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Abstract—To obtain Electromagnetic Compatibility (EMC), we
would like to study the worst-case electromagnetic field-induced
voltages at the ends of Printed Circuit Board (PCB) traces. With
increasing frequencies, modelling these traces as electrically short
no longer suffices. Accurate long line models exist, but are too
complicated to easily induce the worst case. Therefore, we need
a simple analytical model. In this article, we predict the terminal
voltages of an electrically long, two-wire transmission line with
characteristic loads in vacuum, excited by a linearly polarised plane
wave. The model consists of a short line model (one Taylor cell) with
an intuitive correction factor for long line effects: the modified Taylor
cell. We then adapt the model to the case of a PCB trace above a
ground plane, illuminated by a grazing, vertically polarised wave. For
this case, we prove that end-fire illumination constitutes the worst case.
We derive the worst-case envelope and try to falsify it by measurement
in a Gigahertz Transverse Electromagnetic (GTEM) cell.

1. INTRODUCTION

Pursuing Electromagnetic Compatibility (EMC) is resolving unwanted
electromagnetic interactions between electronic systems. The number
of possible combinations and configurations of electronic systems is
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infinite, so simplification techniques are always employed to enable
analysis.

A common simplification is that of weak coupling : we choose to
consider two systems an aggressor and a victim, and we only consider
the effect of the electromagnetic field generated by the aggressor on
the victim. Because the coupling is weak, we can neglect the resulting
effect on the aggressor. This simplification allows us to speak about
emission (by the aggressor) and susceptibility (of the victim). In this
paradigm, EMC can be obtained by reducing emission and/or reducing
susceptibility.

Another simplification is to only look at the worst case. For
example, if we are sure that decreasing the distance between aggressor
and victim makes things worse, it suffices to prove that there is no
unwanted interaction at the smallest distance that can possibly occur.
Instead of having to prove EMC for all distances, we only need to
prove it for one particular distance (the worst case). As EMC depends,
amongst others, on the distance, we imagine distance as a dimension of
the problem space. Considering the worst case of one variable decreases
the dimension of the problem space by one.

Finally, we often characterize emission and susceptibility in terms
of the far field magnitude. In general, an aggressor can generate any
spatiotemporal field that satisfies the Maxwell equations. Hence, it
needs to be described as ~E(~r, t) or ~H(~r, t). At some distance from
the aggressor, however, the field tends to a plane wave with the wave
impedance of the vacuum. Assuming susceptibility to be independent
of the relative phase of the field’s spectral components, we describe
it with the magnitude vector of its Fourier transform: | ~E(~r, ω)|.
Assuming a linearly polarized wave, the field only decays with the
distance ~r. Now, the vector | ~E(ω)| at a rough distance suffices to
describe the emissivity of a system. Reciprocally, we can describe the
susceptibility of a system in terms of a maximum allowed electric field
magnitude vector.

To assess the susceptibility of Printed Circuit Boards (PCBs),
we would like to be able to reason analytically about the voltages
induced at PCB trace terminals by an incident electromagnetic field.
Particularly, we would like to dispose of tools to induce the worst
case: the maximum voltage. For that reason, we look for easy-
to-understand analytical expressions that show the relation with
designable parameters (transparent equations).

We start by reviewing prior work on this question in Section 2,
indicating the lack of transparent models for electrically long lines. A
new, transparent model for two-wire transmission lines is proposed in
Section 3. The model does not provide a strong upper bound to the
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induced voltages. To that end, the model is specialised for grazing-
incident wave on a PCB trace in Section 4. The low-frequency and
high-frequency worst cases are derived and joined to give a broadband
worst-case envelope. To challenge the resulting model, an experiment
is performed and commented upon in Section 5. Having failed to falsify
the model by measurement and by comparison with earlier work, we
conclude in Section 6.

2. STATE OF THE ART

The quest for worst-case or typical-case induced voltages at the
terminals of PCB traces is not new: Lagos developed a numerical
algorithm to find the worst case with known load impedances [1].
Magdowski derived analytical expressions for the typical case [2], that
is: for random illumination. Neither model is transparent, so we will
now look for general field-to-trace models (not worst case).

A model based on Maxwell’s equations will not be weakly
coupled. Moreover, closed-form and transparent solutions to
Maxwell’s equations are rare. Therefore, we will need an acceptable
approximation of Maxwell’s equations.

The quasi-static approximation lets waves propagate infinitely
fast: c0 →∞, which is representative for structures that are sufficiently
small with respect to the wavelength. With susceptibility tests up to
18GHz, free-space wavelength descends to 1.7 cm, while PCB traces
may be tens of centimetres in length: too simplistic.

An intermediate approximation is that of transmission line
theory: the supposition that there be only a differential transverse
electromagnetic mode (TEM). The common mode can be ignored,
because the ground planes of modern PCBs suppress it and because the
common mode response across the terminals is generally small [3, 4]. A
typical microstrip line gradually becomes multimodal from some GHz
upward [5], so this simplification might hold.

With coupled lines theory, Mandić predicted the coupling between
a TEM cell septum and PCB traces [6] with a circuit simulator. His
model is not transparent, nor is it weakly coupled.

There are three equivalent, weakly coupled transmission line based
models [3]: that of Taylor et al. [7], Agrawal et al. [8] and that of
Rachidi [9]. They all model a transmission line as a cascade of cells. As
the wavelength along the line decreases, the line needs to be considered
as a cascade of short enough cells, such that the field is uniform
enough along each cell. From two cells upward, the terminal voltage
expressions are no longer transparent.

Using Snell’s law of refraction and Agrawal’s model, Leone
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succeeded to find transparent expressions [5]. Firstly, he assumed
that both loads be matched, which he showed to be a reasonable
approximation for moderately mismatched loads. Secondly, the
transient excitation should be mainly low-frequency, which is
reasonable for nuclear electromagnetic pulse (NEMP) testing. From
his model, he concludes that end-fire (parallel with the line), vertically-
polarised illumination constitutes the worst case for the near-end
terminal.

For continuous wave (CW) testing, the second approximation does
not necessarily hold. Furthermore, we would like to better understand
why end-fire, vertically-polarised illumination is the worst case for the
far end. Therefore, we set out to develop a model of our own.

3. TAYLOR-BASED TRANSPARENT MODEL

We base our transparent model on Taylor’s (Figure 1), because we like
the distributed contribution of the electric and magnetic fields.

3.1. Long-line Analysis

At low frequencies, the wavelength is much greater than the line length.
Therefore, the excitation field can be approximated as uniform and we
can model the transmission line as a single Taylor’s cell, cf. Figure 1(b).
For simplicity, we terminate the line in its characteristic impedance to
avoid reflections.

We are interested in the near-end and the far-end terminal voltages
Vne and Vfe. Unless otherwise noted, we will present the results
simultaneously and call them either-end. For example, the ± operator
means plus for the near end and minus for the far end (vice versa for
∓). By inspecting Figure 1(b) with ∆z = `, Rne = Rfe = Zc and
β∆z ↓ 0, we find the low-frequency, either-end induced voltage to be

VLF = −1
2
Zc jωcEt h` ∓ 1

2
jωµ0Hn h`, (1)

where Et is the excitation E-field component transversal to the line,
Hn the excitation H-field component normal to the line, h the distance
between the wires, and ` the line’s length.

With increasing frequency, wavelengths decrease, both in free
space and in transmission lines: the line becomes electrically long.

In free space, we assume a linearly polarised plane wave with wave
vector k. The fields along the line are then retarded by a phasor i:

i(z) = e−jkpz (2)

Et(z) = Et(0)i(z) = Et(0)e−jkpz (3)
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Figure 1: Modelling a two-wire transmission line excited by an
electromagnetic wave. (a) Line geometry: subscripts t, n and p (or
x, y and z) denote excitation field components transversal, normal
and parallel to the line segment, respectively. Rne and Rfe are the
near-end and far-end resistive terminations. (b) Taylor’s line segment
model (cell): approximation of passive transmission line segment ∆z,
with a voltage source representing the electromotive force (emf) and
current source representing the electrostatic force (electric induction).
c denotes the per-unit-length (PUL) capacity of the line.

Hn(z) = Hn(0)i(z) = Hn(0)e−jkpz, (4)

where kp denotes the excitation wave vector’s component parallel to
the line. We will call i the normalised excitation field amplitude.

As for a transmission line, the voltage along the line is the
superposition of a forward- and a backward travelling eigenwave. They
can both be described with a phasor w that lags or leads, respectively.

w±(z) = e±jβz (5)

V (z) = V −w+(z) + V +w−(z) = V −e+jβz + V +e−jβz, (6)

where β is the line’s wave number, V − the backward going wave
voltage, and V + the forward going wave voltage. All complex
amplitudes have their phase reference at z = 0: i.e., V (0) = V − + V +.
We will call w± the line’s either-way normalised amplitude.
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To find the terminal voltage, we integrate cells with length dz over
the line’s length. The passive transmission lines at the left and right
of this sliding cell have length z and `− z respectively (cf. Figure 2).
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Figure 2: Modelling an electrically long, lossless two-wire transmission
line with characteristic loads as the continuous integral of infinitesimal
cells of length dz.

Both sources of the infinitesimal cell directly see a characteristic
load, so (1) gives the backward- and forward traveling voltages. The
near-end voltage contribution of the infinitesimal cell is then delayed
by the left half z of the transmission line:

dVne =
(
−1

2
Zc jωcEt(z) hdz − 1

2
jωµ0Hn(z) hdz

)
e−jβz

=
1
2
jω (−ZccEt(0)− µ0Hn(0)) e−jkpz e−jβz hdz (7)

Vne =
1
2
jω (−ZccEt(0)− µ0Hn(0))h

∫ `

0
e−jkpze−jβz dz. (8)

Similarly, the far-end voltage contribution is delayed by the right half
(`− z) of the transmission line, and we obtain:

Vfe = 1
2 jω (−ZccEt(0) + µ0Hn(0))h

∫ `
0 e−jkpze+jβz dz e−jβ`. (9)

3.2. Circuit Model Interpretation

Let us now try to interpret the result as an equivalent circuit in order
to develop intuition. By slightly rewriting (8) and (9), we can recognise
the low-frequency induced voltage of (1), multiplied by a factor K:

K =
1
`

∫ `

0
e−jkpze∓jβz dz =

1
j(kp ∓ β)`

(
ej(kp∓β)` − 1

)
, (10)

with an additional factor e−jβ` for the far end. This result is visualised
in Figure 3: a single Taylor-like cell, also valid for high frequencies.

To better understand the meaning of K, consider the non-physical
case where the excitation wave travels with the same phase speed along
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Figure 3: The modified Taylor cell (compare with Figure 1(b)). The
correction factor |K| 6 1 takes into account the long line effect.

the line as a wave on the line: β = kp. By inspecting (10), one sees
that Kfar end is unity, for any frequency or line length. So it is not only
the non-uniformity of the excitation field that invalidates a single-cell
Taylor model.

It is rather the discrepancy between β and kp that makes K deviate
from unity. Using the normalised amplitude of the excitation wave i
and of the line’s eigenwave w (cf. (2) and (5)), we can now interpret
K as a length-average conjugated product:

K =
1
`

∫ `

0
i(z) · w∗(z) dz, (11)

which is the length-average cross-correlation or similarity of the
excitation wave and a wave that would propagate on the line.

3.3. A Strict Upper Bound

Looking at (9), we recognise that the line delay only introduces a
phase shift, so it can be ignored. Both near-end and far-end voltage
magnitudes are determined by the low-frequency terminal voltage VLF

and the correction factor K. Let us first find the worst |K|, and then
the worst |VLF|.

Let us interpret K geometrically on the complex plane. The
integrand iw∗(z) yields the similarity of the excitation plane wave and
the line’s eigenwave at each position z on the transmission line. At
the beginning of the line, both have the same phase. As i and w
are normalised amplitudes, the integrand amounts to one. Due to
the different propagation speeds of the excitation wave and the line’s
eigenwave, the phase difference grows along the line. The arc described
by the integrand in the case of a forward propagating wave is shown
in Figure 4.

The integral divided by its length yields the arc’s centre of gravity
K. By inspecting Figure 4, we see that |K| 6 1. Moreover, the smaller
the phase difference at the end of the line, the shorter the arc, the
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Figure 4: Geometric interpretations of factors contributing to K.
(a) On the complex plane: K is the centre of gravity of the arc iw∗(z).
The trajectory of K is dashed for 0 6 iw∗(`) 6 4π. (b) In Cartesian
space: wave vector alignment with the transmission line.

greater |K|. The phase difference at the end of the line is (kp − β)`.
Hence, for a given `, the worst case occurs when kp and β are closest.

Let us picture the line’s wavenumber β as a vector pointing in the
line direction. The excitation wave vector parallel to the line kp is then
the projection of k on the first vector. Moreover, as the excitation wave
always propagates faster than a wave on the line, k is always shorter
than β, as is the case in Figure 4(b).

By inspection, we see that kp − β is minimal when the excitation
wave vector k is parallel with the line. Therefore, |Kfar end| is maximum
when exciting from the near-end side, parallel to the line (end-fire
excitation). Physically speaking, the worst case occurs when the
excitation propagates towards the studied end.

As for the worst-case VLF, E and H need to be expressed as
function of the angle of incidence and polarisation. In the case
of a microstrip trace, the incident wave is refracted by the air-
dielectric interface and then reflected by the ground plane, which is
not simple. Leone showed that the worst case occurs under end-
fire excitation, when the excitation propagated away from the studied
end [5]. Therefore, we cannot easily join both worst cases to obtain a
broadband worst case.

4. GRAZING INCIDENCE ON A PCB TRACE

In order to draw a broadband worst-case conclusion, we will specialise
the model for a simple and practical case. As will be shown, the fields
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Figure 5: Approximation of the substrate field strength for grazing
incidence. (a) Perspective on the grazing incident wave: the incident
electric field is perpendicular to the substrate and the wave vector
makes an angle φ with the transmission line axis. (b) Cross section of
the transmission line. The incident and reflected plane wave sources
produce the shown substrate field.

remain simple in the case of grazing incidence (see Figure 5(a)). This
case is also practical, because PCBs in a GTEM cell wall are subjected
to a grazing incident field.

4.1. Substrate Fields

A PCB trace differs from a two-wire transmission line: it contains a
ground plane and a dielectric layer.

As for the ground plane: it acts as a mirror to the far-field incident
source [4]. Therefore, there is no field below the ground plane and the
field above the ground plane is doubled in the case of grazing incidence.

If the dielectric substrate is relatively thin, the incident grazing
wave will not be slowed down by the dielectric (cf. θ → π

2 in [5]).
Therefore, in the steady-state, the wave in the dielectric must follow
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with a constant phase lag: k = ki = ω/c0 and kp = cos(φ) ω/c0. For
dielectric substrates, there is no difference in permeability, so H = 2H i

and Hn = cos(φ) 2H i. However, because of the different permittivity,
the electric field will be weaker: Et = 2Ei/εr (cf. (30) of [5]). The
resulting substrate field is visualised in Figure 5(b).

4.2. Low-frequency Worst Case

We can now express the low-frequency terminal voltage under grazing
incidence in terms of Ei and φ:

Zc =
1

cvline
=
√

εr,eff

c c0
; Ei = H i

√
µ0

ε0
; c0 =

1√
µ0ε0

VLF =
1
2
jω

(
−Zcc

2Ei

εr
∓ µ02H i cos(φ)

)
h`

= jkiEi

(
−
√

εr,eff

εr
∓ cos(φ)

)
h`.

(12)

By inspecting (12), we see that the worst-case near-end (far-end)
induced voltage occurs for φ = 0 (φ = π), consistent with [5].

4.3. High-frequency Worst Case

Let us now find the worst-case φ for a given Ei, h, `, εr and εr,eff.

K=
1

j(−ki cos(φ)∓ β)`

(
ej(−ki cos(φ)∓β)` − 1

)
, (13)

|V |=|VLF||K|=Eih

∣∣∣∣∣
−
√

εr,eff

εr
∓ cos(φ)

− cos(φ)∓√εr,eff

∣∣∣∣∣
∣∣∣ejω(− cos(φ)∓√εr,eff) `

c0 −1
∣∣∣. (14)

The rightmost term determines the worst case frequency, then
amounting to 2. The rest is frequency and length (!) independent.

Knowing that √εr,eff > 1 and for given Ei, h, εr and εr,eff,

max
ω`
|V | = 2Eih

∣∣∣∣−
√

εr,eff

εr
∓cos(φ)

∣∣∣∣
√

εr,eff±cos(φ) . (15)

In order to find the maximum with respect to φ, we would like to
differentiate and equate to zero to find the critical points. However, for
φ where the enumerator sign flips over, the fraction is not differentiable.
Fortunately, these φ constitute the minima, whereas we search the
maxima. We ignore the absolute operator (critical points stay critical):

∂

∂φ
max

ω`
|V | = 2Eih

∓√εr,eff

(
1− 1

εr

)
sin(φ)

(√
εr,eff ± cos(φ)

)2 . (16)
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The denominator is never zero, so the derivative only equals zero for
φ = 0, π: we only need to consider end-fire illumination.

Let us compare φ = 0 (left hand side) and φ = π (right hand side)
for the near-end case of (15) (recall that √εr,eff < εr,eff < εr):

1 +
√

εr,eff

εr√
εr,eff + 1

≶
1−

√
εr,eff

εr√
εr,eff − 1

⇒ εr,eff

εr
− 1 ≶ 1− εr,eff

εr
, (17)

so φ = π constitutes the worst case for the near end.
By plugging these worst-case φ into (15), we conclude:

max
ω`,φ

|V | = 2Eih
1−

√
εr,eff

εr√
εr,eff − 1

, (18)

which is the high-frequency, worst-case, either-end induced voltage in
a characteristically terminated microstrip illuminated under grazing
incidence.

4.4. Broadband Worst Case

We propose to join (12) and (18) to obtain a broadband worst case:

max |V | = Eih ·min

{
ω

c0
`

(
1 +

√
εr,eff

εr

)
, 2

1−
√

εr,eff

εr√
εr,eff − 1

}
, (19)

magnetic electric magnetic electric

that is, the envelope formed by the low-frequency near-end voltage for
φ = 0 and the high-frequency voltage for φ = π.

This can be physically interpreted as follows: for low frequencies,
the worst case occurs when the magnetic and the electric contributions
add up constructively. The wavelength is great with respect to the line
length, so the line does not feel the difference between a forward or a
backward travelling wave: Kfar end = Knear end = 1.

For high frequencies, the worst case occurs when the illuminating
wave is aligned with the wave propagating towards the terminal.
The magnetic and electric contributions cancel somewhat, but the
alignment (K → 1) has a bigger effect.

The antenna pattern of Figure 6 illustrates the response of the far
end. Notice the deep null, which occurs at

cos(φ) = ∓
√

εr,eff

εr
, (20)

both for low- and for high frequencies (cf. (12) and (15)).
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Figure 6: Qualitative antenna pattern of the far end. The radial axis
has no particular unit: the low-frequency gain of (12) is linear in ω,
the high-frequency gain of (15) is normalised to coincide with the low-
frequency gain at φ = π.

5. EXPERIMENT

We now design and perform an experiment that challenges the model:
do the simplifying assumptions hold in a practical case?

A practical plane wave source is the GTEM-cell: a tapered
rectangular waveguide with a metallic strip as centre conductor, the
septum. Our Teseq GTEM 250A-SAE sports a square top wall opening
to illuminate a PCB. The approximate field strength 2Ei over the PCB
is found by dividing the septum voltage by the average septum distance
(dseptum = 42.2 mm) [10].

We create a suitable PCB in an industrial, four-layer FR4 process.
On the top layer, we draw a 5 cm, 50 Ω microstrip with respect to the
ground layers below. At the bottom, precision SMA connectors allow
for connection to the far end and the near end.

We choose to measure the far-end voltage. To quantify the induced
voltage for a known septum voltage, we use a two-port Vector Network
Analyser (VNA), an Agilent N5247A. We connect its first port to the
GTEM-cell’s input, and the second port to the trace’s far end. We
terminate the near end with a broadband 50 Ω load. As both the
input of the GTEM cell and the VNA have 50 Ω impedance, the S21

also equals the voltage transfer from the septum to the far end. The
S21 can therefore be predicted with (14), with 2Ei = 1/dseptum, cf.
Figure 7.

The log-frequency average difference between prediction and
measurement is −1.9 dB over the 20 MHz to 20 GHz, range. The
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Figure 7: Calculated and measured S21 of the microstrip trace,
illuminated in a GTEM cell. Port 1 is the GTEM cell input, port 2 is
the trace’s far end, while the near end is terminated in 50Ω.

average absolute deviation from this bias is 1.4 dB. We repeated
the measurement and prediction in all PCB orientations (φ =
0, 1

2π, π, 3
2π), measuring both near-end and far-end coupling: 8 cases

in all. We obtained similar agreement: an average error of −1.8 dB and
an average absolute deviation of 1.8 dB. Four far-end measurements are
compared with the worst-case envelope of (19) in Figure 8.
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Figure 8: Measured either-end coupling with the PCB in two different
orientations and the analytical upper bound ((19)). The high-
frequency asymptote is not flat because εr(f) was measured and taken
into account.
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In an attempt to explain the discrepancies, we assess the electric
field homogeneity by measuring the transfer to an uncalibrated E-
field sensor. We measured the transfer at four different positions
and compared the transfers. Up to 5 GHz, the log-frequency averaged
difference between the maximum and minimum transfer is 1.4 dB and
between 5–20 GHz it is 5.8 dB. These numbers give an idea of the field
homogeneity in the GTEM cel.

6. CONCLUSIONS

Using Taylor’s field-to-line coupling model, we calculated the
high-frequency coupling to a characteristically-terminated two-wire
transmission line in vacuum. We formulated the result as the product
of the low-frequency coupling and a correction factor K. We gave
geometrical interpretations of the correction factor that allow to reason
about the worst case.

The coupling of a plane wave incident on a PCB trace above
a ground plane is harder to calculate because of the reflected wave.
Therefore, we limited ourselves to the case of grazing incidence: a wave
polarisation perpendicular to the PCB surface. For this problem class,
we found the worst-case induced terminal voltage. For low frequencies,
the worst case occurs for end-fire excitation at the illuminated end.
For high frequencies, the worst case still occurs for end-fire excitation,
but at the opposite end. By joining both asymptotes, we provided a
transparent broadband worst-case envelope.

The low-frequency solution (12) equals (49) of [5] for the case of
grazing incidence (i.e., by filling in θ = 1

2π and γ = 0). Measurements
on a microstrip trace in a GTEM cell did not falsify the broadband
envelope, either.

Collaterally, we noticed a broadband deep null in the antenna
pattern of a microstrip trace. This reveals a weakness of PCB testing
with a GTEM cell: there may be blind angles.
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Finally, we are grateful for nature’s consistency; predicting its
behaviour is neither easy nor impossible.
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6. Mandić, T., R. Gillon, B. Nauwelaers, and A. Barić, “Character-
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