
Progress In Electromagnetics Research, Vol. 141, 79–98, 2013

FLUCTUATING TARGET DETECTION IN
LOW-GRAZING ANGLE WITH MIMO RADAR

Jin Can Ding*, Hao Wen Chen, Xiang Li,
and Zhao Wen Zhuang

Research Institute of Space Electronics Information Technology,
Electronics Science and Engineering School, National University of
Defense Technology, Changsha 410073, P. R. China

Abstract—This paper focuses on the fluctuating target detection in
low-grazing angle using Multiple-input Multiple-output (MIMO) radar
systems with widely separated antennas, where the multipath effects
are very abundant. The performance of detection can be improved
via utilizing the multipath echoes, which is equivalent to improve the
signal-to-noise ratio (SNR) by using multipath echoes. First, the
reflection coefficient considering the curved earth effect is derived.
Then, the general signal model for MIMO radar is introduced for
fluctuating target in low-grazing angle. Using the Neyman-Pearson
sense, the detectors of fluctuating targets, i.e., Swerling 1–4, with
multipath are analyzed. Finally, the simulation results show that the
performance can be enhanced markedly when the multipath effects are
considered.

1. INTRODUCTION

Over the last decade, the multiple-input multiple-output (MIMO)
approach for radar processing has drawn a great deal of attention
and has been applied to various radar scenarios and problems, where
the term MIMO refers to the use of multiple-transmit as well as
multiple-receive antennas. MIMO radar is categorized into two classes:
the statistical MIMO radar and colocated MIMO radar, depending
on their antenna placement [1–17]. The advantages of MIMO
radar with colocated antennas have been studied extensively, which
include improved detection performance and higher resolution [18],
higher sensitivity or detection moving targets [19], and increased
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degrees of freedom for transmission beamforming [20]. MIMO radar
with widely separated antennas can capture the spatial diversity of
the target’s radar cross section (RCS) [21]. This spatial diversity
provides radar systems with the ability to improve target parameter
estimation [22, 23], high resolution target localization [24], and tracking
performance [25].

Much published literature has concerned the issue of MIMO
radar detection. Guan et al. [26] investigated the detection problem
of the MIMO radar system with distributed apertures in Gaussian
colored noise and partially correlated observation channels. Tang
and Huang [27] introduced relative entropy as a measure to radar
detection theory and analyzed the detection performance of MIMO
radar and phased array radar. Tang et al. [28] investigated detection
performance of MIMO radar for Rician target. In [29], the optimal
detector in the Neyman-Pearson sense was derived for the statistical
MIMO radar using orthogonal waveforms. Aittomaki et al. [30] applied
the Swerling models to target detection and derived the optimal test
statistics for a statistical MIMO radar using non-orthogonal signal.
For low-grazing angle detection of MIMO radar, Jin et al. [31] utilized
the time reversal technique in a multipath environment to achieve high
target detectability of MIMO radar.

Low-grazing angle targets are difficult to detect, which is one of
the great threats propelling radar development. Otherwise, detecting
of low-altitude targets is of great significance to counter low-altitude
air defense penetration. However, up to now, this problem has
not been effectively resolved. Multipath effect plays an important
role on the low-altitude target detection, by which the target echo
signal is seriously polluted, even counteracted [32]. Two aspects can
be considered for multipath: suppressing multipath and utilizing it.
However, in a statistical sense, detection may be enhanced by the
presence of multipath [33].

In this paper, we consider low-grazing angle fluctuating targets
(Swerling 1–4) detection in multipath environment for MIMO radar.
First of all, the reflecting coefficient is derived, considering the curved
earth effect. Then, the general signal model for MIMO radar is
introduced for fluctuating target in low-grazing angle. With the sense
of Neyman-Pearson, the detectors of Swerling 1–4 are respectively
derived. Via simulation analysis, we can find that the detection
performance can be enhanced markedly when the multipath effects are
considered. The main contributions of our paper are twofold: one is
how to utilize multipath effects for MIMO radar in low-grazing angle;
the other is to compare the detection performance with fluctuating
target models.
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2. MULTIPATH GEOMETRY MODEL

A point source at a distance of Rd from the receiver is considered. If
the source is assumed to be a narrowband signal, it can be represented
by

x(t) = aej(ωt+φ) (1)

where a is the amplitude, ω the angular frequency, and φ the initial
phase. In the presence of multipath, the received by the receiver
consists of two components, namely, the direct and indirect signal.
For a simple multipath model of a flat earth, the direct signal is given
by

xd(t) = x(t)e−jκRd (2)

And the indirect signal is

xi(t) = x(t)ρejφe−jκRi (3)
Ri = R1 + R2 (4)

where ρejφ is the complex reflection coefficient, κ = 2π/λ the wave
number, λ the wavelength, and Ri the total length of the indirect
path. The target range Rd can be obtained from the time delay. Thus,
the total received signal is given by

xr(t) = xd(t) + xi(t) (5)

To model the received signals more accurately, the curvature of
the signal path due to refraction in the troposphere, in addition to
the curvature of the earth itself, must be taken into account. The
multipath geometry for a curved earth is given in Figure 1.

Firstly, obtain ϕ according to the law of cosine as

ϕ=arccos

(
(h + Re)

2 + (Zk + Re)
2 −R2

d

2 (h + Re) (Zk + Re)

)
(6)

where, arcsin(·) stands for the arcsine, and h and Zk are the height of
target and height of radar, respectively. Re is the effective radius of
the imaginary earth [34], given by

Re = R0

(
1 + 6.37× 10−3 dU

dh

)−1

(7)

where U is called the radio refractivity.
The horizon distance is computed by r = Reϕ, and the distance

from the radar to the point of reflection r1 can be found by solving the
following cubic equation as

2r3
1 − 3rr2

1 +
[
r2 − 2Re (Zk + h)

]
r1 + 2ReZkr = 0 (8)
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Figure 1. Multipath geometry for a curved earth.

Next, we solve ϕ1, ϕ2 using r1 by
ϕ1 = r1/Re (9)
ϕ2 = (r − r1)/Re (10)

Using the law of cosine yields

R1 =
√

R2
e + (Re + Zk)

2 − 2Re (Re + Zk) cos ϕ1 (11)

R2 =
√

R2
e + (Re + h)2 − 2Re (Re + h) cos ϕ2 (12)

Rd =
√

(h+Re)
2+(Re+Zk)2−2(h+Re)(Re+Zk) cos(ϕ1+ϕ2)(13)

Then, the grazing angle ψ is

ψ = π/2− 1/2 arccos
(

R2
1 + R2

2 −R2
d

2R1R2

)
(14)

The term ρejφ in (3) generally consists of the Fresnel reflection
coefficient, divided into the vertical polarization Γv and horizontal
polarization Γh, the divergence factor D due to a curved surface, and
the surface roughness factor ρs, i.e., ρejφ = Γ(v,h)Dρs. The vertical
polarization and horizontal polarization Fresnel reflection coefficients
are respectively given by [32]

Γv ' ψ
√

εc − 1
ψ
√

εc + 1
(15)

Γh ' ψ −√εc

ψ +
√

εc
(16)
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where εc is the complex dielectric constant, which is given by [34]
εc = ε/ε0 − j60λσ (17)

ε/ε0 is the relative dielectric constant of the reflecting medium, and σ
is its conductivity. Thus, the Fresnel reflection coefficient is determined
by the grazing angle under a deterministic condition [34].

D '
(

1 +
2r1r2

Rerψ

)−1/2

(18)

The surface roughness factor ρs is given by [34]

ρs = e−µ (19)

µ =
{

2[2πη]2 η ≤ 0.1 rad
0.16η2 + 7.42η + 0.0468 otherwise (20)

and η is the surface roughness factor given by [34]

η =
σHψ

λ
(21)

where σH is the Root-Mean-Square (RMS) surface height irregularity.
From (14)–(20), we can see that the specular reflection coefficient
depends on the grazing angle. The other parameters can be obtained
when a model is given, therefore, the specular reflection coefficient is a
function of the grazing angle ψ, i.e., f(ψ) = ρejφ. Submitting (14)–(20)
in f(ψ) = ρejφ yields

ρejφ =
(

a1 + b1

c1
+ j

a2 − b2

c1

)
×

(
1 +

2r1r2

Rerψ

)−1/2

e−µ (22)

where



a1 =
(
ψ2k cos θ − 2ψk

1
2 cos θ

2 + 1
) (

ψ2k cos θ − 1
)

b1 =
(
ψ2k sin θ − ψk

1
2 sin θ

2

)
ψ2k sin θ

a2 = ψ2k sin θ
(
ψ2k cos θ − 2ψk

1
2 cos θ

2 + 1
)

b2 =
(
ψ2k cos θ − 1

) (
ψ2k sin θ − ψk

1
2 sin θ

2

)

c1 =
(
ψ2k cos θ − 1

)2 + ψ4k2 sin2 θ

k =

√(
ε
ε0

)2
+ (60λσ)2

θ = arctan ε
60λσε0

(23)

thus, ρ is given by

ρ =

√(
a1 + b1

c1

)2

+
(

a2 − b2

c1

)2

Dρs (24)
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It is worth to point out that the diffuse reflection component is
treated as the incoherent white Gaussian noise, for simplicity [34].
Thus, the diffuse noise component can be combined with receiver noise
as the effective noise term in signal model. Figure 2 shows that the
reflection coefficient amplitude (ρs) surface and its contour varying
with the antenna height and target height. From Figure 2(b), we can
see that the reflection coefficient increases with the target height or the
antenna height when both of them are smaller than 1000 m, otherwise,
the reflection coefficient decreases, where the condition of low-grazing
angle is not satisfied. This is due to the angle of reflection increases
with the target and the antenna height increasing in (14).
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Figure 2. Reflection coefficient amplitude surface and its contour
versus target and antenna height.
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3. MIMO RADAR MULTIPATH SIGNAL

In this section, we consider the problem of detecting a stationary or
slowly moving point target immersed in a multipath rich scattering
environment.

For simplicity, assume that all antennas and targets are on the
same plane, which can be easily extended to three-dimension (3-D).
Consider a MIMO radar system with Mt transmit and Mr receive
antennas. Assume the transmit antennas located at Tk(xtk, ytk), k =
1, . . . , Mt and the receive antennas located at Rl(xrl, yrl), l =
1, . . . , Mr. The set of transmitted waveforms in lowpass equivalent
form is

√
E/Mtsk (t) , k = 1, . . . , Mt, where

∫
T |sk(t)|2 = 1, E

is the total transmitted energy, and T is the waveforms’ duration.
Normalization by Mt makes the total energy independent of the
number of transmitters. To achieve the orthogonality among the
transmitted waveforms, we assume that

∫
Tsk(t)s∗m(t− τ)dt = 0 for

all k 6= m, where {·}∗ is the complex conjugate operator.
In the presence of multipath, considering atmosphere refraction

and the curved earth effect, the reflected radar signals from a point
target include four part: directly-directly (dd), directly-reflected (dr),
reflected-directly (rd), and reflected-reflected (rr) paths. Assume the
point target located at B(x0, y0) and reflected point in ground located
at Pi(xi, yi), i = 1, 2, as shown in Figure 3.

The received signal of MIMO radar with widely separated
antennas is given by [2]

rdd(t) =
√

E/Mtδ0sk(t) exp[−j2πfc(τtk(Tk, B)+τrl(Rl+B))]+e(t)(25)

where δ0 is the complex amplitude due to the target characteristics,
fc the carrier frequency, and e(t) the Gaussian noise. The direct path
delay τtk(Tk, B) and τrl(Rl, B) are given as follows:

τtk(Tk, B) =

√
(xtk − x0)

2 + (ytk − y0)
2

c
(26)

τrl(Rl, B) =

√
(xrl − x0)

2 + (yrl − y0)
2

c
(27)

Similarly, we can get directly-reflected path echo signal as follows:

rdr (t) =
√

E

Mt
ζ1δ0sk (t) hdr

kl +e (t) (28)

where hdr
kl = exp [−j2πfc (τtk (Tk, B) + τ0 (B, P2) + τrl (P2, Rl))].
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Figure 3. Multipath geometry for MIMO radar. (a) Directly-
directly path, (b) directly-reflected path, (c) reflected-directly path,
(d) reflected-directly path.

And the reflected-directly path echo signal as

rrd (t) =
√

E

Mt
ζ2δ0sk (t) hrd

kl +e (t) (29)

where hrd
kl = exp [−j2πfc (τtk (Tk, P1) + τ0 (P1, B) + τrl (Rl, B))].

The reflected-reflected path echo signal as

rrr (t) =
√

E

Mt
ζ3δ0sk (t) hrr

kl+e (t) (30)

where hrd
kl =exp[−j2πfc(τtk(Tk, P1)+τ0(P1, B)+τ0(B, P2)+τrl(P2, Rl))],

ζi, i = 1, 2, 3 is the reflect coefficient. Because the grazing angles are
different, the reflect coefficients satisfy ζ1 6= ζ2 6= ζ3 and ζ3 = ζ1ζ2. The
time delay τtk(Tk, P1), τrl(P2, Rl), τtk(P1, B), τ0(B,P2) are respectively
given by





τtk(Tk, P1) =
√

(xtk−x1)2+(ytk−y1)2

c

τrl(P2, Rl) =
√

(x2−xrl)
2+(y2−yrl)

2

c

τtk(P1, B) =
√

(x1−x0)
2+(y1−y0)2

c

τ0(B, P2) =
√

(x0−x2)2+(y0−y2)2

c

(31)
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The received signal of a pair of transmit-receive antennas is

rkl(t) = rdd(t) + rdr(t) + rrd(t) + rrr(t) (32)

The received signal for whole MIMO radar with multipath is

r(t) =
Mt∑

k=1

Mr∑

l=1

rkl(t) + e(t) (33)

4. FLUCTUATING TARGET MULTIPATH DETECTOR
OF MIMO RADAR

In this section, we analyze the detection performance, under the
multipath environment with the different Swerling scattering models,
for MIMO radar with widely separated antennas. The Swerling
scattering model is commonly used in the radar community to model
the distribution and the temporal correlation of the target RCS. The
Swerling scattering model includes four different cases for modeling
both slow and fast fluctuations of the RCS [35], i.e., Swerling 1, 2, 3
and 4.

We formulate the MIMO radar detection problem. As the
following binary hypothesis test

{
H0 : no target exist
H1 : target exist (34)

Now we consider the fluctuating target base on white Gaussian
noise environment of N samples noncoherent detection in low-grazing
angle. Assume that target component amplitude and phase are
unknown. Thus, the independent data sample rkl(n) is a complex
constant which comprises of real amplitude m̃kl and phase θkl, mkl =
m̃kl exp(jθkl). The data also contains white Gaussian noise ekl.
Without loss of generality, we assume that all noise power spectrum is
β2. Then, the data is given by [35]

rkl(n) = mkl + ekl (35)

where m̃kl = α(1 + ρ
(dr)
kl + ρ

(rd)
kl + ρ

(rr)
kl ), α is the amplitude due

to the target characteristics, and ρ
(·)
kl are the amplitude of reflection

coefficients of k − lth antenna pair.
Notice the noncoherent nature of the MIMO radar de-

tector. Assume that one pair of antennas have N dimen-
sional vector z, thus, in MIMO radar system we can get a
G = MtMrN dimensional vector, i.e., Z = [z1, . . . , zMtMr ] =
[z11(1), . . . , z11(n), z21(1), . . . , z21(n), . . . , zkl(n), . . . ,
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zMtMr(1), . . . , zMtMr(n)], k = 1, . . . , Mt, l = 1, . . . Mr, n = 1, . . . , N .
The joint probability density function is [35]

pZ (Z|H0) =
Mt∏

k=1

Mr∏

l=1

N∏

n=1

2zkl(n)
β2

e−z2
kl(n)/β2

(36)

pZ(Z|H1) =
Mt∏

k=1

Mr∏

l=1

N∏

n=1

2zkl(n)
β2

e
−(z2

kl(n)+m̃2
kl)

/
β2

I0

(
2m̃klzkl(n)

β2

)
(37)

where I0(·) is Bessel function, and it’s likelihood ratio test (LRT) and
logarithm LRT are respectively given by

ΛMIMO =
Mt∏

k=1

Mr∏

l=1

N∏

n=1

e−m̃2
kl/β2

I0

(
2m̃klzkl(n)

β2

)
> H1

< H0
γ (38)

lnΛMIMO =
Mt∑

k=1

Mr∑

l=1

N∑

n=1

{
−m̃2

kl

β2
+ln

[
I0

(
2m̃klzkl(n)

β2

)]}
> H1

< H0
ln γ (39)

(38) can be simplified as
Mt∑

k=1

Mr∑

l=1

N∑

n=1

ln
[
I0

(
2m̃klzkl(n)

β2

)]
> H1

< H0
ln γ +

m̃2
kl

β2
= T′ (40)

where, depending on the nature of the Bessel function, (39) can be
further simplified as

z′ =
Mt∑

k=1

Mr∑

l=1

N∑

n=1

z2
kl(n) > H1

< H0

T′β4

m̃2
(41)

where m̃2 = N
Mt∑
k=1

Mr∑
l=1

m̃2
kl, and (35) demonstrates that z′ is the

sufficient statistic.
In H0, the Characteristic Function (CF) of z′ is given by [35]

Cz′(q; G) =
Mt∏

k=1

Mr∏

l=1

(
1

1− jq

)klN

(42)

while in H1, the CF of z′ is given by

Cz′(q) =
Mt∏

k=1

Mr∏

l=1

(
1

q + 1

)klN

e−klNσ[q/1+q] (43)

where σ = m̃2
/
β2 is the signal-to-noise ratio (SNR).
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For Swerling 1, the CF in H1 and H0 are respectively are given
by [35]

Cz′(q; σ,G) =
Mt∏

k=1

Mr∏

l=1

(
1

q + 1

)klN

e−klNσ[q/(q+1)] (44)

Cz′(q;G) =
Mt∏

k=1

Mr∏

l=1

(
1

1− jq

)klN

(45)

The expectations of the target CF can be extracted from the RCS
(also is the SNR), which is given by

Cz′−swerling1(q;σ,G) =
∫ ∞

0
pσ (σ) Cz′(q;σ,G) (46)

where pσ (σ) is the SNR probability density function (PDF) and σ̄ the
mean of the SNR.

For Swerling 1, the distribution of SNR’s PDF satisfies the
following exponential distribution

pσ (σ) =
1
σ̄

e−σ/σ̄ (47)

Plugging (47) and (44) into (46), we can get the average CF of
signal fluctuation as

Cz′−swerling1(q; σ,G) =
Mt∏

k=1

Mr∏

l=1

1

(1 + q)klN−1 [1 + q(1 + klNσ)]
(48)

for the hypothesis H1, the PDF can be calculated by Fourier
transformation as [35]

pz′
(
z′|H1

)
=

1
2π

∫ ∞

−∞
Cz′(q; σ̄, G)e−jqz′dq =

1
Gσ̄

(
1 +

1
Gσ̄

)G−2

×I

[
z′

(1 + 1/Gσ̄)
√

G− 1
, G− 2

]
e−z′/(1+Gσ̄) (49)

The detection probability of the Swerling 1 is given by

PD1 =
∫ ∞

Γ
pz′

(
z′|H1

)
dz′

=
∫ ∞

Γ

1
Gσ̄

(
1+

1
Gσ̄

)G−2

I

[
z′

(1+1/Gσ̄)
√

G− 1
, G−2

]
e−z′/(1+Gσ̄)dz′

=
(

1 +
1

Gσ̄

)
(50)
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where Γ is the threshold.
In H0, the PDF of z′ is given by

Pz′
(
z′|H0

)
=

(z′)G−1

(G− 1)!
e−z′ (51)

while the false alarm probability of z′ is given by

PFA =
∫ ∞

T

(z′)G−1

(G− 1)!
e−z′dz′ = 1− I

(
Γ√
G

,G− 1
)

(52)

From (52), the false alarm probability depends only on the
threshold and number of sampling. Thus, for four Swerling models, if
the threshold is given, the false alarm probabilities of different Swerling
models are equal to each other.

For Swerling 2, the received signals are uncorrelated among
different pluses, and the SNR at each sampling points are different.
Then the CF of z′ is given by

C̄z′−swerling2(q; σ̄, G) =
[

1
1 + q

∫ ∞

0
Pσ(σ)e−σ

(
q

1+q

)
dσ

]G

=
1

[1 + q (1 + σ̄)]G
(53)

The PDF of SNR in Swerling 2 is the same as the one of Swerling 1.
Thus, the PDF of z′, under the hypothesis H1, is given by

Pz′
(
z′|H1

)
=

1
2π

∫ ∞

−∞
Cz′(q; σ̄, G)e−jqz′dq

=
z′G−1e−z′/1+σ̄

(1 + σ̄)G (G− 1)!
(54)

the detection probability of the Swerling 2 is

PD2 =
∫ ∞

Γ
pz′

(
z′|H1

)
dz′ =

∫ ∞

Γ

z′G−1e−z′/(1+σ̄)

(1 + σ̄)G (G− 1)!
dz′

= 1− I

(
Γ

(1 + σ̄)
√

G
, G− 1

)
(55)

For Swerling 3, we can use a similar process to Swerling 1. Thus,
the PDF of SNR distributed as chi-square distribution is given by

Pσ(σ) =
4σ

σ̄
e−2σ/σ̄ (56)
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and the CF is

C̄z′−swerling3(q; σ̄, G) =
∫ ∞

0
Pσ(σ)Cz′(q; σ,G)dσ

=
(q + 1)G

[(1 + σ̄) q + 1]2G
(57)

Thus, under the hypothesis H1, the PDF of z′ is given by

Pz′
(
z′|H1

)
=

1
2π

∫ ∞

−∞
Cz′(q; σ̄, G)e−jqz′dq

=
1

Gσ̄

(
1 +

2
Gσ̄

)G−2

×I

(
1+

z′

1+(Gσ/2)
− 2(G−2)

Gσ̄
,G−2

)
e−z′/(1+Gσ̄/2)(58)

The detection probability of the Swerling 3 is

PD3 =
∫ ∞

Γ
pz′

(
z′|H1

)
dz′

=
(

1 +
2

Gσ̄

)G−2 (
1 +

Γ
1 + (Gσ̄/2)

− 2 (G− 2)
Gσ̄

)

×e−Γ/(1+Gσ̄/2) (59)

For Swerling 4, we can use a similar process to Swerling 2. Thus,
the PDF of SNR is described as chi-square distribution, being same as
(56). The detection probability is given by

PD4 = cG
G∑

k=0

G!
k! (G− k)!

(
1− c

c

)G−k

×
[

2G−k−1∑

l=0

e−cT (cΓ)l

l!

]
(60)

where c = 1/1 + (σ̄/2).

5. NUMERICAL SIMULATIONS

In this section, we consider several numerical examples that compare
the performance of detection for different Swearling models with or
without considering multipath effects. In our first example, we consider
MIMO radar with three receive antennas and two transmit antennas.
The transmit array is fixed at 10 m, 80m, the receive array fixed at
100m, 200m, 300 m, the target’s height fixed at 300m, the range to
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target fixed at 13 km, the radar frequency 2 GHz, and the dielectric
constant 0.5. According to the heights of antennas (10m, 80m, 100 m,
200m and 300 m), the surface roughnesses can be computed as 0.55,
0.33, 0.31, 0.27 and 0.26. We assume that the noise is Gaussian
distribution. We consider the performance of the detection for MIMO
radar in different probability of false alarm.

Figure 4 depicts the detection probability for Swerling 1–4 targets
using the square-law detectors, with and without considering multipath
effects, respectively, as a function of the SNR. The probability of false
alarm is fixed at PFA = 10−5, 10−6, 10−7, and 10−8, respectively.
For the same SNR and false alarm, we can see that the detection
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Figure 4. Detection performance for Swerling models, (a) Swerling 1,
(b) Swerling 2, (c) Swerling 3, (d) Swerling 4, PFA = 10−5 multipath
(blue curve), PFA = 10−6 multipath (green curve), PFA = 10−7

multipath (red curve), PFA = 10−8 multipath (cyan curve), PFA =
10−5 non-multipath (magenta curve), PFA = 10−6 non-multipath
(yellow curve), PFA = 10−7 non-multipath (black curve), PFA = 10−8

non-multipath (+ curve).
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performance with multipath respectively outperforms the one without
considering multipath effect for all target cases. This is due to that
using the multipath effects can improve the SNR.

Figure 5 depicts the performance comparison of four Swerling
scatter models with and without multipath effect, respectively, where
the probability of false alarm is set at PFA = 10−5. Form Figure 5, we
can see that the detection performance of Swerling 2 outperforms the
ones of the other targets models. This is due to the heavier tail of the
probability density function of the Swerling 2 [35]. In the case without
considering multipath effects, the SNR should be more than 10 dB to
detect targets.
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Figure 5. Comparison of four Swerling models, Swerling 1 multipath
(· curve), Swerling 2 multipath (¦ curve), Swerling 3 multipath (?
curve), Swerling 4 multipath (◦ curve), Swerling 1 non-multipath (+
curve), Swerling 2 non-multipath (∇ curve), Swerling 3 non-multipath
(¤ curve), Swerling 4 non-multipath (∗ curve).

Table 1. Requirement of SNR (dB) for PD = 80%.

(a) Swerling 1 (b) Swerling 2

NA 2 3 4 NA 2 3 4

SNR-M 7.15 1.48 −2.34 SNR-M 4.98 −4.96 −11.13

SNR-N 26.44 20.45 18.65 SNR-N 19.98 13.64 9.87

(c) Swerling 3 (d) Swerling 4

NA 2 3 4 NA 2 3 4

SNR-M 4.67 −0.93 −4.89 SNR-M 4.14 −3.44 −7.16

SNR-N 20.13 17.59 8.78 SNR-N 10.12 9.74 8.78

NA: Number of antennas; SNR-M: SNR of multipath; SNR-N: SNR of
no-multipath.
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Figure 6 depicts the detection probability of four Swerling scatter
models with different antenna numbers, as a function of SNR. The
probability of false alarm is set at PFA = 10−6. We can see that
with higher number of transmit antennas, receive antennas obtain the
better detection performance. For the convenience of comparison, the
requirements of SNR for PD = 80% are shown in Table 1, according
to Figure 6. This improvement of detection results from the spatial
diversity gain.

To take the target height into account, Figure 7 depicts the
detection performance of Swerling 1–4 models with target height,
respectively. The heights of target are fixed at 200 m, 400m, 600 m
and the probabilities of false alarm fixed at Pfa = 10−4. Figure 7
shows that the detection performance varies with the height of target.
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Figure 6. Detection performance of Swerling models with different
number antennas, (a) Swerling 1, (b) Swerling 2, (c) Swerling 3,
(d) Swerling 4, 2×2 multipath (· curve), 3×3 multipath (¦ curve), 4×4
multipath (? curve), 2×2 non-multipath (+ curve), 3×3 non-multipath
(∇ curve), 4× 4 non-multipath (¤ curve).
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Figure 7. Detection performance of Swerling models varies with
the height of target, (a) Swerling 1, (b) Swerling 2, (c) Swerling 3,
(d) Swerling 4.

Furthermore, when the height of target increases attaining 1200 m, the
multipath effects decrease, which validates the results in Figure 2.

6. CONCLUSIONS

In this paper, we introduce the concept of reflection coefficient under
considering curved earth effect, and introduce the general signal model
for MIMO radar in low-grazing angle, also compare the probabilities of
detection of fluctuating targets with multipath and without multipath
effects. The simulation results have demonstrated that with higher
number of transmit antennas, receive antennas have higher probability
of detection for all of the Swerling scatter models. Furthermore, the
results of simulation have shown the importance of multipath effects for
target detection in low-grazing angle. The target detection considering
clutter in low-grazing angle will be considered for MIMO radar in the
near future.
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