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Abstract—Damage on rail increasingly originates from the surface
of the rail as a result of for example rolling contact fatigue (RCF).
This is a major concern for track operators, who operate test regimes
for flaw detection and monitoring. The paper aims to assess the
feasibility of applying electromagnetic (EM) simulation techniques to
high frequency magnetic induction sensing of flaws in a section of rail
head using the Boundary element method (BEM). When the driving
frequency is significantly high (∼MHz), the rail with high conductivity
can be treated as perfect electric conductors (PEC) with negligible
errors. In this scenario, BEM based on scalar potential and integral
formulations becomes an effective way to analyze this kind of scattering
problems since meshes are only required on the surface of the object. A
simple high frequency magnetic induction sensing system was chosen to
inspect the surface flaw of the rail. Different kinds of flaws were tested
with different sensor configurations. The simulations were carried out
using an algorithm the authors have developed in MATLAB. The
paper provides new insights into the application of magnetic induction
sensing technique using BEM in non-destructive testing. Based on the
simulation and mathematical analysis, hardware system can be built
to verify the proposed detection strategy.

1. INTRODUCTION

The speed and loads of trains have been increasing greatly in recent
years, and these factors inevitably raise the risk of producing rail
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defects [1]. Damages on rails increasingly originate from the surface
as a result of rolling contact fatigue (RCF) [2]. Such damage can
became dangerous for the operation of rail traffic, unless it is carefully
monitored and managed. It is challenging to develop effective and
efficient rail flaw detection techniques, which are needed to improve
the safety of the railway transportation systems. Ultrasonic sensors
(UT), eddy current (EC) and magnetic particle inspection (MPI) are
the conventional non-destructive evaluation (NDE) techniques which
are currently being used in the rail industry. On line inspection
systems tend to favour ultrasonic methods and a comprehensive review
of these techniques is given in [3]. Ultrasonic inspection has the
best performance for detecting internal cracks [4, 5]. However, its
inspection speed is limited to 75 km/h due to the transit speed of
ultrasonic waves [3]. Eddy current testing which is based on the
law of electromagnetic induction identifies defects using magnetic field
generated by eddy currents [6]. It has relatively high inspection speed
and is able to detect surface defects, so it is widely combined with
ultrasonics for rail inspection.

Magnetic induction sensing technique is a non-invasive and non-
contact detection approach, suitable for industrial and biomedical
applications [7–12]. Magnetic induction sensing system applies a
magnetic field from the excitation coil to induce eddy currents in
the material and the scattering field is then detected by the receiving
coil [13, 14].

For typical magnetic induction sensing technique for industrial
applications, the driving frequency is normally in the range of kHz to
100 kHz. Imaging samples with low conductivities such as biological
tissues or ionized water is a difficult task for the low frequency magnetic
induction sensing system because the eddy currents induced in the
target is very weak and the receiving coil voltage is very small. High
frequency magnetic induction sensing system (> MHz) emerged to
solve this problem [7, 15].

When the driving frequency is significantly high, the conductivity
of the rail in the internal field can be treated as infinite and the
rail behaves essentially like a perfect electric conductor (PEC). The
incident magnetic field is almost totally reflected, namely the magnetic
field only exists on the surface of the rail. For a PEC, the FEM would
require discretisation of the volume exterior to the object between
the conductor and a suitably chosen outer boundary, where a far
field boundary condition should be imposed. In contrast, Boundary
Element Method (BEM) based on integral formulations becomes an
effective way to analyse this kind of scattering problems since meshes
are only required on the surface of the object [16].
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In this paper, a high frequency flaw detection system is proposed,
complemented by BEM, which is based on scalar potential. When the
investigated system, comprising one excitation coil and one receiving
coil, scans on the surface of the rail, the primary field from the
excitation coil induces currents in the rail, which in turn radiates a
scattered field. We can retain a simple integral equation formulation
in scalar potential for the region outside the rail, where magnetic fields
are irrotational. By calculating the gradient of the scalar potential,
the distributions of the magnetic field outside the rail are derived. The
voltage obtained will be changed when the system comes across a flaw.
Then, the flaws with different shapes and positions on the surface can
be detected. The simulation results show that the proposed system
has possibility to test the surface flaw of rail. Based on the simulation
and mathematical analysis, the hardware system can be built in the
future to verify the proposed detection strategy.

2. SYSTEM SETUP

The flaw detection system consists of sensor array and a rail model
with surface flaws. The rail under test is a cuboid with its center set
in the origin of the coordinate system. The intercepts of the rail along
X, Y and Z axis are a = 0.25m, b = 0.5m, c = 0.45m, respectively.
So the length, width and height are 2b = 1 m, 2a = 0.5m, 2c = 0.9 m.
The sensor array contains a pair of circular coils with the same size
which are used as excitation coil and receiving coil respectively. The
radius of the coils is 0.1m and the sensor array moves along the positive
direction of the Y axis with a measurement range Y ∈ (−0.5 m, 0.5m).

2.1. Sensor Array

The configurations of sensor array are of three different choices:
(1) Sensor 1: The two coils are symmetrical of the XY plane, as

shown in Figure 1(a). This is the most common sensor distribution
in two-coil magnetic induction sensing system. The centers of the
coils are (0, 0, 0.8) and (0, 0, −0.8), respectively. respectively. Of
course this is not physically realistic for a deployable sensor, but
is used for illustration purposes.

(2) Sensor 2: The two coils are parallel to the metallic surface and the
ligature of two centers is perpendicular to the Y axis, as shown in
Figure 1(b). The centers of the coils are (0.15, 0, 0.8) and (−0.15,
0, 0.8), respectively.

(3) Sensor 3: The two coils are parallel to the metallic surface, as
shown in Figure 1(c). The excitation coil and receiving coil are
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positioned along the Y axis in tandem and the centers are (0,
−0.15, 0.8) and (0, 0.15, 0.8), respectively.
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Figure 1. Three kinds of sensor arrays. (a) Sensor 1. (b) Sensor 2.
(c) Sensor 3.

2.2. Different Surface Flaws

The parameters of the flaws contains: position p, shape s, area a, depth
d.

Different kinds of flaws with different characteristics are listed as
follows:

(1) Flaw 1: Flaw 1 is a cuboid with the center in the Z axis. The
intercepts on the X, Y axis are a0 = a/2 and b0 = b/2. The depth is
0.1c or 0.2c.

(2) Flaw 2: Flaw 2 is a cuboid with the center in the Z axis, as
shown in Figure 2(a). The intercepts on the X, Y axis are a0 = a/5
and b0 = b/5. The depth is 0.1c or 0.2c.

(3) Flaw 3: Flaw 3 is a cylinder with the center in the Z axis, as
shown in Figure 2(b). The radius is r0 = 0.04m and the depth is 0.1c
or 0.2c. The base area is s = πr2

0 = 0.005m2.
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(4) Flaw 4: Flaw 4 is an spheroid with the center in the Z axis.
The semi minor and major axis is a0 = 0.1/πm and b0 = 0.05m,
respectively, and the depth is 0.1c or 0.2c. The base area is s = πa0b0 =
0.005m2.

(5) Flaw 5: Flaw 5 is a regular triangle cylinder with the center
in the Z axis. The length is l = 0.107456993m and the depth is 0.1c
or 0.2c. The base area is s = 0.5l2 sin(60◦) = 0.005m2.

Flaw 3, Flaw 4 and Flaw 5 have the same base area. As all flaws
are cylinders, they have the same volume when their depths are the
same. The signals with the same volume but different shapes can be
obtained.

(6) Flaw 6: Flaw 6 is a cuboid which can be seen as Flaw 2 moved
along X axis for a0 and the depth is 0.1c or 0.2c.

(7) Flaw 7: Flaw 7 and Flaw 6 are symmetrical of Y Z plane.
(8) Flaw 8: Flaw 8 is a cuboid which can be seen as Flaw 2 moved

along Y axis for b0 and the depth is 0.1c or 0.2c.
(9) Flaw 9: Flaw 9 and Flaw 8 are symmetrical of XZ plane.

(b)(a)

Figure 2. Mesh of different kinds of flaws. (a) Flaw 2. (b) Flaw 3.

3. MODEL FOR FLAW DETECTION

For a highly conducting and simply connected object in high frequency
magnetic induction sensing system, where it behaves as a PEC [17],
the skin depth δ =

√
2/σµω approaches to zero as σ → ∞. The

reference [18] has given a simple model for PEC induction problem,
which is available to our research. We begin with Ampere’s law, applied
to the external region of the target, and Gauss’s magnetic divergence
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law

∇×He = σeEe + iωεEe (1)
∇ · µH = ∇ · µeHe = 0 (2)

Here H is the magnetic field and E the electric field. µ, ε and σ are
magnetic permeability, permittivity and electrical conductivity of the
media, respectively. The exterior (air) environment is assumed to have
the magnetic permeability of free space. The superscript e indicates
the quantities in the external environment.

The total magnetic field consists of two parts: the primary
magnetic field generated by the excitation coil and the scattered
magnetic field radiated by the eddy current, that is He = Hpr + Hsc,
where the superscripts pr and sc indicate the primary field and the
scattered field, respectively.

We assume that the magnetic field is quasi-static in the external
region and hence the displacement current can be negligible. Also,
the space exterior to the target is non-conductive so that the electric
field is almost zero and the region investigated doesn’t include the
given current. So the right side of (1) is eliminated which means
that the exterior total magnetic field is irrotational and thus can be
represented efficiently using a simple scalar potential. Together with
the divergence theorem and the jump condition on the normal magnetic
field across the surface, the magnetic scalar potential ϕe satisfies a
boundary integral equation written as:

c ϕe (r) +
∫

Γ

[
ϕe

(
r′

) ∂g (r, r′)
∂n

]
dΓ = ϕpr (r) (3)

where g (r, r′) = 1
4π

1
|r−r′| is the Green’s function for the Laplace

equation, and ϕpr is the magnetic scalar potential of the primary
magnetic field. Vectors r and r′ represent the observation point and
source point respectively. Γ denotes the surface of the object with the
unit normal vector n, and the parameter c depends on the location of
observation point. c is 1/2 on a smooth boundary of Γ, 1 in Γ and 0
elsewhere [19].

3.1. Numerical Implementation of the BEM

Solving (3) involves evaluating several integrals which imposes an
enormous computational burden if the number of mesh is too
large. There are a number of methods emerged to facilitate the
computation by building a local coordinate system on the basis of
which the parameter transformation is accomplished to make the
integral equations more easier solved [20–22].
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For numerical purposes, the surface of the target could be
subdivided into NE patches with the eth patch known as Γe. Then the
integration could be transformed into equations in discrete collocation
points and NP is the number of discrete points.

c ϕe (ri)+
NE∑

e=1

∫

Γe

[
ϕe

(
r′

) ∂g (r, r′)
∂n

]
d Γe =ϕpr (ri) i = 1, 2, . . . , NP (4)

We used the similar parameters and functions introduced in [21], where
a local coordinate system is introduced to facilitate the calculation of
3-D numerical integrations based on Green’s function or its gradient on
a plane triangle. The new coordinate system parallels with triangular
element and has origin on the first vertex of the triangle. One edge
of the triangle is set as the abscissa, as shown in Figure 3. Here a
triangular patch was taken as an example.
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Figure 3. Parameters of the local coordinate system. (a) Relationship
between the local coordinate system and the global coordinate system.
(b) Parameters of the local coordinate system.

V1, V2 and V3 are three vertexes of the triangular patch Γe in terms
of the global coordinates. ∂Si, which is opposite to Vi, is the ith edge
of Γe. li, si and mi (i = 1, 2, 3) are the length, unit tangent vector
and unit normal vector of ∂Si respectively. Definitions of the local
coordinate system in terms of the global coordinates are ς = OV2−OV1

l3 ,
η = n̂× ς, ξ = n̂, where n is the normal vector of Γe.

In BEM, although the accuracy increases with higher order
interpolation schemes, so does the number of the nodes used to divide
the boundary and formulation complexity. Hence, the number of
equations in the system of linear equations and the computational time
increase correspondingly with high order interpolation schemes. The
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first order boundary elements is less complicated than the second order
boundary elements, at the same time it has higher accuracy than zero
order boundary elements. For the problem we proposed, we have found
that the first order boundary elements can satisfy the requirements in
terms of accuracy and computational speed.

Over the surface, we interpolated ϕe (r′) with simple linear
interpolation

ϕe
(
r′

)
=

3∑

k=1

ϕkNk (u,v)

N =

[
N1

N2

N3

]
=

[1 −1 ς3/l3 − 1
0 1 −ς3/l3
0 0 1

][ 1
ς/l3
η/η3

]

=

[
N10

N20

N30

]
+

[−1 ς3/l3 − 1
1 −ς3/l3
0 1

][
ς ′a/l3
η′a/η3

]
(5)

where N is the linear nodal function and ϕk is the magnetic scalar
potential on the kth vertex of Γe.

So the final integral equation was given by:

cϕe (ri) +
NP∑

j=1

(
NE∑

e=1

3∑

k=1

(∫

Γe

∂g (ri, r′)
∂n

NkdΓe

)
δkj

)
ϕj = ϕpr (ri) (6)

Here ϕe
NP×1 are the magnetic scalar potentials required on the

boundary, and ϕpr
NP×1 are the magnetic scalar potentials of discrete

points generated by a given magnetic field. δkj is introduced to
transform the local number k into the global number j.

Let R = |R| = |r− r′| be the distance between an arbitrarily
located observation point r and a source point r′ on Γe. The
relationships of parameters are defined as follows:

ς ′a = ς ′ − ς0; η′a = η′ − η0; lfi = ln
(

R+
i + s+

i

R−
i + s−i

)
(7)

γ =
3∑

i=1

γi =
3∑

i=1

(
tan−1 d0

i s
+
i(

R0
i

)2+|ξ0|R+
i

−tan−1 d0
i s
−
i(

R0
i

)2+|ξ0|R−
i

)
(8)

I =

[
I∗1
I∗2
I∗3

]
=




∫
Γe

ξ0
R3 N1dΓe∫

Γe

ξ0
R3 N2dΓe∫

Γe

ξ0
R3 N3dΓe


 =

[
N10

N20

N30

]
I∗ +

[−1 ς3/l3 − 1
1 −ς3/l3
0 1

][
I∗ua
l3

I∗va
η3

]
(9)

The integrals of the function are now easily obtained
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from [21, Eqs. (26), (27)]:

I∗ = ξ0

∫

Γe

dΓe

R3
= sgn (ξ0) γ (10)

[
I∗ua
I∗va

]
= ξ0

∫

Γe

[
ς ′a
η′a

]
dΓe

R3
= −ξ0

3∑

i=1

mi ·
[

ς
η

]
lfi (11)

With the aid of (9)–(11), it is convenient to computer the scalar
potential. After that, if we know a given additional magnetic field,
then we can calculate (4) to obtain the magnetic potentials of discrete
points on the target surface.

3.2. Computation of the Scattered Magnetic Field and
Primary Magnetic Field

Through the similar transformation and then take the gradient of both
sides of (4), the magnetic field outside the target can be derived:

He(r) = Hpr+Hsc = Hpr(r)+
NE∑

e=1

3∑

k=1

(∫

Γe

∂ (∇g (r, r′))
∂n

NkdΓe

)
ϕk (12)

Here Hpr is the additional magnetic field and ϕk the magnetic
potentials of discrete points on the surface of target. With the similar
procedurewe can solve the integral equation.

If the current on the circular excitation coil is I, the magnetic field
generated by the coil can be easily derived from the Biot-Savart law:

Hpr =
∫

dHpr =
Bpr

µ0
=

I

4π

∮

l

dl×R

|R|3 =
I

4π

∫ 2π

0

t×R

|R|3 rdθ (13)

Note that Hpr = −∇ϕpr, the potential of the primary magnetic field
is written as [23]:

ϕpr =
I

4π

∫∫

s

R

|R|3 · n0ds (14)

Here B is magnetic flux density and s denotes the plane enclosed by
the excitation coil l. R = r − r′, t is the unit tangent vector of l and
n0 is the unit normal vector of s. µ0 is the permeability of the free
space. Further, according to Maxwell’s equations, we have

U =
∮

l′
E · dl′ = −jω

∫∫

s′
B · ds′ = −jω

N∑

i=1

Bi · n′0s′i

= −2jπf
N∑

i=1

Bi · n′0s′i = −2jπfµ0

N∑

i=1

Hi · n′0s′i (15)
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where U is the voltage on the receiving coil. s′, the plane enclosed by
the receiving coil l′, is divided into small elements. s′i is the area of the
ith element of s′ and n′0 is the unit normal vector of s′. The angular
frequency is ω = 2πf , where f is the driving frequency and N is the
number of grids of s′.

4. SIMULATIONS

4.1. Evaluation of Different Flaw and Sensor Configurations

Simulations were carried out with the aid of MATLAB. Combine
different patterns of the flaws and the sensors, we can obtain the
simulation results and figures. Assume a sinusoidal current I =
1 · sin(ωt) is applied to the excitation coil, where ω = 2πf . Here the
frequency is f = 10 MHz and the unit normal vector of the excitation
coil n0 is directed along the z axis. The direction of the current and
n0 satisfy the right-handed corkscrew rule.

(1) Flaw 1 + Sensor 1; Flaw 2 + Sensor 1.
Change the depth d = 0 (there is no flaw), d = 0.1c or d = 0.2c,
the simulation results in Figure 4 show that the curves go by the
same trend and they have the same shape despite they are different
on the magnitude for both Flaw 1 and Flaw 2.

(a) (b)

Figure 4. (a) Flaw 1 + Sensor 1. (b) Flaw 2 + Sensor 1.

Flaw 1 is larger than Flaw 2 when the depth is the same. Figure 4
shows that the flaw size has an effect on the signal variance. By
decreasing the depth of the flaw, there has a decrease on the signal
variance. When the flaw is larger, the signal variance is larger.
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(2) Flaw 2 + Sensor 2; Flaw 2 + Sensor 3.
Figures 4 and 5(a) show that, because of the symmetry of the
Sensor 1 and Sensor 2 of the direction of motion, the measured
voltages are symmetrical. For the same flaw, the signal variances
obtained by Sensor 2 and Sensor 3 are larger than that obtained
by Sensor 1.

(b)(a)

Figure 5. (a) Flaw 2 + Sensor 2. (b) Flaw 2 + Sensor 3.

At the same time, Figure 5(b) shows that for Sensor 3, the flaw
position can influence the peak point of the curve. The peak point
will move if the flaw moves.
From figures above, we know that Sensor 3 not only can produce
larger signal variance, but have a relationship between the peak
point of the curve and flaw position, so the simulations following
will use Sensor 3.

(3) Flaw 3 + Sensor 3; Flaw 4 + Sensor 3; Flaw 5 + Sensor 3.
Figure 6 shows that, if the flaw volume and the position are the
same, the shapes of the curves are the same on the whole with a
small difference in value.

(4) Flaw 6 + Sensor 3; Flaw 7 + Sensor 3 (shown in Figure 7).
(5) Flaw 8 + Sensor 3; Flaw 9 + Sensor 3 (shown in Figure 8).

4.2. The Relationship of the Peak Point and the Flaw
Position for Sensor 3

If other conditions such as flaw area, depth (here d = 0.2c) and shape
are the same, the curves obtained by different positions with Sensor 3
are described as Figure 9.

(1) Curves of Flaw 2, 6 and 7
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(b)(a)

(c)

Figure 6. (a) Flaw 3 + Sensor 3. (b) Flaw 4 + Sensor 3. (c) Flaw 5
+ Sensor 3.

(a) (b)

Figure 7. (a) Flaw 6 + Sensor 3. (b) Flaw 7 + Sensor 3.
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(a)(a) (b)

Figure 8. (a) Flaw 8 + Sensor 3. (b) Flaw 9 + Sensor 3.

(b)(a)

Figure 9. Relationships between the peak point and the flaw position
for Sensor 3. (a) Curves of Flaw 2, 6 and 7. (b) Curves of Flaw 2, 8
and 9.

The curves in Figure 9(a) present that when the flaw moves only
along axis X, the peak point of the curve doesn’t change with a
little difference in the magnitude of data.

(2) Curves of Flaw 2, 8 and 9.

4.3. Curves with Different Flaw Shape

The measurement curves of Flaw 3, 4 and 5 are obtained with Sensor 3,
as shown in Figure 10. The result indicates that flaws with different
shapes but same volume are likely to produce similar curves.
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Figure 10. Curves of different flaw with different shapes but same
volume.

5. ANALYSIS OF RESULTS

5.1. The Effect of Different Flaws on the Results

From the simulation results we can summarize how the flaw parameters
affect the curves, and here we use the single variable analysis.

(1) Flaw volume: Figure 4 shows how the result changes with the
flaw volume. When the flaw is larger, the signal variance is larger.

(2) Flaw position: For Sensor 1 and 2, the position has no
influence in the curve shape. For Sensor 3, the peak point of curves
changes when the flaw moves along Y axis. Figure 9 shows that when
the flaw moves in the positive direction of axis Y , the peak point will
move to the right.

(3) Flaw shape: Figure 10 shows that when material conditions
except for the shape are same, the curves of different flaws are basically
same.

5.2. The Effect of the Sensor Distribution on the Results

Figures 4(b) and 5 show that, signal variance for distinguishing
different flaws obtained by Sensor 3 are larger than that obtained by
Sensor 1 and Sensor 2. At the same time, different flaw positions will
contribute to different peak points of curves for Sensor 3. So Sensor 3
is the best choice for flaw detection.
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6. CONCLUSIONS

The paper presented a BEM model based on a simple high frequency
magnetic induction sensing system to inspect the surface flaw of rail
which can be treated as a PEC. The magnetic fields were obtained
numerically and the voltages on the receiving coil were calculated for
different kinds of flaws. In the simulation, the curves obtained by the
BEM are plotted in MATLAB, then how the flaw features and the
sensor array affect the results was discussed. The simulation results of
flaw detection system, with the help of the BEM, suggest that magnetic
induction sensing technique has the potential to inspect the surface flaw
of the rail. Sensor 3 is the best configuration for the measurement of
flaws because it not only can effectively characterize the flaw volume,
but also is sensitive to other parameters such as the flaw position. The
flaw volume has a great effect on the magnitude of the curve while the
peak point of the curve is determined by the flaw position. Future work
will involve building an experimental system to verify the observations
obtained through the mathematical analysis in this paper.
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