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Abstract—Guided-mode resonance filters (GMRFs) are highly
compact structures that can produce a strong frequency response from
a single thin layer of dielectric. When a GMRF is formed onto a
curved surface, the local angle of incidence varies over the aperture
of the device and the overall performance significantly degrades. In
the present work, we spatially varied the grating period of a curved
GMRF to perfectly compensate for the local angle of incidence. The
performance of our curved device actually surpassed that of our
flat device because it also compensated for the spherical wave front
from the source. This paper summarizes our design process and
experimental results obtained around 25 GHz.

1. INTRODUCTION

A guided-mode resonance filter (GMRF) is a simple device composed
of just a grating and a slab waveguide that operate in close
proximity [1, 2]. Under a precise phase matching condition, the grating
partially couples externally propagating waves into guided modes
within the slab. The guided modes are “leaky” modes due to the
grating so they slowly escape from the waveguide. An overall filtering
response is produced from the interference between the applied wave
and the leaked wave. Guided-mode resonance is a highly sensitive
phenomenon that enables filters to be constructed with extremely
narrow pass bands or stop bands. In fact, the bandwidth can be made
arbitrarily narrow by reducing the contrast of the grating.
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GMRFs are most commonly used in photonics [3–5], but some
devices at radio frequencies can also be found [6–11]. They provide
a highly compact means of filtering and do not require using metals.
The filter response can be symmetric with virtually no ripple outside
of the pass band or stop band. Efficiency can approach 100% and
they can be tuned over a very large range of frequencies. Multi-band
filters have also been reported [12]. GMRFs tend to be very sensitive
to angle of incidence, polarization, material properties, and structural
deviations due to the high sensitivity of the phase matching condition.
Filters can be made less sensitive to polarization using crossed gratings
or even special cases of one-dimensional gratings [13, 14]. The material
properties and structural deviations can be more precisely controlled by
better manufacturing methods as well as compensated for by tuning
the device during fabrication [5]. The angle of incidence remains a
problem, especially when the GMRF is to be formed onto a curved
surface. In this case, the angle of incidence changes over the aperture
of the device due to the slope of the surface changing relative to
the direction of the applied wave. The slope of the surface detunes
the phase matching condition so portions of the aperture no longer
contribute to the resonance. This not only weakens the filter response,
but introduces aberrations in the wave front that are difficult to correct.

This paper describes a simple technique to realize all-dielectric
filters formed onto arbitrarily curved surfaces where the period of the
grating is adjusted to compensate for the curvature. Cannistra et al.
fabricated a biologically inspired GMRF onto a curved surface using
conformal soft lithography, but the grating was not modified in any
way to compensate [15, 16]. Lu et al. formed a GMRF onto a curved
surface for the purpose of focusing light [17], but did not adjust the
period. This paper presents the first known effort to adjust the grating
period of a GMRF in order to obtain the same performance as that of
a flat GMRF.

2. DESIGN OF BASELINE GMRF

To best demonstrate our concept, we designed a baseline GMRF
that was simple to build and provided a narrow resonance that
was sufficiently sensitive to the angle of incidence. The device
was manufactured in high density polyethylene (HDPE) which was
specified by the vendor to have a dielectric constant of 2.35 ± 10%.
First, transmission through two homogeneous layers in air was designed
using the transfer matrix method [18, 19] to provide a low background
reflection. This optimization dictated that the first layer had εr1 = 1.1
and d1 = 1.19mm, while the second layer had εr2 = 2.35 and
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d2 = 3.35mm. Second, to realize the low dielectric constant in the first
layer using only the HDPE, the duty cycle of a subwavelength grating
was set to f = 0.36 so that the effective dielectric constant was 1.1
for the electric field aligned parallel to the grating grooves. Third,
the period Λ of the grating was determined using rigorous coupled-
wave analysis (RCWA) [20, 21] to place the first-order guided-mode
resonance at 25 GHz. This required the period to be Λ = 9.19mm.
The baseline design and its simulated transmission for several angles
of incidence are shown in Figure 1.

(a) (b)

Figure 1. Baseline GMRF in HDPE (εr = 2.35) which has Λ =
9.19mm, f = 0.36, d1 = 1.19mm, and d2 = 3.35 mm. (a) Simulated
transmission at several angles of incidence. (b) Geometry of baseline
design.

3. COMPENSATION FOR SURFACE CURVATURE

When a wave is incident on a grating, it diffracts into a number of
discrete modes called spatial harmonics, or diffraction orders. The
concept, and the geometry of this diffraction, is illustrated in Figure 2.
The angles of the diffracted modes θm are described by the famous
grating equation.

n sin θm = ninc sin θinc − mλ0

Λ
(1)

In this equation, λ0 is the free space wavelength, ninc is the
refractive index where the incident wave is applied, n is the refractive
index of the material where the angles are being calculated, m is the
order of diffraction, and Λ is the period of the grating. This equation
can be written in a slightly different form using the grating number K
defined for a 1D grating as K = 2π/Λ.

βm = k0ninc sin θinc −mK (2)
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Figure 2. Grating diffraction showing reflected and transmitted
spatial harmonics.

The parameter βm is the propagation constant of the mode guided
within the slab. A baseline GMRF was designed to operate at normal
incidence and resonate the first order diffracted mode (m = ±1). The
grating number for the baseline design was K0 and it follows that
K0 = βm. When the applied wave is given some angle of incidence,
the phase matching condition changes. In order to support resonance
across the entire aperture using the same diffraction order, the grating
number K must be adjusted so as to maintain proper phase matching.
Assuming we wish to keep the −1 order mode phase matched, we set
m = −1 and solve Eq. (2) for K as a function of θinc.

K (θinc) = K0 − k0ninc sin θinc (3)

We now have an equation to adjust the grating period across the
device aperture so that the entire device contributes to resonance. To
produce a design, the shape and slope of the surface must be known.
We chose to wrap our GRMF around 90◦ of a circle to provide the
curvature. The radius of a spherical source beam was also considered
in this analysis. The geometry and all of the variables from which we
calculated the local angle of incidence across the device are defined and
illustrated in Figure 3.

If the device was illuminated by a perfectly flat plane wave, the
angle of incidence θinc would simply equal the angle φ. This can be
put in terms of the circumferential distance x instead of φ as

θinc(x) = φ =
x

R
Plane wave illumination (4)
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Figure 3. Geometry from which to design a curved GMRF.

In order to compensate for the spherical wave front of a source, the
additional angle ∆θ must be added to this quantity. The height of the
point on the GMRF identified by φ above the axis is R sinφ, where R
is the radius of the curved GMRF. The distance along the axis from
the source to this point is d + R(1− cosφ). Therefore, the angle ∆θ is
calculated as

tan (∆θ) =
R sinφ

d + R (1− cosφ)
=

sinφ

1 + d/R− cosφ
(5)

Combining these angles, we derive our final equation for the angle
of incidence θinc as a function of the angle φ or the circumferential
distance x.

θinc (φ) = φ + tan−1

(
sinφ

1 + d/R− cosφ

)

θinc (x) =
x

R
+ tan−1

[
sin (x/R)

1 + d/R− cos (x/R)

]
(6)

We derived this equation in terms of the circumferential distance
x because this parameter translates to the horizontal position when
the device is flat. The devices were manufactured as flat panels so
this was most convenient. By substituting this expression into Eq. (3),
we derive an expression for the grating number K as a function of
x. From this, the dielectric constant in the grating region εr(x) is
calculated through an intermediate parameter Φ(x) called the grating
phase. Given the desired duty cycle f , the dielectric function is given
by Eq. (7). These equations were evaluated numerically in MATLAB
and the resulting grating geometry was imported into SolidWorks from
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which a CAD file was generated.

εr (x) =
{

1 cos [Φ (x)] < cos (πf)
ε̃r cos [Φ (x)] ≥ cos (πf) (7)

Φ (x) =

x∫

0

K
(
x′

)
dx′ (8)

This simple design methodology spatially varies the grating period
to compensate for a local angle of incidence that changes with position.
It was discovered through rigorous simulation, however, that the
above methodology still produces a small error in the position of
the resonance between 0.1% and 2%. It was determined that this
error arose because the analytical approach incorrectly assumes the
effective refractive index of the grating region is constant with angle
of incidence. The error introduced by this assumption is particularly
severe for shallow gratings and for large angles of incidence. RCWA was
used to determine the exact grating period adjustment as a function
of angle of incidence. Figure 4 compares the rigorous data to the data
tabulated using the analytical approach outlined above. These curves
are nearly identical as the angle approaches 0◦, but differ most at the
larger angles of incidence.

 

Figure 4. Grating period adjustment as a function of angle of
incidence.

Given the baseline design and grating period adjustment data
described previously, a design was produced that was 182.88 cm long,
121.92 cm wide, and 4.57mm thick. The GMRF drawn to scale is
shown in Figure 5 along with the simulated field intensity profile on
resonance. The simulation of the curved device was performed using
finite-difference frequency-domain [22]. While difficult to see in this
figure, the grating period near the edges is around 5.49mm and is
9.19mm at the center.
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Figure 5. Scale image of the curved GMRF design and the device
simulated on resonance.

4. EXPERIMENTAL RESULTS

The design described above was imported into SolidWorks and
submitted to a machine shop to be manufactured by computer
numerical control (CNC) machining. Two different GMRFs were
manufactured. The first was the flat baseline GMRF, while the second
was a GMRF to be placed onto a curved surface where the grating
period was adjusted to compensate. The parts were mounted onto
wooden frames to provide mechanical rigidity and to hold the GMRFs
in place with the prescribed curvature. Photographs of the mounted
devices are provided in Figure 6. Wooden boards and nylon screws
were used instead of metal to minimize electromagnetic scattering and
interference during testing.

(a) (b) (c)

Figure 6. GMRFs installed in flat and curved frames. (a) Flat base-
line GMRF. (b) Baseline GMRF in curved frame. (c) Compensated
GMRF in curved frame.
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The frequency responses of the GMRFs were measured in an
anechoic chamber at Virginia Tech using a vector network analyzer
(VNA). Three separate tests were performed, corresponding to the
configurations shown in Figure 6. Each test entailed measuring the
background transmission of the frame without the GMRF installed,
measuring the transmission with the GMRF installed, and then
dividing the GMRF response by the background response to normalize
the data. Anomalous spikes appeared in the final transmittance data at
points where the transmission of the frame without the GMRF was very
small and we divided by these numbers. The spectral transmittance
curves from all of these tests are provided in Figure 7. First, the
baseline GMRF was installed in the flat frame and its transmission
was measured. A peak suppression of around 15 dB was observed
just below 25 GHz. Second, this same uncompensated GMRF was
installed in the curved frame to demonstrate dramatically degraded
performance. No resonance was observed when the transmission was
measured. Third, the compensated GMRF was installed in the curved
frame and the transmission measured one final time. In this last
case, a strong resonance was observed again just below 25 GHz. In
fact, the suppression of the curved GMRF approached 27 dB and
exceeded the baseline design by nearly 12 dB. The compensated design
outperformed the flat design because both the surface curvature and
the divergence of the source were accounted for in the design. The
baseline GMRF had a uniform grating so it was designed to filter
a perfectly flat and uniform plane wave source. The bandwidth of
the curved device remained essentially unchanged. During this work,
however, we observed through simulation that the bandwidth of the

(a) (b) (c)

Figure 7. Summary and comparison of test results. (a) Uncompen-
sated flat design. (b) Uncompensated curved GMRF. (c) Compensated
curved GMRF.
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resonances became broader and somewhat weaker when compensating
for large angles of incidence, greater than 70◦ or so.

5. CONCLUSION

Guided-mode resonance filters are attractive devices for realizing
compact and narrowband filters without using metals. This is
particularly important at optical frequencies, but can also be important
at microwave frequencies when operating at high power or when
losses must be absolutely minimized. These devices, however, are
highly sensitive to angle of incidence so using them on curved surfaces
seriously degrades their performance. In this work, we demonstrated
a GMRF on a curved surface by adjusting the local grating period to
compensate. By doing this, the entire device contributed to resonance.
In fact, the performance of our curved GMRF was better than our
baseline flat design because it compensated for divergence of the source
beam in addition to surface curvature.
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