,
it is called the Fresnel equation. Obviously, (25) is of the fourth order
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in ν. Other forms for the dispersion equation are found in [2, 14, 20–
22].

Starting from the medium condition (14), a similar equation in
terms of the bidyadic Nm is obtained,

D′(ν) =
1
6
εNεN ||

(
Nm

∧∧
(
ννcc

(
Nm

∧∧
(
ννccNm

))))
= 0. (26)

When the medium bidyadics M, N are of full rank, the ensuing
two dispersion equations must have the same solutions since they
correspond to the same plane wave [10]. In particular, if one of them
is satisfied identically for all ν, so must be the other one. When the
rank of M is less than six, the bidyadic N and the Equation (26) do
not exist, and conversely.

3. MEDIA WITH NO DISPERSION EQUATION

To define media with no dispersion equation, either (23) or (25) must
be identically valid for any one-form ν. Two examples have emerged
in the past, the skewon-axion media (IB-media) [2, 11] and the P-
media [13, 14]. Actually these two media will also come out through
the present analysis, added by a third one denoted by case 1 below.

Starting from (23), requiring that the dispersion dyadic be of rank
less than three, it follows that there must exist four vectors in terms
of which we can write

D(ν) = ac + bd. (27)
This corresponds to the case of planar dyadics in the 3D Gibbsian
formalism [23, 24].

Since the left side of (27) is a quadratic function of ν, so must be
the right side. This gives us a few possibilities.
(i) Each of the four vectors is a linear function of ν.
(ii) a and b are quadratic functions while c and d do not depend on

ν.
(iii) a and d are quadratic functions while b and c do not depend on

ν.
(iv) a is a quadratic function while b and d are linear functions and c

does not depend on ν.
Other possibilities do not seem to bring any new solutions because the
dispersion Equation (25) is invariant to replacing the modified medium
bidyadic Mm by its transpose MT

m. In fact, this implies replacing the
dispersion dyadic D(ν) by its transpose DT (ν) and D(3)(ν) by D(3)T (ν).
Let us consider these four cases separately.
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3.1. Case 1: a,b, c and d Are Linear Functions of ν

Because the dispersion dyadic satisfies D(ν)|ν = ν|D(ν) = 0 for all ν,
the four vectors must satisfy

a(c|ν) + b(d|ν) = 0, (ν|a)c + (ν|b)d = 0. (28)

Assuming
D(2) = (a ∧ b)(c ∧ d) 6= 0, (29)

which requires that the dispersion dyadic be of rank 2, the vectors a,b
must be linearly independent and so must c,d, whence we obtain

a|ν = b|ν = c|ν = d|ν = 0, (30)

for all ν. This requires that there must exist bivectors A, B, C, D
such that we can express

a = Abν, b = Bbν, c = Cbν, d = Dbν, (31)

and
D(ν) = Mmbbνν = (AC + BD)bbνν. (32)

Because
(Mm − (AC + BD))bbνν = 0 (33)

must be valid for all ν, applying the result given in Appendix A, the
modified medium bidyadic Mm must be of the form

Mm = AC + BD + αeNbI(2)T , (34)

for some scalar α. Equivalently, the medium bidyadic M must be of
the form

M = ΠC + ΛD + αI(2)T , (35)

with Π = εNbA and Λ = εNbB. The expression (35) defines one
possible class of media in terms of two bivectors, two two-forms and
a scalar, for which the dispersion equation is satisfied identically. The
medium bidyadic N = M−1 has a similar form, which can be shown
by forming the inverse bidyadic of (35), details of which are given in
Appendix B.

In the special case D(2)(ν) = 0 for all ν, (34) is reduced to the
form

Mm = AC + αeNbI(2)T , (36)

while requiring D(ν) = 0 leads to M = M I(2)T , i.e., a medium with just
an axion component. One may note that the medium defined by (34)
includes any Q-medium [17], defined by

Mm = MQ(2), (37)
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when the dyadic Q ∈ E1E1 is antisymmetric. In fact, because such
a dyadic can be expressed as Q = AbIT , where A is some bivector,
expanding

Mm = M
(
AbIT

)(2)
= M

(
AA− 1

2
εN | (A ∧A) I(2)T

)
, (38)

yields a special case of (36).
One may note that the condition (29) requires that none of the

four bivectors in (34) is simple. In fact if, for example, we assume
that A simple, whence we can express it in terms of two vectors as
A = a1 ∧ a2, we have a = Abν = (a2|ν)a1 − (a1|ν)a2 = 0 for any
ν satisfying a1|ν = 0 and a2|ν = 0. Thus, (29) is not valid for
one-forms ν taken from the corresponding 2D subspace. In such a
case the dispersion dyadic D(ν) is of rank 1 for a 2D subspace of ν
and of rank 2 for other one-forms ν. Since media defined by (34)
have no dispersion equation regardless of one or more of the bivectors
being simple, dispersion dyadics D(ν) of variable rank are included in
addition to those of rank 2 or rank 1 for all ν. One may conjecture
that (34) represents all solutions for case 1 media.

3.2. Case 2: a and b Are Quadratic, while c and d Are
Independent of ν

Let us now assume that in (27) the vectors c and d are independent
of ν, whence a and b must be quadratic functions of ν. In this case it
appears preferable to start from the representation

ν ∧Mbν = −εNbD(ν) = Γc + ∆d, (39)

where the two three-forms

Γ = −εNba, ∆ = −εNbb, ∈ F3 (40)

are now quadratic functions of ν. Since any two linearly independent
three-forms can be interpreted as belonging to a basis of three-
forms, which can be constructed in terms of a basis of one-forms, say
α, β, γ, δ, we can express

Γ = α ∧ β ∧ γ, ∆ = α ∧ β ∧ δ. (41)

Thus, (39) can be written as

ν ∧Mbν = α ∧ β ∧ (γc + δd), (42)

or, more generally, as

ν ∧Mbν = α ∧ β ∧ PT . (43)
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Since terms of the form αa′+βb′ can be added to the dyadic in brackets
in (42), we may well assume that the dyadic P ∈ E1F1 in (43) is of full
rank. The special case corresponding to D(2)(ν) = 0, i.e., when the
bracketed dyadic is reduced by assuming δd = 0, will be considered
separately.

Before proceeding, let us briefly check that when M satisfies a
relation of the form (43), the dispersion equation is satisfied identically.
The dispersion dyadic can be expressed in the form

D(ν) = eNb
(
ν ∧Mbν

)
= DbPT =

(
DbIT

)
|PT , (44)

where the bivector D ∈ E2 is defined by

D = eNb(α ∧ β), (45)

and DbIT ∈ E1E1 is an antisymmetric dyadic. The bivector D is simple
because it satisfies

εN |(D ∧D) = εN |((eNb(α ∧ β)) ∧ (eNb(α ∧ β)))
= eN |(α ∧ β ∧α ∧ β) = 0. (46)

Since a simple bivector can be expressed in terms of two vectors as
D = d1 ∧ d2, the antisymmetric dyadic satisfies

(
DbIT

)(3)
=

(
(d1 ∧ d2) bIT

)(3)
= (d2d1 − d1d2)

(3)

=
1
3

(d2d1 − d1d2) ∧∧
(
d1d2

∧∧d2d1

)
= 0. (47)

From this and the rule (A|B)(p) = A(p)|B(p) it follows that the dispersion
equation

D(3)(ν) =
(
DbIT

)(3)
|P(3)T = 0 (48)

is, indeed, satisfied for any ν and any medium bidyadic M
satisfying (43).

Returning to (43), two conditions for the quantities on its right-
hand side are obtained by noting that the left-hand side vanishes when
multiplying by |ν from the right or by ν∧ from the left. These lead to
the respective conditions

α ∧ β ∧
(
PT |ν

)
= 0, (49)

and
ν ∧α ∧ β ∧ PT = 0. (50)
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Condition (49) requires that the three one-forms α, β and PT |ν be
linearly dependent, whence they must satisfy a relation of the form

Aα + Bβ + C
(
PT |ν

)
= 0. (51)

For C = 0 we have α∧β = 0 and D(ν) = 0 corresponding to the axion
medium. For C 6= 0 we can choose C = −1, whence the relation can
be rewritten as

PT |ν = Aα + Bβ. (52)

Omitting vanishing of both A and B which would again yield
the axion medium, without sacrificing generality (α and β appear
interchangeable at this stage), we may set B = 1, whence

β = PT |ν −Aα. (53)

Inserting this in (43), the condition becomes

ν ∧Mbν = α ∧
(
PT |ν

)
∧ PT . (54)

Since the right-hand side of (54) must be a quadratic function of ν, it
appears that P must be independent of ν. Thus, α must be a linear
function of ν and it can be expressed as

α = BT |ν, (55)

in terms of some dyadic B ∈ E1F1. Inserting this in (54) yields the
representation

ν ∧Mbν =
(
BT |ν

)
∧

(
PT |ν

)
∧ PT , (56)

Applying now the second condition (50), i.e., multiplying (56) by ν∧
from the left, leads to the condition

ν ∧
(
BT |ν

)
∧

(
PT |ν

)
∧ PT = 0, (57)

valid for any one-form ν. Recalling that P was assumed to be a
dyadic of full rank, we can multiply (57) by |P−1T from the right.
The condition is then reduced to

ν ∧
(
BT |ν

)
∧

(
PT |ν

)
∧ IT = 0 ⇒ ν ∧

(
BT |ν

)
∧

(
PT |ν

)
= 0. (58)

Since the three one-forms are linearly dependent for all ν, the dyadics
must be related as

AI + BB + CP = 0, (59)

for some scalars A,B, C. This leaves us the following three possibilities:
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(i) A = 0 which implies BBT |ν + CPT |ν = 0. Since ν ∧Mbν = 0, we
must have

M = αI(2)T . (60)

(ii) A 6= 0 and B = 0 implies P = −(A/C)I and ν ∧ Mbν =
(A/C)ν ∧ (B∧∧I)T bν. In this case we must have

M =
(
B∧∧I

)T
+ αI(2)T , (61)

(iii) A 6= 0 and B 6= 0 implies B = −(A/B)I − (C/B)P. In this case
we must have

ν ∧Mbν = −(A/B)ν ∧ PT |ν ∧ PT = −(A/B)ν ∧ P(2)T bν, (62)

and
M = P(2)T + αI(2)T . (63)

In (61) and (63) the coefficients A, B, C have been suppressed. Thus,
in case 2 the media with no dispersion equation fall into two classes,
those of skewon-axion media [11] and P-axion media while axion media
are special cases of both of the two. The class of P-axion media is a
generalization of that of P-media [13], with an added axion term.

Actually, all of the above medium bidyadics can be expressed
under the single, more general, form as

M = AB(2)T + B(B∧∧I)T + CI(2)T (64)

where A, B, C are any scalar coefficients. In fact, (64) yields the
skewon-axion medium for A = 0 and the P-axion medium for A 6= 0.
For A 6= 0 this can be seen by defining new symbols as

P = B +
B

A
I, M = A, α = C − B2

A
. (65)

Let us finally test whether (64) really satisfies the dispersion
Equation (23) for any one-form ν by expanding the dispersion dyadic
as

D(ν) = −eNb
(
ν ∧Mbν

)

= −eNb
(
Aν ∧ B(2)T bν + Bν ∧ (B∧∧I)T bν

)

= −eNb
(
Aν ∧ (BT |ν) ∧ BT + Bν ∧ (BT |ν) ∧ IT

)

=
(
−eNb

(
ν ∧

(
BT |ν

)))
b(AB + BI)T

=
(
AbIT

)
|(AB + BI)T . (66)
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Here we have denoted A = −eNb(ν ∧ (BT |ν)), which is a simple
bivector satisfying A ∧ A = 0. Now the dispersion Equation (23)
becomes

D(3)(ν) =
(
AbIT

)(3)
|(AB + BI)(3)T = 0, (67)

which is valid for the same reason as (47). It is remarkable that this is
valid for any dyadic B which means that the assumption of full-rank
dyadic P can be relaxed.

The previous analysis assumed D(2)(ν) 6= 0 for all ν. The converse
case can be handled by replacing (27) by

D(ν) = ac, (68)
where a is a quadratic function of ν and c is independent of ν. From

D(ν)|ν = a(c|ν) = 0, (69)
satisfied for all ν, we must have either a = 0 or c = 0, both of which
lead to D(ν) = 0. This, again, corresponds to the axion medium case
which is included the solution (64).

3.3. Case 3: a and d Are Quadratic in ν while b and c Are
Independent of ν

In this case we assume that in the dispersion dyadic representation (27)
the vectors c and b are independent of ν. From

b ∧ D(ν)|ν = b ∧ (ac + bd)|ν = (b ∧ a)(c|ν) = 0, (70)
valid for all ν, we conclude that either c = 0 or b ∧ a = 0, whence
a must be of the form a = (A

′||νν)b for some dyadic A
′ ∈ E1E1.

Similarly, we must have either b = 0 or d = (D
′||νν)c. Thus,

the dispersion dyadic of case 3 coincides with that of case 2, or its
transpose, with D(2)(ν) = 0 for all ν.

3.4. Case 4: a Is Quadratic, b and d Are Linear and c Is
Independent of ν

In this final case from
D(ν)|ν = a(c|ν) + b(d|ν) = 0, (71)

assuming a ∧ b 6= 0 we obtain c|ν = 0 and d|ν = 0 for all ν. This
requires c = 0 and d = Dbν, whence the dispersion dyadic must be of
the form

D(ν) = BDbbνν (72)
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for some bivectors B, D This leads to case 1 solution (34).
Alternatively, from a∧b = 0 we obtain the relation a = λb = (a′|ν)b,
since λ must be a linear function of ν. In this case the dispersion
dyadic becomes

D(ν) = b((a′|ν)c + d), (73)

which reduces to the form (72). In conclusion, case 4 coincides with the
special case 1 satisfying D(2)(ν) = 0 for all ν. Thus, the corresponding
modified medium bidyadic has the form of (36).

4. DISCUSSION

The previous analysis shows us that the possible medium bidyadic
M, in which a plane wave is not rectricted by a dispersion equation,
is either of the general form (34) or (64). Starting from the
representation (14), similar expressions can be obtained for the
bidyadic N, which equals M−1 when the two bidyadics are of full rank.
It is shown in Appendix B that both of these representations lead
to the same class of media for case 1. Let us now study whether
the same property is valid for case 2. It is known from previous
work that for pure axion, skewon and P-medium bidyadics the inverse
bidyadics, when they exist, have the same axion, skewon or P-medium
character [11, 13, 14]. So, one may wonder whether this property will
be valid for skewon-axion and P-axion media as well. Since there are no
analytic expressions known to these authors for the inverse of general
skewon-axion or P-axion bidyadics, the problem must be considered
through some known properties.

It is known that the modified medium bidyadic of a P-medium

Mm = MeNbP(2)T , (74)

for some dyadic P ∈ E1F1 satisfies the quadratic equation [5, 25, 26]

MT
m ·Mm = PeNbI(2)T , P = M2trP(4). (75)

The natural dot product between two bidyadics A, B or two two-forms
Φ, Ψ is defined by

A ·B = A
∣∣∣(εNbI(2)

∣∣∣B = B ·A, (76)

Φ ·Ψ = Φ
∣∣∣(eNbI(2)T

∣∣∣Ψ = Ψ ·Φ. (77)

The converse is not necessarily true, since, as was shown in [5], a
solution of (75) can alternatively be a bidyadic of a Q-medium, which



Progress In Electromagnetics Research B, Vol. 51, 2013 281

has the form [17]
Mm = MQ(2), (78)

for some dyadic Q ∈ E1E1. However, as is shown in Appendix C, if
a solution of (75) is of full rank (P 6= 0) and belongs to case 2, it
must be a P-medium bidyadic, since Q-medium bidyadics possessing
no dispersion equation fall necessarily into case 1.

From (75) it follows that the bidyadic of a P-axion medium

Mm = MeNbP(2)T + αeNbI(2)T , (79)

satisfies the bidyadic second-order equation

MT
m ·Mm − α

(
MT

m + Mm

)
=

(
P − α2

)
eNbI(2)T . (80)

Let us multiply (80) by M−1T
m | from the left and by |M−1

m from the
right, whence we arrive at

εNbI(2) − α
(
M−1T

m + M−1
m

)
=

(
P − α2

)
M−1T

m

∣∣∣
(
eNbI(2)T

)∣∣∣M−1
m . (81)

For P 6= α2 we can find the equation corresponding (80) for the
bidyadic Nm = eNeNbbM−1

m ,

NT
m · Nm +

α

P − α2

(
NT

m + Nm

)
=

1
P − α2

eNbI(2)T . (82)

Since (82) is of the same form as (80), we may conclude that, in
the general case, the inverse of a P-axion medium is another P-axion
medium.

In the special case when P-axion medium bidyadic (75) is
restricted by P = α2, i.e., for

Mm = MeNbP(2)T + αeNbI(2)T , α = ±
√

P , (83)

with either sign, (82) reduces to

α
(
NT

m + Nm

)
= eNbI(2)T , (84)

which is satisfied by bidyadics of the form

Nm = A +
1
2α

eNbI(2)T , (85)

where A is any antisymmetric bidyadic. From this we conclude that the
inverse of a special P-axion medium (83) is a skewon-axion medium.
This works also backwards so that the inverse of a skewon-axion
medium is of the special P-axion medium form (83). This is, however,
not valid for α = 0, which corresponds to the pure skewon medium
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Table 1. Relations between various case 2 medium bidyadics.

M N
axion axion

skewon skewon
P-medium P-medium

skewon-axion special P-axion
special P-axion skewon-axion
general P-axion general P-axion

whose inverse is another pure skewon medium [27], while for P = 0
the bidyadic Mm in (83) does not have any inverse. The result is shown
in Table 1.

It may be of interest to note that both case 1 and case 2 classes of
media with no dispersion equation are closed in affine transformations.
Let us consider a full-rank dyadic A ∈ E1F1 mapping vectors as
xa = A|x, bivectors as Aa = A(2)|A and medium bidyadics as [17]

Ma = A(−2)T |M|A(2)T . (86)

Applying this transformation, case 1 medium bidyadics are mapped as

Ma = A(−2)T
∣∣∣
(
ΠC + ∆D + α = I(2)T

)∣∣∣ A(2)T

= ΠaCa + ∆aDa + αI(2), (87)

with

Πa = A(−2)T |Π, ∆a = A(−2)T |∆, (88)

Ca = A(2)|C, Da = A(2)|D, (89)

and case 2 medium bidyadics are mapped as

Ma = A(−2)T

∣∣∣∣(AB(2)T + B
(
B∧∧I

)T
+ CI(2)T

∣∣∣∣A(2)T

= AB(2)T
a + B

(
Ba

∧∧I
)T

+ CI(2)T , (90)

with
Ba = A|B|A−1. (91)

Thus, in both cases, the form of the medium bidyadic remains the same
after the transformation.
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5. CONCLUSION

This paper concerns the problem of defining classes of electromagnetic
media in which plane waves are not restricted by a dispersion equation
(Fresnel equation). Some media with such a property have recently
emerged in various studies. In the analysis four-dimensional formalism
in terms of multivectors, multiforms and dyadics was applied as based
on reference [17].

Requiring that the dispersion dyadic D(ν) satisfy the condition
D(3)(ν) = 0 for all possible wave one-forms ν the problem was split
in four cases which were analyzed separately. Case 1 and case 2
were shown to yield medium bidyadics M, respectively defined by (35)
and (64), with the desired property, while cases 3 and 4 could be
reduced to cases 1 and 2 with no new solutions. Previously known
media showing no dispersion equation were seen to be special cases
of the results obtained here. In particular, the Q-medium with
antisymmetric Q dyadic belongs to the class of case 1 media (35) while
the skewon-axion medium and P-medium are both special cases of the
class of case 2 media. However, the general Case 1 solution appears
to be new. When considering the problem in terms of the alternative
medium bidyadic N, no new solutions could be found in any of the
cases considered.

Media with no dispersion equation appear to be strange in terms of
their electromagnetic properties. However, as has been shown through
many special cases, interfaces of media like PEMC and skewon-
axion have shown interesting and useful boundary conditions at their
interfaces, which has given motivation to the present study.

APPENDIX A. SOLUTIONS OF AN EQUATION

Consider the following problem: find the most general bidyadic M ∈
F2E2 satisfying

α ∧Mbα = 0 (A1)
for all possible one-forms α. The same problem is solved in [10]
(Proposition 3.1).

Applying the identity [17]
ac(α ∧Π) = α ∧ (acΠ) + (a|α)Π (A2)

valid for any one-form α, two-form Π and vector a, by choosing a so
that a|α 6= 0, we can write from

ac(α ∧Mbα) = α ∧
(
acMbα

)
+ (a|α)Mbα = 0, (A3)
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the representation

Mbα = α ∧ AT , AT = −acMbα
a|α , (A4)

in terms of some dyadic A ∈ E1F1. Since such a dyadic satisfies

α ∧ AT |α = M|(α ∧α) = 0, (A5)

we must have
AT |α = α|A = Aα. (A6)

This means that α is a left eigen-one-form of the dyadic A. Because
this must be valid for any one-form α, the dyadic is actually a multiple
of the unit dyadic,

A = AI, (A7)

and
Mbα = Aα ∧ IT = AI(2)T bα. (A8)

Since M must satisfy
(
M−AI(2)T

)
bα = 0 (A9)

for any one-form α, by choosing basis one-forms α = εi, we finally
obtain

M−AI(2)T=
(
M−AI(2)T

)
|
∑

εijeij =
∑((

M−AI(2)T
)
bεi

)
|εjeij =0,

whence M must be a multiple of the unit bidyadic I(2)T .
Multiplying (A1) by eNb and applying

eNb
(
ν ∧Mbν

)
= −νc

(
eNbM

)
bν = Mmbbνν, (A10)

we obtain the following rule: if

Mmbbνν = 0 (A11)

is satisfied for all ν, the metric bidyadic must be of the form

Mm = MeNbI(2)T . (A12)
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APPENDIX B. INVERSE OF A BIDYADIC

Let us consider a bidyadic

M = ΠC + ΛD + αI(2), (B1)

defined by two two-forms Π, Λ, two bivectors C, D and a scalar α.
Let us find the inverse bidyadic by starting from the ansatz

M−1 = ΠC′ + ΛD′ + α′I(2), (B2)

where C, D and α are replaced by the unknown quantities C′, D′, α′.
Inserting (B1) and (B2) in

M|M−1 = I(2), (B3)

and assuming that Π and Λ are linearly independent and

α′ = 1/α, (B4)

we obtain a relation between the unknown and known bivectors as(
Π|C + α Λ|C

Π|D Λ|D + α

)(
C′
D′

)
= −α′

(
C
D

)
. (B5)

This can be solved as(
C′
D′

)
=

−1
αD

(
Λ|D + α −Λ|C
−Π|D Π|C + α

)(
C
D

)
, (B6)

D = (Π|C + α)(Λ|D + α)− (Λ|C)(Π|D). (B7)

It is easy to verify that (B3) is satisfied by (B2) with (B6) substituted.
In the case D = 0 there is no inverse.

For the special case D = 0 in (B1) the result (B6) is reduced to

C′ =
−1

α(Π|C + α)
C. (B8)

APPENDIX C. ON P- AND Q-MEDIA

Since (75) contains P-medium and Q-medium solutions, one may ask
how to distinguish whether a given solution Mm corresponds to a P-
medium or a Q-medium?

Let us assume that the modified medium bidyadic Mm

satisfies (75) and study first the Q-solution by making contraction by
a one-form α as

Mmbbαα = MQ(2)bbαα = M
(
Q||αα

)
Q−

(
Q|α

)(
α|Q

)
. (C1)
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Its double-cross square yields
(
Mmbbαα

)(2)
=M2

(
Q||αα

)((
Q||αα

)
Q(2)−Q∧∧

((
Q|α

)
(α|Q)

))
, (C2)

while the double-cross cube becomes
(
Mmbbαα

)(3)
=M3

(
Q||αα

)2((
Q||αα

)
Q(3)−Q(2)∧∧

((
Q|α

)(
α|Q

)))
. (C3)

Applying dyadic rules [17], this can be expressed in the form
(
Mmbbαα

)(3)
=M3

(
Q||αα

)2((
Q||αα

)
Q(3)−Q(2)∧∧

((
Q|α

)(
α|Q

)))

=M3(Q||αα)2(εNεN ||Q(4))(eNeNbbαα). (C4)

Let us now do the same operations for the P-medium bidyadic.

Mmbbαα = M
(
eNbP(2)T

)
bbαα

= MeNb
(
α ∧

(
PT |α

)
∧ PT

)
. (C5)

Denoting the simple bivector by

eNb
(
α ∧

(
PT |α

))
= a ∧ b, (C6)

we have

Mmbbαα = (a ∧ b) bPT = b
(
a|PT

)
− a

(
b|PT

)
(C7)

Its double-cross square yields
(
Mmbbαα

)(2)
= (b ∧ a)

((
a|PT ) ∧ (b|PT

))
, (C8)

and the double-cross cube vanishes
(
Mmbbαα

)(3)
= 0, (C9)

for any one-forms α.
Now this could serve as a test for a modified medium bidyadic

Mm which satisfies (75) and is of full rank, whence both Q and P

must be of rank 4. If Mm satisfies (Mmbbαα)(3) 6= 0 for any one-
form α, it corresponds to a Q-solution. In the converse case, it either
corresponds to a P-solution or a special Q-solution with antisymmetric
dyadic Q. εNεN ||Q(4) = 0 is ruled out by Q being of full rank. Q

antisymmetric implies also (Mmbbαα)(2) = 0 for all α, but the same
requirement for the P-medium bidyadic would lead to either a∧b = 0
or to (a|PT )∧(b|PT ) = (a∧b)|P(2)T = 0, which are the same condition
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for full-rank P. This condition equals α∧(PT |α) = 0 for all α which is
only valid for P being a multiple of I. This last case, again, corresponds
to Mmbbαα = 0 for all α, which applied to the Q-medium bidyadic is
contrary to the full-rank assumption.

To conclude, we have the following test for the medium bidyadics
of Q- and P-media satisfying (75) when the modified medium bidyadic
Mm is of full rank.

• For (Mmbbαα)(3) 6= 0 we have a Q-solution.

• For (Mmbbαα)(3) = 0 and (Mmbbαα)(2) 6= 0 we have a P-solution.

• For (Mmbbαα)(2) = 0 and Mmbbαα 6= 0 we have a Q-solution
with antisymmetric dyadic Q.

• For Mmbbαα = 0 we have a P-solution with P = P I.

This result has the following conclusion. When the medium
bidyadic Mm is not restricted by a dispersion equation, i.e., it satisfies
(Mmbbνν)(3) = 0 for any one-form ν, it has a Q-medium solution only
when Q is an antisymmetric dyadic, i.e., it belongs to case 1 solutions.
In other words, there are no Q-medium solutions of full rank in case 2.
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