
Progress In Electromagnetics Research, Vol. 140, 341–351, 2013

ROBUST ADAPTIVE BEAMFORMING AGAINST
ARRAY CALIBRATION ERRORS

Kai Yang1, 2, Zhiqin Zhao1, *, and Qing Huo Liu2

1School of Electronic Engineering, University of Electronic Science and
Technology of China, Chengdu 611731, China
2Department of Electrical and Computer Engineering, Duke Univer-
sity, Durham, NC 27708, USA

Abstract—Adaptive beamforming methods degrade in the presence
of model mismatch. In this paper, we develop a modified interference
covariance matrix reconstruction based beamformer that is robust
against large array calibration errors. The calibration errors can
come from the element position errors, and/or amplitude and phase
errors, etc.. The proposed method is based on the fact that the
sample covariance matrix can approximate the interference covariance
matrix properly when the desired signal is small, and a reconstructed
covariance matrix based on the Capon spectral will be better than
the sample covariance matrix when the desired signal is large. A
weighted summation of two covariance matrices in references is
used to reconstruct the interference covariance matrix. Moreover,
a computationally efficient convex optimization-based algorithm is
used to estimate the mismatch of the steering vector associated with
the desired signal. Several simulation cases are applied to show
the superiority of the proposed method over other robust adaptive
beamformers.

1. INTRODUCTION

Array beamforming has a wide range of applications in radar,
sonar, wireless communications, medical imaging and other fields [1–
3]. Compared to data-independent beamformer, the data-dependent
beamformers (adaptive beamforming) based on minimum variance
distortionless response (MVDR) principle have better resolution and
much better interference rejection capability [4]. However, the
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performance of traditional MVDR adaptive beamformers is well-known
to be sensitive to model mismatch which can be caused by imprecise
knowledge of the array steering vector, small sample size, and the
presence of desired signal component in the training data [4–7]. Thus,
many techniques have been proposed to improve the robustness of
adaptive beamformers in the past decades ([8–23], and many references
therein). One popular and widely used approach is the so-called
diagonal loading technique [5], where the array covariance matrix is
diagonally loaded with a scaled identity matrix. However, the main
shortcoming of this technique is that it is not clear how to choose
the diagonal loading level based on information about the uncertainty
of the array steering vector. The worst-case-based beamforming
technique [12], which makes explicit use of an uncertainty set of
the signal steering vector, was proposed to improve the robust of
adaptive beamforming. Based on the same idea, [9] reported the
doubly constrained robust Capon beamforming method. Both the two
methods require the steering vector error bound which is not known
in some real world applications.

Many state-of-the-art robust adaptive beamformers will degrade
their performance greatly when large calibration errors exist. One
promising technique used to process the presumed steering vector
of the desired signal is to estimate the actual steering vector in a
convex formulation [13]. To prevent the steering vector converge to
the steering vector associated with one of the interfering sources, a
positive definite matrix is built as: C̄ ,

∫
Φ̄ a(ϕ)aH(ϕ)dϕ, where

the angular sector Φ̄ is the complement sector of Φ, and Φ is the
angular sector in which the desired signal is located. However, when
large calibration errors exist, the presumed steering vectors a(θ) are
mismatch with the real ones. The matrix C̄ will be with large errors. A
more recently approach based on the interference-plus-noise covariance
matrix reconstruction was proposed in [11]. This method requires
knowing all the steering vectors associated with the directions in Φ̄.
If these steering vectors are not known exactly, the spatial spectrum
distribution will be with errors and then the interference covariance
matrix cannot be reconstructed properly.

In this paper, we propose a modified interference-plus-noise
covariance matrix reconstruction based robust adaptive beamformer
against array calibration errors. The steering vector associated with
the desired signal is estimated by a convex optimization problem.
In this paper we focus on adaptive beamforming with large array
calibration errors. If the errors are only on the steering vector
associated with the target signal, we may prefer to use the beamformer
proposed in [11].
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2. THE PROPOSED ROBUST BEAMFORMER

2.1. A Review of Robust Adaptive Beamforming

Let us consider an arbitrary linear array of N sensors that receives
signals from multiple narrowband sources. If the array is perfect
calibrated, the steering vector will be given as b(ϕ), ϕ ∈ [0, π].
However, because this array is with large calibration errors, the real
steering vector is a(ϕ) which is unknown. The observation signal vector
x(t) at the time instant t is an N × 1 vector which is given as:

x(t) = s(t)a(θd) + v(t) (1)

where v(t) denotes the sum of the interferences and the noise, s(t) is
the waveform of the desired signal, θd is the desired signal direction.
The output of beamformer is given as y(t) = wHx(t), where w is
the N × 1 complex weight vector and (·)H stands for the Hermitian
transpose.

The optimal weight vector w is to maximize the signal-to-
interference-plus-noise ratio (SINR)

SNR =
σ2

s |wHa(θd)|2
wHRvw

(2)

where σ2
s = E{|s(t)|2} is the signal power, and Rv = E{v(t)vH(t)}

is the interference-plus-noise covariance matrix. The problem of
maximizing (2) can be written as the following optimization problem:

min
w

wHRvw subject to wHa(θd) = 1, (3)

and the solution is the MVDR beamformer

wopt =
R−1

v a(θd)
aH(θd)R−1

v a(θd)
(4)

In practice, Rv is unavailable. In such case, it is commonly replaced
by the sample covariance matrix R̂x in many proposed methods [4],
which is given by

R̂x =
1
T

T∑

t=1

x(t)xH(t), (5)

where T is the number of training data samples. When T → ∞, the
sample covariance matrix R̂x will converge to the theoretical covariance
matrix Rx = Rv + σ2

sa
H(θd)a(θd). The optimization problem (3) is

equivalent to solve:

min
w

wHRxw subject to wHa(θd) = 1, (6)
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since the relationship:

wHRxw = wHRvw + σ2
s

∣∣wHa(θd)
∣∣ = wHRvw + σ2

s . (7)

However, when the T is small, there is a large gap between R̂x and Rx.
The beamformer performance degradation due to replacing Rv with R̂x

will become significant as SNR increases. Furthermore, the mismatch
between the actual steering vector a(θd) and presumed steering vector
b(θd) associated with the target signal will degrade the performance
further.

A promising robust adaptive beamforming based on interference
covariance matrix reconstruction is proposed in [11] to avoid the
performance degradation due to replacing Rv with R̂x. The
interference-plus-noise covariance matrix is reconstructed by

R̂v =
∫

Φ̄

b(ϕ)bH(ϕ)
bH(ϕ)R̂−1

x b(ϕ)
dϕ (8)

In (8), we can find that R̂v collects all the information on interferences
and the noise in the angular sector Φ̄, and the effect of the desired
signal is removed. This method can provide reasonable estimates of
Rv even in the case of small random steering vector errors. However,
the actual steering vectors associated with the angles in Φ̄ are required
to be given. If large array calibration errors exist, the presumed
steering vectors b(ϕ) are mismatched with the actual steering vectors
a(ϕ), the information of desired signal will leak into the reconstructed
covariance matrix R̂v and matrix R̂v cannot collect all the information
of interferences any more. The reason is that the steering vector a(θd)
is not orthogonal to b(ϕ), ϕ ∈ Φ̄. Due to the error of the reconstructed
covariance matrix R̂v, the performance of the beamformer will degrade
especially at low SNRs.

2.2. The Proposed Method

At low SNRs, since the desired signal is small, the R̂x can approximate
Rv with a small error. At high SNRs, we cannot use R̂x to replace
Rv any more. Although R̂v cannot approximate Rv properly when
the steering vector errors exist, it will be still better than using R̂x.
Therefore, we may prefer to use R̂x to replace Rv at low SNRs and
use R̂v to replace Rv at high SNRs. Based on this idea, we propose a
method to estimate the Rv by

R̃v = αR̂v

/ ∣∣∣
∣∣∣R̂v

∣∣∣
∣∣∣
2
+ (1− α)R̂x

/ ∣∣∣
∣∣∣R̂x

∣∣∣
∣∣∣
2

(9)
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where

α =
bH(θd)R̂xb(θd)
||R̂x||2||b(θd)||22

. (10)

The parameter α ∈ [0, 1] is to reflect the desired signal energy
compared with the interference energy. When α is equal to 0 which
means that there is no signal from angle θd, then R̃v is just composed
by the R̂x. When α is equal to 1 which means that the eigenvector
associated with the largest eigenvalue of R̂x is equal to b(θd). That
is to say the power of the desired signal is greater than that of
interferences. In such case, R̃v is just composed by the matrix R̂v.
A greater value of α reflects a higher SNR of the desired signal and R̃v

is mainly composed by R̂v, and vice versa.
In (10), presumed steering vector b(θd) is different from the

real steering vector a(θd) due to the calibration errors. Due to
the mismatch of b(θd) and a(θd), the parameter α calculated with
b(θd) will be different from the real value of α with a relative large
error. Since R̂v can give a better approximation to Rv than R̂x at
high SNR values, a smaller value of α will degrade the beamformer
performance. Meanwhile, a greater value of α will degrade the
beamformer performance at low SNR values. To solve this problem,
we propose a rough estimation method to estimate a(θd). First, we
reconstruct the desired signal covariance matrix as:

R̂s =
∫

Φ

b(ϕ)bH(ϕ)
bH(ϕ)R̂−1

x b(ϕ)
dϕ, (11)

and then the estimated a(θd) is obtained as the eigenvector of R̂s that
corresponds to its maximal eigenvalue, here marked as â(θd). We note
that R̂v in (8) collects the information of the interferences and noise in
the direction range Φ̄ but here R̂s is to collect the information of the
desired signal. We then substitute â(θd) for b(θd) in (10) to obtain α.

To calculate the beamforming weights w with (4), we are required
to know the estimation of Rv and a(θd). Now we have obtained the
estimation of Rv, given as R̃v. In the following, we will estimate the
actual steering vector.

Although the error of â(θd) is smaller than that of b(θd), the
vector â(θd) cannot give a good approximation of a(θd) in many
applications. We can decompose the error between â(θd) and a(θd)
into two components, i.e., e⊥ which is orthogonal to â(θd) and e‖
which is parallel to â(θd). We only search for e⊥, because any scaling
of the steering vector does not impact the SINR [11, 13]. e⊥ can be
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solved by the following optimization problem:

min
e⊥

(â(θd) + e⊥)H R̃−1
v (â(θd) + e⊥) subject to âH(θd)e⊥ = 0

(â(θd) + e⊥)H R̂v (â(θd) + e⊥) ≤ âH(θd)R̂vâ(θd) (12)

If R̃v is a positive semidefinite matrix, (12) will be a convex
optimization problem which can be solved by the CVX MATLAB
toolbox [24]. Actually, since R̂v and R̂x are both positive semidefinite
matrix, we can easily prove that R̃v is also a positive semidefinite
matrix which is proven as: for any vector x ∈ CN×1:

xT R̃vx = xT
(
αR̂v/

∣∣∣∣R̂v

∣∣∣∣
2
+ (1− α)R̂x/

∣∣∣∣R̂x

∣∣∣∣
2

)
x

= αxT R̂vx/
∣∣∣∣R̂v

∣∣∣∣
2
+ (1− α)xT R̂xx/

∣∣∣∣R̂x

∣∣∣∣
2
≥ 0 (13)

Therefore, R̃v is a positive semidefinite matrix. Now the estimated
steering vector associated with the desired signal can be given as:

ã(θd) = â(θd) + e⊥, (14)

Finally, by substituting ã(θd) and R̃v into (4), the proposed
beamforming weights can be computed as

wpro =
R̃−1

v ã(θd)
ãH(θd)R̃−1

v ã(θd)
(15)

In summary, the steps of the proposed beamformer are given as
follows:

1). Calculate the matrix R̂v and R̂s by (8) and (11), respectively.
2). The rough estimation â(θd) of a(θd) is calculated as the

eigenvector associated with the maximal eigenvalue of R̂s. Substitute
â(θd) for b(θd) in (10) to obtain α.

3). Obtain R̃v by (9).
4). Estimate e⊥ by solving the convex optimization problem (12).
5). The weights of the robust adaptive beamformer are given

by (15).
Note that the steering vector ã(θd) can also be estimated by other

methods, such as the method in [13], and by using the reconstructed
interference-plus-noise matrix R̃v can improve the performance of the
beamformer in [13] by using Rx. The comparison will be shown in
Section 3.

The computational complexity of this proposed method is mainly
composed by the calculation of (8), (11), and (12). The computational
complexity of (8) and (11) is o(SN2), where S is the number of
sampling points in the angle domain. The convex problem will
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dominate the computational cost, and the computational complexity
of (12) is o(N3.5). Therefore, the proposed method has complexity
higher than the conventional Capon beamformer (o(N3)) but has
comparable complexity with other robust adaptive beamforming
algorithms [11, 13].

3. SIMULATIONS

In this section, a uniform linear array (ULA) with 10 omnidirectional
sensors spaced a half wavelength apart is considered. In all simulations,
we assume two interfering sources with plane wavefronts impinging
on the array from 30◦ and 50◦, respectively. And we assume the
interference-to-noise ratio in each element is equal to 30 dB. The
background noise is assumed to be additive white Gaussian noise. We
assume the desired signal is impinging on the array from 3◦, and the
SNR values range from −20 dB to 40 dB. For each scenario, 200 Monte
Carlo simulation runs are used to obtain each simulated point.

In the first example, we consider the array calibration errors
caused by gain and phase uncertainties. The error can come from
channels uncalibrated, and the error is angle independent. The actual
steering vector is given as:

a(ϕ) = (1 + γ) ◦ b(ϕ), ϕ ∈ [0, π] (16)

where ◦ denotes the Schur-Hadamard product, γ ∈ CN×1 is the
unknown channel gains and phases, b(ϕ) is the presumed steering
vector which is given by b(ϕ) = [1, ejπ sin(ϕ), . . . , ej9π sin(ϕ)]T . In this
simulation, the absolutes and phase values of γ are independently and
uniformly drawn from the intervals [0, 0.1] and [0, 2π], respectively.
The number of snapshots is set to be T = 30. We compare
the proposed method with the worst-case-based beamformer [8], the
diagonally loaded sample matrix inversion (LSMI) beamformer [5], the
steering vector estimation based beamformer proposed in [13], and
the interference covariance matrix reconstruction based beamformer
in [11]. Figure 1 displays the mean output SINRs versus the SNR
for different techniques. It can be seen that the proposed beamformer
outperforms the beamformer based on interference covariance matrix
reconstruction in [11] at low SNRs (from −20 dB to 20 dB), and has
nearly the same performances as the beamformer in [11] at high SNRs
(from 25 dB to 40 dB). This is because R̃v is a better approximation to
the interference covariance matrix than R̂v. Furthermore, the proposed
beamformer can obtain greater SINRs when compared to its other
competitors at high SNRs. Figure 2 gives the output SINRs versus the
number of snapshots at the condition of SNR = 20dB. We can find that
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Figure 1. Output SINR versus
SNR of the first example, T = 30.
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Figure 2. Output SINR versus
the number of snapshots of the
first example, SNR = 20dB.

the performance of the proposed method improves with the increasing
of the number of snapshots, and the proposed method outperforms
other beamformers.

In the following simulation case, we will consider the array
calibration error due to array geometry error along with wavefront
distortion as discussed in [13] simulation example 3. We suppose
that the position error for each element is uniform distributed in the
interval [−0.075λ, 0.075λ] which is greater than the case in [13]. The
random position errors change from run to run but remain fixed from
snapshot to snapshot. The number of snapshots is set to be T = 30.
The comparison results are given in Figure 3, and the same conclusion
as the previous simulation can be reached. When the SNR is greater
than 30 dB which means that the desired signal power is greater than
the interference power, the parameter α will approach 1 and then R̃v

will approach R̂v. Therefore, it can be observed that the proposed
beamformer can obtain the same results as the beamformer in [11] at
SNR = 40. R̃v can also be applied into other beamforming methods to
improve their performance when large calibration errors exist. Here,
R̃v is used as a substitute for R̂x in the beamformer [13]. As shown
in Figure 3, the beamformer of [13] with R̃v (square line) has higher
output SINR than that with R̂x (circle line) at SNRs from 25 dB to
40 dB. Figure 4 shows the mean output SINRs versus the number
of snapshots at the condition of SNR = 20dB. The performance of
the proposed beamformer outperforms all the other beamformers in
Figure 4.
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4. CONCLUSION

In this paper, a robust adaptive beamformer against large array
calibration errors is proposed. This technique is based on the
MVDR beamformer, and both the interference covariance matrix and
the steering vector associated with the desired signal are estimated.
Simulation results show the robustness of the proposed method against
the array steering vector errors.
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