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Abstract—In this paper, we propose a new method for synthetic
aperture radar (SAR) image despeckling via L0-minimization strategy,
which aims to smooth homogeneous areas while preserve significant
structures in SAR images. We argue that the gradients of the
despeckled images are sparse and can be pursued by L0-norm
minimization. We then formularize the despeckling of SAR images as a
global L0 optimization problem with difference of average operations.
Namely, the number of pixels with difference of average that are
unequal to one is controlled to approximate prominent structures in a
sparsity-control manner. Finally, a numerical algorithm is employed
to solve the L0 minimization problem. In contrast with existing
SAR image despeckling approaches, this strategy is applied without
necessity to consider the local features or structures. The performance
of our method is tested on high-resolution X-band SAR images. The
experimental results show that the proposed method achieves state-of-
the-art results in terms of the equivalent-number-of-looks measure and
the edge-preserving index.

1. INTRODUCTION

Due to the coherent interference of waves reflected from many
elementary scatters, speckle appears in synthetic aperture radar (SAR)
images, which degrades the quality of imaging and gives a grainy
appearance to the images. Speckle often has a negative effect to the
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interpretation of SAR images [1, 2]. Thus, despeckling, also known
as speckle suppression or filtering, is a major issue in SAR image
processing [3–5]. The main goal of despeckling is to remove the speckle
effects while preserve structural details, e.g., edges, corners, textures,
of the scene. In the past decades, numerous despeckling approaches
have been proposed in the literature, most of which are based on
the statistics of pixels and the relationship with their surroundings,
see [6–8]. However, the hypothetical relationship between pixels is
somewhat inaccurate. In addition, pixels even in one image could
follow different statistical distributions, which brings difficulties in the
estimation parameters [9]. In contrast, we introduce an alternative way
for despeckling in this paper, which suppresses speckle by avoiding to
model the speckle directly.

The main idea is inspired by the observation that images without
speckle (e.g., optical images) are smooth, which implies that the
gradients of the despeckled images are sparse. This sparsity can be
pursued by L0-norm minimization. Compared to L1- and L2-norm
optimization, L0-norm optimization has a more sparse solution but
has not been solved in closed form so far. Recently, an approximated
numerical solution to the L0-norm optimization problem was proposed
in [10], by relying on a splitting scheme and has been used by Xu et
al. [11] for the simplification of nature images. This paper addresses
the problem of SAR image despeckling in the context of L0-norm
minimization. [12] shows that the gradient of SAR images can be well
described by the difference of average. Thus, we propose to despeckle
an SAR image by minimizing the L0-norm of the difference of average
of the image. More precisely, combining with a difference of average
operator, we introduce a despeckling solution for SAR images based on
the mechanism of discretely counting spatial changes. As we shall see,
the filtered results will be as smooth as possible in homogeneous areas
while the prominent structures, such as edges and point targets, are
well preserved. We compare our results with several classic methods,
including the improved sigma Lee filter [13], the probabilistic patch-
based (PPB) algorithm [7] and the SAR-BM3D algorithm [8].

The rest of the paper is organized as follows. First, some related
works are briefly reviewed in Section 2. Then, the difference of average
minimization model is described in Section 3 and the solution of the
model is introduced in Section 4. Finally, experimental results on
SAR images are exhibited in Section 5 and conclusions are drawn in
Section 6.
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2. RELATED WORKS

In the last several decades, many filtering algorithms have been
proposed to deal with the speckle in the analysis of SAR images. These
filtering algorithms can be roughly divided into two main categories.
The first one resorts to multi-look processing, which is usually adopted
during the formation of images. More precisely, in order to reduce
speckle, it averages L different looks of the images of the same scene.
This process narrows down the probability density function of speckle
and reduces the variance by a factor of L. However, it also reduces
the ground resolution of the image with proportion of the number of
looks. To overcome this problem, an alternative type of approaches has
been proposed based on posterior speckle filtering techniques both in
frequency domain and in spatial domain [14–16]. Some reviews of the
connections and evolutions of the filtering algorithms has been made
by [17].

Frequency-domain methods, including both the hard threshold
and soft threshold wavelet filtering algorithms, are commonly used for
speckle suppression. The main advantage of wavelet transformation
is the local description of signal frequency spectrum. Attempts
at SAR speckle reduction using wavelet decomposition can resort
to logarithm transform. For instance, Foucher et al. proposed
a multi-scale filtering method for SAR images by combining the
classical adaptive approach with wavelet decomposition [18]. Achim et
al. [19] employed the wavelet transformation on the logarithmically
transformed SAR images and derived a Bayesian estimator by using
an alpha-stable prior distribution. Gleich and Datcu [20] used the
Gaussian Markov random field to model the wavelet coefficients, which
can better fit the heave tail property. Most of these methods are
based on multi-level pyramidal representation with down-sampling and
leads to a serious drawback of which the invariance by translation
is not preserved. In order to solve it, the down-sampling procedure
should be removed and keep stationary in wavelet transformation [21].
Argenti and Alparone [22] adopted the undecimated discrete wavelet
transform on SAR images and locally adaptive by estimating the
mean and variance in each subband. Other works use wavelet
transformations with invariant properties for speckle reduction of SAR
images include [23, 24]. These methods smoothed the homogeneous
areas while preserving strong scatterers and edges, however, they do
not work well in the heterogeneous areas: the edges and textures are
still blurred in some degree. Additionally, they often suffered from
computational cost.

Independently, adaptive spatial filtering is widely used for SAR
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image denoising. The early algorithms suppress speckles through
an examination of the local statistics surrounding a given pixel
using optimization criteria as the local minimum mean square error
(LMMSE), for instance, the Lee filter [25], the Frost filter [26], the
Kuan filter [27] and their improved version [6, 13]. The gamma-map
filter [28] and the refined gamma-map filter [29] later consider both
the speckle model and the reflectivity probability density functions.
However, the choice of local window size and orientation has a
great impact on the performance of these spatial filters. As stated
in [30], “the spatial organization of a surface’s reflectance functions
is often generated by a number of different processes, each operating
at a different scale”. Most of these filters use a local analysis
window with fixed size and shape, though adjustable windows of
these algorithms for local spatial variations are required. Compared
to local filters, non-local algorithms [31], which perform a globally
weighted average process to similar pixels, have been widely used
for image denoising and reported the state-of-the-art performances.
For instance, the probabilistic patch-based (PPB) filter expresses the
SAR denoising process as a weighted maximum likelihood estimation
problem where the weights are derived in a data-driven way. The
SAR-BM3D algorithm [8] despeckles SAR images by combining the
concepts of nonlocal filtering and wavelet-domain shrinkage, which
has a better capacity to preserve relevant details while smoothing
homogeneous areas. However, the smoothing of homogeneous areas
and the preserving of edges are still not well balanced in these methods.

The despeckling algorithm we propose in this paper employs a
sparse gradient scheme (L0-norm for information sparsity pursuit) in
a global optimization framework. This method works very well in
preserving major edges while smoothing the manageable degree of low-
amplitude noise. By taking into account the peculiar features of SAR
images, the gradient scheme is implemented by the difference of average
operator, when combined with L0-minimization. As we shall see,
the proposed method exhibits performances comparable or superior
to competing techniques on real SAR images. With this method, the
follow-up work, such as object extraction [32–35], classification and
recognition [36–38], etc., will be easier.

3. SAR IMAGE DESPECKLING WITH
L0-MINIMIZATION

This section introduces the L0-minimization model for despeckling
SAR images. First, we briefly recall the L0-minimization filtering.
Then, we present the SAR image despeckling model via L0-
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minimization with difference of average operations. As we know,
the intensity of SAR image changes rapidly. It differs enormously
in different regions, even in adjacent pixels. So the comparison of
single pixels appears nonsense and all pixels in one region should
be considered. Some classic algorithms calculate the maximization
likelihood in a local region to estimate the parameters, such as Lee [6],
Kuan et al. [27], etc. While the proposed algorithm estimates the
parameters by comparing regions in a block, using the difference of
average of different directions.

3.1. Recall on L0-minimization Filtering

Given a discrete image I : Ω 7→ R defined on a grid Ω = {1, 2, . . . , N}2,
let S : Ω 7→ R be the smooth result. Denoting I(p) as the pixel value
at the location p, the energy is comprised of a fidelity term and a
regularization term, which is defined as

E(S) =
∑

p∈Ω

(
I(p)− S(p)

)2 + λC(S), (1)

where p = (x, y) ∈ Ω indicates a pixel in the image, C(S) is the L0-
norm regularization on S and λ is the adjustable weight between the
two terms. C(S) can be calculated as follows,

C(S) = # {p ∈ Ω; |∂xS(p)|+ |∂yS(p)| 6= 0} , (2)

which counts all the pixels p in S whose gradient magnitude is nonzero.
This energy function balances the filtering error and the

smoothness of the result. Intuitively, the smoother of the result S
is, the larger amount of pixels that satisfy the Eq. (2) will be. This
method has been reported excellent performances on smoothing images
while retaining the major edges [11].

3.2. L0-minimization for SAR Image Filtering

As we know, the rapid change of pixels’ intensity near the edge and
the multiplicative granular noise make the gradient strongly variate
in SAR images. However, the difference of average operator has been
proved to be efficient in many applications, such as edge detection [12].
The difference of average operator computes the minimal direction of
difference of pixels’ intensity in one block.

Given an L-look SAR image in intensity format, the intensity I is
related to the backscattering coefficient S by following multiplicative
model [30]

I = S · Z, (3)
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with Z as random noises with mean E(Z) = 1 and variance Var(Z) =
1
L . After a logarithm transform, the multiplicative noise model in
Eq. (3) could be turned into an additive noise model,

ln I = lnS + lnZ. (4)

Thus, the backscattering coefficient S can be estimated by minimizing
following energy function,

E(S) =
∑

p∈Ω

(
ln I(p)− lnS(p)

)2 + λC(S), (5)

with p indicating a pixel in the SAR image. The regularization term
C(S) is calculated by employing a difference of average operation.

Split analysis window: Denote A = {−w, . . . ,−1, 0, 1, . . . , w}2

as an analysis window of given size (2w +1)2, with w as an integer. In
order to compute the gradients in different directions, we split A into
different pairwise blocks by a set of lines {`i}i,

`i(δ) : (δx, δy) ∈ A 7→ δy = tan θi · δx, (6)

where θi is the slant angle of the `i, and we take θi = π
8w · i with

i = {1, . . . , 4w} in discrete images.
For each direction θi, the pair of disjoint blocks are

A+
i =

{
δ ∈ A; `i(δ) > 0

}
,

A−i =
{
δ ∈ A; `i(δ) < 0

}
,

as illustrated in Figure 1.

Figure 1. Split analysis window. `i is denoted as the split line of i-th
direction, A+

i and A−i are denoted as the two regions on both sides of
the split line respectively.

Difference of Average (DoA) operation: For a pixel p ∈ Ω,
the difference between a pair of disjoint image blocks S(p + A+

i ) and
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S(p+A−i ) of S with direction θi is measured by the difference of average
(DoA) of the image blocks as

Di(p) =
∣∣∣〈ln S(p + δ)〉δ∈A+

i
− 〈lnS(p + δ)〉δ∈A−i

∣∣∣ , (7)

where 〈·〉A is the arithmetic average operator on the set A. It has
been reported that the DoA has the ability to reduce the impaction
of speckles [30], which is the main reason to be used for SAR image
despeckling.

The gradient D(p) at pixel p is thus taken as the maximal
difference of average in all the directions

D(p) = max
i∈{1,...,4w}

Di(p). (8)

Observe that D(p) is much larger than 0 in heterogeneous area and
is close to 0 in homogenous areas. The main purpose of this work is
to estimate S from I by imposing that D(p) is small in homogenous
areas. The half size of the window, w, is a filter parameter and can be
empirically set.

So far, the regularization term C(S) in the L0-minimization for
SAR image filtering can be written as

C(S) = # {p ∈ Ω; D(p) 6= 0}
= # {p ∈ Ω; D1(p) 6= 0 or . . . or D4w(p) 6= 0} . (9)

with w as the half size of the analysis window.
Remark that the difference of average around one pixel is equal

to zero indicates that the block around the pixel is smooth. Instead
of considering the pixels’ relationship separately, our method takes
the block around the pixels as a whole and computes their directional
difference. This can eliminate the effects of rapid variations of pixels’
intensity.

4. ENERGY MINIMIZATION

This section describes the solution of the proposed L0-optimization
problem in Eq. (5).

4.1. Computing C(S)

Observe that Di(p) in Eq. (7) can be rewritten as

∀p ∈ Ω,

∣∣∣∣∣∣
∑

δ∈A+
i

lnS(p + δ)−
∑

δ∈A−i

ln S(p + δ)

∣∣∣∣∣∣
6= 0, (10)



354 Liu et al.

which can be implemented by convolving lnS with a mask filter φi

| lnS ? φi| 6= 0, (11)

with φi defined by

φi(δ) =





+1 if δ ∈ A+
i

−1 if δ ∈ A−i
0 if δ ∈ A \ A+

i \ A−i
(12)

where A is an analysis window.
Thus, denoting Ψi := lnS ? φi, we have

C(S) = #

{
p ∈ Ω;

4w∑

i=1

|Ψi| 6= 0

}
. (13)

Integrating Eq. (1), Eq. (4) and Eq. (13), we get the final
optimization problem. An explicit solution of this optimization
equation is hardly obtained. However, referring to the algorithm
in [11], an approximated solution resorting to an iterated procedure
is available.

4.2. Two-step Energy Minimization

We use a two-step energy minimization method to solve this problem,
in which the auxiliary variables hi, corresponding to Ψi, are introduced
to split the object function into two sub-problems [11]. With the
auxiliary variables hi, one can rewrite the objective function as:

min
S,hi





∑

p∈Ω

(
ln S(p)− ln I(p))2 + λC(hi) + β

4w∑

i=1

(Ψi − hi)2



 , (14)

where p is the pixel index over the image, C(hi) = #{p;
∑4w

i=1 |hi(p)| 6=
0}, and β is an automatically adapting parameter to control the
similarity between auxiliary variables hi and their corresponding Ψi.
Eq. (14) approaches Eq. (1) when β is large enough. Eq. (14) is
decomposed into two parts and solved by alternatively minimization
hi and F . In each iterative procedure, variables are obtained from the
previous iteration, and β is augmented for next iteration.

Step 1: computing S. The S estimation subproblem corresponds
to minimize

E1 =
∑

p∈Ω

(
(
ln S(p)− ln I(p)

)2 + β
4w∑

i=1

(
Ψi(p)− hi(p)

)2

)
, (15)
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where p is the pixel index over the whole image, by omitting the terms
not involving F in Eq. (14). This function is quadratic and has a global
minimum [11], which is

l̂n S =
l̂n I + β

∑4w
i=1 φ̂i

∗
ĥi

1 + β
∑4w

i=1 φ̂i
∗
φ̂i

, (16)

where â is the Fourier transform of a and a∗ denotes the complex
conjugate of a. Observe that it can be implemented using Fast Fourier
Transform in O(2N2 log N) time complexity, with N2 as the size of the
image.

Step 2: computing hi. The estimation of hi is to minimize

E2 =
∑

p∈Ω

4w∑

i=1

(Ψi(p)− hi(p))2 +
λ

β
C(hi), (17)

with the variable hi, i = 1, 2, . . . , 4w and C(hi) counting the number
of non-zero elements in

∑4w
i=1 |Ψi|. In this sub-problem, each element

hi(p) is independent of others, so we can estimate them individually
with minimizing

E2(p) =

{
4w∑

i=1

(Ψi(p)− hi(p))2 +
λ

β
H

(
4w∑

i=1

|Ψi|
)}

(18)

where H(·) returns 0 if
∑4w

i=1 |Ψi| = 0 and 1 otherwise.
There are two cases in Eq. (18):

(1) when
∑4w

i=1 Ψ2
i (p) ≤ λ

β ,

- if hi(p) = 0, i = 1, . . . , 4w, we get E2(p) =
∑4w

i=1 Ψ2
i (p);

- otherwise, we get E2(p) =
∑4w

i=1(Ψi(p) − hi(p))2 + λ
β ≥ λ

β ≥∑4w
i=1 Ψ2

i (p).
So in this situation, E2(p) reaches its minimization

∑4w
i=1 Ψ2

i (p) at
hi(p) = 0, i = 1, . . . , 4w.

(2) when
∑4w

i=1 Ψ2
i (p) > λ

β ,

- if hi(p) = 0, i = 1, . . . , 4w, we get E2(p) =
∑4w

i=1 Ψ2
i (p);

- otherwise, E2(p) reaches its minimization λ
β at hi(p) =

Ψi(p), i = 1, . . . , 4w.
Thus, summing up these points, we get the solution of Eq. (17)

(h1(p), h2(p), . . . , h4w(p))

=
{

(0, 0, . . . , 0),
∑4w

i=1 Ψi(p)2 ≤ λ
β

(Ψ1(p),Ψ2(p), . . . ,Ψ4w(p)) , otherwise
(19)
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where p indicates the pixels in SAR images.
Our iterative procedure starting with solving hi via Eq. (19), in

which β = β0 and Ψi = ln S ∗ φi. Here β0 is a small value and F is set
to be the original SAR image I. Then hi is used to solve S via Eq. (16).
In next iteration, β is automatically augmented by multiplying κ. The
iteration stops on the condition of β > βmax [11].

Considering that λ changes a lot in different SAR images, we revise
it as:

λ = Λ
(⌊

λ′ ·N2
⌋)

,

where Λ is the vector storing the pixels’ intensity of the original image
ln I in an increasing order, N2 the size of the image, bac the largest
integer that less than a, and 0 ≤ λ′ ≤ 1 the new parameter to be tuned
(in our experiments, λ′ is set to be 0.7).

Algorithm 1 L0 difference-of-average SAR image despeckling
Input: SAR image I, filtering weight λ′, internal parameters: β0,

βmax, κ, half patch size w
Output: filtered image S

1: S(0) ← I, β ← β0, j ← 0, and obtain λ with Eq. (20);
2: while β ≤ βmax do
3: solve the auxiliary variables {h(j)

i }i=1,...,2W−2 with Ψi = lnS(j)∗
φi and Eq. (19);

4: solve S(j+1) with {h(j)
i }i=1,...,2W−2 and Eq. (16);

5: β ← κβ, j ← j + 1.
6: end while

5. EXPERIMENTS

In this section, we present the experimental results on two scenes of
real SAR images, which include plenty of edges and homogenous areas.
The equivalent number of looks (ENL), the edge preserved index (EPI),
the global mean value [µ] and the global standard deviation [σ2] are
used for objective evaluation of the results.

The ENL defined as

ENL = µ2/σ2, (20)

is a widely used parameter which measures the speckle reduction in
homogeneous areas. The larger the ENL is, the better visual effect the
SAR image will have.
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The EPI is defined by

EPI=

∑
i,j

√
(pF (i, j)−pF (i+1, j))2+(pF (i, j)−pF (i, j +1))2

∑
i,j

√
(p0(i, j)−p0(i+1, j))2+(p0(i, j)−p0(i, j+1))2

. (21)

where pF denotes the filtered SAR image, p0 the original SAR image,
and i, j are the index of the coordinates of the pixels. Contrary to
ENL, the EPI is computed in high contrast areas. It evaluates the
performance of edge preserving of the tested algorithm. The larger the
EPI is, the better performance of the algorithm we can tell.

5.1. Experiment 1

In this experiment, the test image was obtained with the DRA airborne
X-band SAR at 3 m resolution, the image size is 538 × 768 pixels.
Figure 2 shows the original SAR image and the corresponding marked
regions for performance evaluation. From left to right, the first one in
Figure 2 is the original x-band SAR image. The second one shows three
homogeneous areas in red boxes, which are used to calculate ENL. The
third one shows three heterogeneous areas in green boxes, which are
used to calculate EPI. The last one shows three specific areas in yellow
boxes, which are used to compare the details. In this experiment, λ is
set to be 0.5, β is set to be 1, βmax is set to be 2000, κ is set to be 1.8,
and the window size of difference computation is set to be 5× 5. Our
method is compared with Improved Sigma Lee (ImpSigLee), PPB and
BM3D, respectively. And the parameters of each algorithm are set to
be the best.

(a) (b) (c) (d)

Figure 2. The original image and experimental setup. (a) The original
SAR image. (b) Boxes used to calculate ENL. (c) Boxes used to
calculate EPI. (d) Boxes used to compare details.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3. The filtered results of the different methods.
(a), (b), (c), (d) Presents the filtered results of Improved Sigma Lee,
PPB, BM3D and ours. (e), (f), (g), (h) Presents the difference of
filtered SAR image and the original speckled SAR image.

The experimental results are shown in Figure 3 and Figure 4. The
upper row of Figure 3 presents the filtered results of Lee, PPB, BM3D
and ours. The bottom row of Figure 3 presents the difference of filtered
SAR image and the original speckled SAR image. Figure 4 exhibits
the details of results, which are chosen from the corresponding SAR
image at the same position with yellow boxes in Figure 2. From the
first column to the final column, there are the original image details,
filtered results of Improved Sigma Lee, PPB, BM3D and ours. We can
see that the Improved Sigma Lee filter over smooth the details in the
image. PPB performs very well in terms of visual quality. It smoothes
the homogenous areas and refines the edges. However, it misses some
important point-like targets (Figure 4, block 1 and block 3), edges
(Figure 4, block 4), and structures (Figure 4, block 5). Our method
could suppress low-amplitude details and enhance high contrast edges
to a certain extent. In our result, homogeneous areas are smoothed as



Progress In Electromagnetics Research, Vol. 141, 2013 359

(a) (b) (c) (d) (e)

Figure 4. Details of the filtered SAR image. (a) The original image,
(b) improved Sigma Lee, (c) PPB, (d) BM3D, and (e) our method.

much as they can, and prominent structures are preserved at the same
time. From the analysis of difference images obtained in Figure 3 (i.e.,
the pointwise difference between the filtered result and the original
image. For an ideal filter, the difference image should contain only
speckle, the residual of geometric structures or details correlated to
the original image indicates that the loss of information of interest),
we can find that our result loses the least information of edges and
structures.

In order to quantify the performance of our method. We calculated
ENL in the red boxes and EPI in the green boxes in corresponding SAR
images. The quantified results are given in Table 1, which includes the
comparisons of global mean µ, global standard deviation σ2, ENL and
EPI of different filtering methods. From Table 1, we can see that the
ENL of Improved Sigma Lee’s method is lower than other methods,
which explains that the result of Lee filtering is not good from vision.
The result of ENL in block 2 of PPB is better than our method, but
our result of ENL ranks first in block 1 and block 3. Moreover, the EPI
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Table 1. The comparison of global mean, STD, ENL, EPI of different
filtering methods.

Original ImpSigLee PPB BM3D Ours

Global Mean - 338.6 335.8 341.9 343.9 340.6

Global STD ↓ 113.9 86.5 76.4 91.5 103.5

Block 1 (ENL) ↑ 38.5 492.1 1294.5 674.2 1988.2

Block 2 (ENL) ↑ 35.4 489.3 1178.1 762.4 826.8

Block 3 (ENL) ↑ 37.1 641.8 3000.5 965.2 4412.1

Block 4 (EPI) ↑ 1 0.242 0.169 0.291 0.974

Block 5 (EPI) ↑ 1 0.218 0.184 0.290 0.801

Block 6 (EPI) ↑ 1 0.297 0.188 0.292 0.912
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(a) (b) (c)

(d) (e)

Figure 5. The intensity of one profile in the original and filtered
results is presented by blue lines, and the difference of the profile
between original and filtered results is presented by red lines. (a) The
original image, (b) improved Sigma Lee, (c) PPB, (d) BM3D, and
(e) our method.

in three blocks of our method are far better than others because our
method enhances the edges by increasing the steepness of transition.
Figure 5 is the comparison of intensity of one profile chosen from
filtered results of different methods. We can find that the peak of our
result is the closest to the original SAR image while the homogenous
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area is very smooth except some vibration at intensity transition. The
Improved Sigma Lee filter and PPB filter both lose some information
about peaks, which is very important in SAR images.

5.2. Experiment 2

In this experiment, we process another scene of X-BAND SAR image,
collected by an airborne SAR of China Electronics Technology Group
Corporation No. 38 Research Institute, whose spatial resolution is 3 m.
The image size is 1467 × 767 pixels. Figure 6 shows this SAR image
and the experimental setup. Similarly, the first one in Figure 6 is the
original SAR image. The second one shows three homogeneous areas
in red boxes, which are used to calculate ENL. The third one shows two
heterogeneous areas in green boxes, which are used to calculate EPI.
The last one shows three specific areas in yellow boxes, which are used
to compare the details. In this experiment, λ is set to be 0.85, β is set
to be 1, βmax is set to be 2000, κ is set to be 1.6, and the window size
of difference is set to be 7×7. Our method is compared with Improved
Sigma Lee, PPB and BM3D, respectively. And the parameters of each
algorithm are set to be the best.

The experimental results are shown in Figure 7 and Figure 8. The

(a) (b) (c) (d)

Figure 6. The original image and experiment setup. (a) The original
SAR image. (b) Boxes used to calculated ENL. (c) Boxes used to
calculated EPI. (d) Boxes used to compare details.

(a) (b) (c) (d)

Figure 7. The results of the filtering. (a) The original image,
(b) improved Sigma Lee, (c) PPB, (d) BM3D, and (e) our method.
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(a) (b) (c) (d) (e)

Figure 8. Details of the filtered SAR image. (a) The original image,
(b) improved Sigma Lee, (c) PPB, (d) BM3D, and (e) our method.

results of Lee filter is a bit better than the original image from visual
interpretation. The result of PPB is better than Improved Sigma Lee
because it smoothes the local and refines the edges between different
regions to a certain extent. However, in homogenous area the three
filters are not smooth enough. Moreover, these methods blur some
prominent point-like features (Figure 8, block 1, block 2). In our
results, the airplane becomes very prominent and the homogenous
areas are also filtered as smooth as possible.

Table 2 demonstrates the comparisons of global mean, global
standard deviation, ENL and EPI of different filtering methods in this
experiment. From Table 2, we can see that the global mean of our result
is very close to the original image. The ENL and EPI of our results
are also better than others in most homogenous and high contrast
regions respectively, which means that our results have advantages
in both homogeneous areas and heterogeneous areas. Figure 9
shows the intensity of one profile in the original and despeckling
images, from which we can find that the peaks of our result remain
basically unchanged, which is very helpful for preserving the significant
structures and edges.



Progress In Electromagnetics Research, Vol. 141, 2013 363

Table 2. The comparison of global mean, STD, ENL, EPI of different
filtering methods.

Original ImpSigLee PPB BM3D Ours

Global Mean - 164.6 163.2 172.2 170.9 156.7

Global STD ↓ 189.4 179.7 180.3 180.6 169.1

Block 1 (ENL) ↑ 6.553 29.52 25.94 18.18 520.6

Block 2 (ENL) ↑ 6.221 25.96 21.78 15.94 97.42

Block 3 (ENL) ↑ 6.884 35.67 29.99 20.00 1135.3

Block 4 (EPI) ↑ 1 0.787 0.722 0.650 0.936

Block 5 (EPI) ↑ 1 0.872 0.776 0.705 1.01

Block 5 (EPI) ↑ 1 0.990 0.664 0.573 0.861
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(a) (b) (c)

(d) (e)

Figure 9. The intensity of one profile in the original and filtered
results is presented by blue lines, and the difference of the profile
between original and filtered results is presented by red lines. (a) The
original image, (b) improved Sigma Lee, (c) PPB, (d) BM3D, and
(e) our method.

6. CONCLUSION

In this paper, we have presented a different filtering strategy for SAR
images that combines the L0 minimization with difference of average
operator. Experimental results on real SAR images are encouraging, as
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the proposed technique seems to have a better capacity to preserve and
enhance the significant structures and edges while extremely smooth
the homogenous areas. In other words, it highlights the meaningful
structures. With this method, the follow-up work, such as edge
detection, object extraction, etc., will be easier.

Examination of local details showed that our method still cannot
obtain prefect boundaries in some regions where strong intensity
variations span many pixels. One way around this problem would
be to adaptive choose the parameter λ according to the heterogeneous
degree of different regions in the original SAR images. We intend to
explore this option in future work.
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