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Abstract—The synthetic aperture radar (SAR) is a widely used
instrument for high-resolution imaging from aircraft or satellite
platforms. In the paper, the problem of the defocusing of multi-
look SAR images by uncompensated phase errors presented in the
received data is analyzed. It is shown that the phase errors on a
multi-look processing interval can be effectively described in terms of
local quadratic and local linear phase errors. Approximate analytical
expressions are derived to describe the azimuth resolution degradation.
Criteria for acceptable phase errors are given. The obtained results are
verified by numerical simulations. The approach is illustrated by two
typical motion errors: slow deflections of a SAR platform trajectory
from a reference flight line and periodic trajectory deviations.

1. INTRODUCTION

Synthetic aperture radars (SARs) are used in many applications due to
their ability to perform high-resolution imaging of Earth’s surface [1–
4]. The multi-look processing technique is widely used in such systems
to suppress the speckle noise and reveal fine details in SAR images [1–
3, 5–8], as well as for other applications [9, 10]. The principle of
such processing is based on non-coherent averaging of several SAR
images of the same scene built from the data collected on different
segments of the flight trajectory. Here, as in single-look SARs,
the high range resolution is commonly achieved by using a linear
frequency modulation (LFM) of the transmitted radar pulses, whereas
the high azimuth resolution is obtained by a coherent processing of
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the consequent backscattered radar pulses. The knowledge of the
actual aircraft trajectory is required to realize such processing. The
requirements to the precision of the trajectory measurements are very
high. Usually, various autofocus techniques are used to estimate
the uncompensated errors in the SAR data [1, 2, 11, 12]. However,
despite of all efforts, some uncompensated phase errors are inevitably
presented in SAR data leading to a degradation of the SAR image
quality [13–20].

The extent of the image quality degradation depends on many
factors such as the radar hardware parameters (particularly, the radar
wavelength), the reference flight parameters (the flight velocity, the
altitude, and the antenna beam orientation), the required azimuth
resolution, as well as peculiarities of the phase errors that are typical
for the SAR platform and the radar installation, and so on.

The degradation of the SAR image quality can be considered
as distortions of the synthetic aperture pattern (SAP), in particular,
the broadening of the main lobe and the raising of the side lobes.
In this paper, the azimuth resolution degradation (defocusing) is
analyzed since this effect is more important than the problem of the
side lobes for the multi-look processing, especially for airborne SAR
systems [5, 6, 21]. Thus, the influence of the phase errors on the
azimuth resolution of multi-look SAR images is analyzed.

A new approach to the representation of an arbitrary phase error
function by local linear phase errors (LLPE) and local quadratic phase
errors (LQPE) is introduced. These local errors are related to the
coefficients of the Taylor series expansions of the error function on
the time intervals comparable to the time of the single-look synthesis.
Such local consideration is shown to be useful for the analysis of the
distortions of the multi-look SAP. The comprehensive analysis of the
resolution degradation of the multi-look SAP is provided.

The known approaches to the low-frequency phase error
analysis [1, 2, 14] typically use various models (quadratic, cubic,
polynomial, harmonic errors, etc.) to describe such errors. We
shall show that it is sufficient to introduce only local linear and
local quadratic phase errors in order to describe qualitatively and
quantitatively the effect of all types of low-frequency errors on multi-
look SAR images. The proposed approach allows to reveal the nature
of phase errors in particular SAR images and to develop approaches to
their compensation.

The paper is organized as follows. In Section 2, the idea of the
phase error local approximations is described. The defocusing of the
single-look SAP by the LLPE and LQPE is examined in Section 3. The
influence of the LLPE and LQPE on the multi-look SAP is analyzed
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in Section 4. Approximate analytical expressions for the degradation
of the azimuth resolution are derived and criteria for the acceptable
phase errors are given both for the LQPE and LLPE. The obtained
relations are supported by numerical simulations. The application of
the proposed approach is illustrated on two typical cases of the phase
errors:

1) The quadratic phase error on a multi-look processing interval
(Section 5) that represents slow deflections of the SAR platform
trajectory from the reference flight line.

2) The harmonic phase error (Section 6) that describes periodic
trajectory deviations induced, for example, by an autopilot
operation or by a cross-track antenna motion due to the aircraft
roll motion.

Section 7 illustrates the described effects of the phase errors on multi-
look SAR images in the case of real SAR data processing.

2. MULTI-LOOK SAR PROCESSING AND LOCAL
APPROXIMATION OF PHASE ERRORS

The formation of the synthetic aperture is a kind of matched
filtering [1, 3]. It can be represented as the convolution of the received
radar signal s(t) with the reference function h(t) in the time domain.
For the multi-look processing, several SAR images (called SAR looks)
are formed by dividing the reference function on segments of the
duration TS (the single-look interval of synthesis) centered at the
moments of time tL:

ISL(t, tL) =

∣∣∣∣∣∣∣
1
TS

TS/2∫

−TS/2

s(t + τ + tL)w(τ/TS)h(τ + tL)dτ

∣∣∣∣∣∣∣

2

. (1)

Here ISL(t, tL) is the azimuth line of the SAR look with the index
L, L = 0, ±1, ±2, . . . , ±NL/2, where NL is the number of looks (an
odd number). The azimuth time t is related to the azimuth position
of an aircraft X = V t on the reference flight line. V is the aircraft
flight velocity. In signal processing schemes with non-overlapping
intervals. The central moments are determined as tL = LTS . The
time of synthesis TS determines the azimuth resolution. The maximum
number of the looks is limited by the maximum observation time of a
ground target. The weighting window w(τ/TS) is applied to control
the level of the side lobes of the synthetic aperture pattern (SAP). A
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multi-look SAR image is built by averaging all SAR looks to suppress
the speckle noise:

IML(t) =
1

NL

NL/2∑

L=−NL/2

ISL(t, tL). (2)

Actually, the SAR processing is a two-dimensional procedure, and
the convolution (1) should be calculated for the signal taken along the
range migration curves [1, 3]. However, in this paper we shall assume
that uncompensated trajectory deviations responsible for the phase
errors in the received data are so small that the range cell migration
correction (RCMC) is performed accurately. In this case, the problem
of the azimuth resolution degradation can be considered in the azimuth
direction only.

In order to derive an expression describing the synthetic aperture
pattern (SAP), one should substitute a point target signal into the
convolution (1). The received signal and the reference function are
usually considered as signals with the linear frequency modulation
(LFM) on the Doppler frequency [1, 3]:

s(t) = exp
[
2πi

(
FDC t + FDRt2/2

)
+ iϕE(t)

]
, (3)

h(τ) = exp
[−2πi

(
FDC τ + FDRτ2/2

)]
. (4)

Here FDC is the Doppler centroid, and FDR is the Doppler rate. The
term with ϕE(t) represents the phase error in the received signal.

We shall assume that the phase error is a low-frequency error with
respect to the synthesis time TS so that its highest frequency fmax

E is
limited by

fmax
E TS < 1. (5)

However, for the whole multi-look time processing interval

−TML/2 ≤ t ≤ TML/2, TML = TSNL, (6)

the phase error function ϕE(t) can be considered as an arbitrary
function. Such behavior of the phase error is typical for many practical
airborne SAR systems. Under the assumption (5), the phase error can
be approximated as

ϕE(t + τ + tL) ≈ ϕE(tL) + ϕ′E(tL)(t + τ) + ϕ′′E(tL)(t + τ)2/2. (7)

This approximation is valid on short time intervals of the order of TS

centered at the moments of time t + tL, and in this sense it is a local
approximation of the phase error. The constant phase term ϕE(tL)
does not affect the SAP. The linear phase error term ϕ′E(tL)(t + τ)
shifts the synthetic pattern (or, in other words, declines the synthetic
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beam) of this look. The quadratic phase error term ϕ′′E(tL)(t + τ)2/2
leads to broadening (defocusing) of the main lobe of the SAP.

Thus, we introduce two types of the local phase errors in our
consideration:

1) The local linear phase error (LLPE)

αEL = αE(tL) =
1
2π

ϕ′E(tL)TS , (8)

2) The local quadratic phase error (LQPE)

βEL = βE(tL) =
1
2π

ϕ′′E(tL)T 2
S . (9)

The LLPE and LQPE affect the SAP in different ways, and their
accounting is principally important for the multi-look processing.

The time of the single-look synthesis TS , which is the characteristic
time of the local approximation (7), is used to introduce dimensionless
LLPE (8) and LQPE (9). For the convenience sake, we also introduce
the following dimensionless parameters:

ξ = τ/TS , η = FDRTSt, αDC = FDCTS , βDR = FDRT 2
S . (10)

Note that the dimensionless azimuth coordinate η is related to the
azimuth coordinate X as

η = FDRTSX/V. (11)

By substituting the signal (3) and the reference function (4)
into the convolution integral (1), accounting the phase error
approximation (7) and introducing the dimensionless notations (8)–
(10), the following convenient expression for the SAP is derived:

ISL(η, αEL, βEL)

=

∣∣∣∣∣∣∣

1/2∫

−1/2

w(ξ) exp
[
2πi

{
αEL+

(
1+

βEL

βDR

)
η

}
ξ

]
exp[πiβELξ2]dξ

∣∣∣∣∣∣∣

2

. (12)

The influence of the local phase errors is illustrated in Fig. 1. The
dash curves depict synthetic beams in the error-free case. The solid
curves in the figure show the beam distortions for three cases: the
declination of a beam caused by the LLPE (Fig. 1(a)), the defocusing
(the broadening) of a beam due to the LQPE (Fig. 1(b)), and both the
declination and the defocusing of a beam in the presence of the both
types of the local phase errors (Fig. 1(c)). Thus, each of SAR looks is
distorted by its own LLPE αEL and LQPE βEL before being summed
up into a multi-look SAP. The dominating impact of the LLPE or
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Figure 1. The influence of the local phase errors on SAR look beams.

LQPE depends on the behavior of the phase error on the multi-look
processing interval.

As far as the phase error is assumed to be a low-frequency error
as compared to the synthesis time (5), the effect of the side lobes is
insignificant for the overall SAR image quality, and, therefore, it will
not be considered in this paper.

The azimuth resolution is typically defined as the 3-dB-level width
of the main lobe of the SAP. However, in the case of strong phase
errors, the main lobe can be significantly distorted, and the 3-dB-level
definition cannot be applied effectively. Instead, the main lobe width
can be adequately characterized by the integral resolution defined as

ρ =
1

Imax
SL/ML

∞∫

−∞
ISL/ML(η)dη, (13)

where Imax
SL/ML is the maximum value of the SAP.

In the error-free case, αEL = 0 and βEL = 0, the synthetic aperture
pattern (12) does not depend on the look index L and takes the
following simple form:

I(η) =

∣∣∣∣∣∣∣

1/2∫

−1/2

w(ξ) exp [2πiηξ] dξ

∣∣∣∣∣∣∣

2

. (14)

For the rectangular window wR(ξ)

wR(ξ) =
{

1, |ξ| ≤ 1/2,
0, |ξ| > 1/2,

(15a)
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and for the Hamming window wH(ξ),

wH(ξ) =
{

1 + (23/27) cos(2πξ), |ξ| ≤ 1/2
0, |ξ| > 1/2. (15b)

normalized so that ∣∣∣∣∣∣∣

1/2∫

−1/2

wR,H(ξ)dξ

∣∣∣∣∣∣∣

2

= 1, (16)

one can derive the following explicit expressions for the SAPs:

IR(η) =
∣∣∣∣
sin(πη)

πη

∣∣∣∣
2

, (17a)

IH(η) =
∣∣∣∣
sin(πη)

πη

∣∣∣∣
2 [

1− η2(4/27)
1− η2

]2

. (17b)

The integral resolution (13) for the SAPs (17) is, respectively,

ρR = 1.0, (18a)

for the rectangular window, and

ρH ≈ 1.363, (18b)

for the Hamming window. The corresponding 3-dB resolutions are
ρ3 dB

R ≈ 0.886 and ρ3 dB
H ≈ 1.30. The azimuth resolution in meters can

be easily found from (11) via the following relation

ρXR/H = ρR/H
V

|FDR|TS
. (19)

The application of the weighting window reduces the side-lobes level
and broadens the main lobe of the synthetic aperture pattern. The
dimensionless integral resolution ρR/H is, actually, the broadening
factor of the main lobe.

3. INFLUENCE OF LLPE AND LQPE ON THE
SINGLE-LOOK SAP

In this section, the influence of the LLPE and LQPE on the single-look
SAP is analyzed, and criteria for acceptable phase errors are given. The
consideration is based on the expression (12).

The LLPE αEL appears in (12) in the linear phase term with
respect to ξ. The presence of the LLPE does not deteriorate the
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resolution of the single-look SAP but only shifts it so that the
maximum of the SAP is located at

ηL(αEL, βEL) = − αEL

1 + βEL/βDR
. (20)

The position of the maximum depends not only on the LLPE αEL itself
but also on the ratio of the LQPE βEL to the dimensionless Doppler
rate βDR. It is assumed that that the LQPE βEL is relatively small,
so that |βEL/βDR| < 1. The value of βDR is always negative and its
absolute value is the time-bandwidth product (TBP) of the processed
signal. Depending on the sign of the LQPE βEL the shift caused by the
LLPE αEL can be intensified (if βEL > 0) or weakened (if βEL < 0).

If the shift of the SAP maximum (20) on the half of the resolution
cell is assumed to be an acceptable error then the simple criterion for
the acceptable LLPE can be written

|ηL(αEL, βEL)| < ρR/H/2. (21)

The defocusing effect of the LQPE on the single-look SAP does
not depend on the LLPE. Therefore, while considering the LQPE we
can assume that the LLPE is zero, αEL = 0. Under this assumption
the expression (12) can be written as

ISL(η,βEL)=

∣∣∣∣∣∣∣

1/2∫

−1/2

w(ξ)exp
[
2πi

(
1+

βEL

βDR

)
ηξ

]
exp

[
πiβELξ2

]
dξ

∣∣∣∣∣∣∣

2

. (22)

The LQPE affects the SAP in two ways. First, the LQPE appears
in the coefficient (1 + βEL/βDR) in the linear phase term with respect
to ξ in (22). This coefficient is a scaling factor: it stretches or
contracts the SAP in the azimuth coordinate η. This linear scaling
effect essentially depends on the TBP value βDR. Second, the LQPE
appears in the quadratic phase term with respect to ξ in (22). This
term describes the quadratic defocusing effect. Both terms contribute
to a degradation of the SAP.

A more in-depth analytical investigation of the SAP degradation
based on (22) is complicated; and further analysis was performed
numerically. The results on the degradation of the SAP caused by
the LQPE are presented in Fig. 2 for high and low values of βDR. The
rectangular and Hamming weighting windows are considered.

For high values of the TBP, for example for βDR = −200
(Figs. 2(a) and 2(b)), the broadening of the SAP is mainly determined
by the quadratic defocusing effect (the quadratic phase term in (22)).
In this case, the SAP degradation is symmetrical with respect to the
sign of the LQPE βEL. For low values of the TBP, for example for
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(a) (b)

(c) (d)

Figure 2. The degradation of the SAP caused by the LQPE in the
cases of (a), (b) the high TBP value (βDR = −200) and (c), (d) the
low TBP value (βDR = −20) for (a), (c) the rectangular window and
(b), (d) the Hamming window.

βDR = −20 (Figs. 2(c) and 2(d)), the degradation of the SAP depends
also on the linear scaling effect (the linear phase term in (22)), and
the SAP behavior depends on the sign of the LQPE βEL (stretching or
contracting in the azimuth direction).

One can note oscillations on the highly defocused main lobe of
the SAP when the rectangular window is used (Figs. 2(a) and 2(c)).
The application of the Hamming window results in smoothing of these
ripples (Figs. 2(b) and 2(d)).

Disregarding the oscillations that appear in the case of the
rectangular window, the maximum value of the SAP is achieved at
η = 0. This maximum value is determined by the following expression:

Imax
SL (βEL) = ISL(0, βEL) =

∣∣∣∣∣∣∣

1/2∫

−1/2

w(ξ) exp[πiβELξ2]dξ

∣∣∣∣∣∣∣

2

. (23)

It should be noted that the degradation of the maximum value
is completely determined by the quadratic defocusing effect (the
quadratic phase term in (22)). The degradation can be analyzed both
numerically and analytically. Assuming that the LQPE is small and
expanding the quadratic-phase exponent in a series up to the second-
order terms as

exp
[
πiβELξ2

] ≈ 1 + iπβELξ2 − (
πβELξ2

)2
/2 (24)
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one can find from (23) the following approximations for the SAP
maximum for the rectangular window and for the Hamming window,
respectively:

Imax
SLR/H(βEL) ≈ 1

1 + kR/Hβ2
EL

, kR = 0.055, kH = 0.024. (25)

These analytical approximations are compared with numerical
computations in Fig. 3, and a rather good correspondence of these
results should be noted.

Figure 3. The degradation of the SAP maximum value caused by the
LQPE.

Substituting (22) into the definition of the azimuth resolution (13),
after some transformations we find

ρ(βEL) =
1(

1 + βEL
βDR

)

1/2∫
−1/2

[w(ξ)]2dξ

∣∣∣∣∣
1/2∫
−1/2

w(ξ) exp [πiβELξ2] dξ

∣∣∣∣∣
2 . (26)

The numerator represents just the error-free integral resolution
values (18):

ρR/H =

1/2∫

−1/2

[wR/H(ξ)]2dξ. (27)

The two factors in the denominator in (26) represent exactly the linear
scaling effect and the quadratic defocusing effect. Substituting (25)
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into (26) we obtain analytical expressions for the resolution

ρR/H(βEL) = ρR/H

1 + kR/Hβ2
EL

1 + βEL/βDR
(28)

for the rectangular and the Hamming windows, respectively. These
approximate analytical dependences are shown in Fig. 4 along with
results of numerical calculations. From this figure one can see that the
expressions (28) can be used at least for |βEL| ≤ 10.

(a) (b)

Figure 4. The degradation of the azimuth resolution caused by the
LQPE for (a) the low TBP and (b) the high TBP values.

If the linear scaling effect can be neglected (when |βEL/βDR| ¿ 1)
then the quadratic defocusing effect dominates and the following simple
numerical criteria for the acceptable LQPE can be found. For example,
a 25% resolution degradation corresponds to

Imax
SLR/H

(
β25%

ELR/H

)
= 0.8, β25%

ELR ≈ 2.0, β25%
ELH ≈ 3.2, (29a)

and a 2-times resolution degradation corresponds to

Imax
SLR/H

(
β×2

ELR/H

)
= 0.5, β×2

ELR ≈ 3.5, β×2
ELH ≈ 6.3. (29b)

A more general criterion for the acceptable LQPE can be found
analytically from (28). For example, for the Hamming window, it yields

βTH
ELR/H (∆ρ, βDR) =

1+∆ρ
βDR

±
√(

1+∆ρ
βDR

)2
+ 4kR/H∆ρ

2kR/H
, (30)

where ∆ρ = 1− ρ(βTH
EL )/ρ is the relative resolution degradation.

The resolution degradation has also been investigated numerically
and the results are given in Fig. 5. One can observe that for low values
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(a) (b)

Figure 5. Degradation of the azimuth resolution versus the βEL and
βDR, (a) for the rectangular window, and (b) for the Hamming window.

of βDR the resolution degrades faster for positive values of the LQPE
βEL due to the scaling effect. For high values of βDR, the resolution
degradation becomes insensitive to the sign of the LQPE, and it is
determined mainly by the quadratic defocusing effect.

4. INFLUENCE OF LLPE AND LQPE ON MULTI-LOOK
SAP

The multi-look SAP is built by averaging the single-look SAPs of
all SAR looks. Each of the single-look SAPs is shifted by its LLPE
according to (20) and defocused by its LQPE according to (28). The
presence of different LLPEs on the multi-look processing interval leads
to an additional degradation of the resolution of the multi-look SAP,
and this effect can even dominate over the LQPE defocusing effect.

In order to analyze the defocusing effect of the LLPEs, we shall
assume that all single-look SAPs are defocused by the same LQPE βE

which corresponds to the worst LQPE defocusing effect among all SAR
looks. We shall also assume that many looks are summed up and their
LLPEs and the shifts (20) are randomly and uniformly distributed
within the given intervals:

|αEL| ≤ αE max, |ηL(αEL, βE)| ≤ ηE max. (31)

Such a mathematical model allows us to find an approximate analytical
solution that describes the influence of the LLPEs on the resolution of
the multi-look SAP.

Following the definitions of the multi-look SAP (2) and the integral
resolution (13), the multi-look resolution can be determined as

ρML(αE max, βE) =

∞∫
−∞

IML(η, αE max, βE)dη

Imax
ML (αE max, βE)

, (32)
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IML(η, αE max, βE) =
1

NL

NL/2∑

L=−NL/2

I(η, αEL, βE). (33)

Changing the order of the integration and summation in the numerator
of (32) and taking into account that for each single-look SAP (see (26)–
(27))

∞∫

−∞
I(η, αEL, βE)dη = ρ(βE)Imax

SL (βE) =
ρ

1 + βE/βDR
, (34)

one can easily find the numerator of (32):
∞∫

−∞
IML(η, αE max, βE)dη =

1
NL

NL/2∑

L=−NL/2

∞∫

−∞
I(η, αEL, βE)dη

=
ρ

1 + βE/βDR
. (35)

By using the above introduced mathematical model of the
uniformly distributed shifts, the maximum of the multi-look SAP (the
denominator of (32)) can be estimated as the averaged value of the
maximum of the single-look SAP on the interval (31) as

Imax
ML (αE max, βE) = max


 1

NL

NL/2∑

nL=−NL/2

I(η, αEL, βE)




≈ 1
2ηE max

ηE max∫

−ηE max

I(η, βE)dη. (36)

In order to perform the integration in (36) analytically, we introduce
the following approximation for the single-look defocused SAP:

IApprox
SL (η,βE)≈





Imax
SL (βE)

[
1−

(
η

(3/4)ρ(βE)

)2
]

if |η|<(3/4)ρ(βE),

0 otherwise.
(37)

The maximum values of this approximate SAP (at η = 0) is
equal exactly to the true maximum Imax

SL (βE) of the single-look
SAP (25). The coefficient 3/4 is introduced in (37) so that the integral
resolution of the approximate SAP is equal to the corresponding
actual resolution ρ(βE) of the single-look SAP (28). By using such
simple and convenient approximation the integration in (36) can be
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easily performed analytically. Finally, we obtain the following explicit
expression for the degradation of the maximum of the multi-look SAP:

Imax
ML (ηE max, βE)

≈




Imax
SL (βE)

[
1− 1

3

(
ηE max

(3/4)ρ(βE)

)2
]

if |ηE max| < (3/4)ρ(βE),

Imax
SL (βE) ρ(βE)

2ηE max
otherwise.

(38)

Combining (34), (35) and (38), the multi-look SAP resolution can be
written as

ρML(ηE max, βE)≈




ρ(βE)

1− 1
3

(
ηE max

(3/4)ρ(βE)

)2 if |ηE max|<(3/4)ρ(βE),

2ηE max otherwise.
(39)

For small values of the LLPE, the multi-look resolution is equal to
the resolution of the single-look SAP. With the growth of the LLPE up
to the approximate threshold of |ηE max| < (3/4)ρ(βE), the LLPE and
LQPE both make comparable contributions into the defocusing effect.
Above this threshold, the LLPE degradation starts to dominate over
the pure LQPE defocusing.

The behavior of the multi-look resolution is illustrated in
Fig. 6. The solid curves represent the approximate analytical
solution (39). Fig. 6(a) shows the resolution versus αE max for the
fixed βE = 2. Fig. 6(b) shows resolution versus βE for the given
αE max = 0.5. The boxes in these figures show the resolution
values obtained numerically using the above-introduced statistical
model of the uniformly distributed SAP shifts. The figures are built
for the Hamming window. These images prove the validity of the
approximations.

(a) (b)

Figure 6. The degradation of the resolution of the multi-look SAP
(a) versus αE max and (b) versus βE .
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5. QUADRATIC PHASE ERROR ON MULTI-LOOK
INTERVAL

The slow deflection of the SAR platform trajectory from the reference
flight line is a typical case of the uncompensated motion error. The
corresponding phase error can be approximated as a quadratic phase
error defined on the multi-look processing interval:

ϕE(t) ≈ πβp(t/TS)2. (40)

The LLPE and LQPE for the centers of the looks tL = LTS are given
by

αEL = βpL, βEL = βp . (41)

The LLPE grows while going from the center of the multi-
look processing interval, and the LQPE is constant. The local
approximation is explained in Fig. 7.

Figure 7. The quadratic phase error on the multi-look processing
interval.

The resolution of the multi-look SAP is described by the
solution (39) if the shift between consequent looks tL and tL+1 does
not exceed the resolution cell. It means that

|βp| < 1. (42)

This requirement guarantees that there are no oscillations on the
main lobe of the multi-look SAP, and the model with the uniformly
distributed shifts of the single-look SAPs is valid. The parameters
in (39) are as follows:

αE max = |βp|NL/2, ηL max =
αE max

1 + βp/βDR
, βE = βp. (43)

From (42) and from the LQPE acceptable error criteria (29) we
find that for a large number of looks the LLPE dominates over the
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LQPE. Moreover, the resolution becomes simply proportional to the
number of looks:

ρML(NL, βp) ≈ 2ηE max =
|βp|NL

1 + βp/βDR
. (44)

This property can be used to detect the quadratic phase error
in the received SAR data. If we increase the number of looks and
obtain the proportional degradation of the azimuth resolution in the
multi-look SAR image, it means that the quadratic phase error (40) is
presented on the multi-look processing interval.

The multi-look SAPs built of 3 looks and 9 looks versus the
quadratic phase error βp are shown in Fig. 8. One can observe that
for the low TBP case (Figs. 8(c), 8(d)) the defocusing depends on
the sign of βp. Such behavior is caused by the stretching effect that
was examined above. Also, one can see that for the large error values
(approximately for |βp| > 2) the main lobe of the multi-look SAP falls
apart onto several maxima that correspond to the shifted single-look
SAPs.

The degradation of the resolution of the multi-look SAP caused by
the quadratic phase error versus the number of looks is shown in Fig. 9.
The linear proportionality of the resolution degradation to the number
of looks (44) is clearly seen. Also, the above-mentioned asymmetry of
the degradation with respect to the sign of the error βp is observed in
Fig. 9(a).

(a) (b)

(c) (d)

Figure 8. The multi-look SAPs ((a), (c) 3 looks and (b), (d) 9 looks)
versus the quadratic phase error presented on the multi-look processing
interval for (a), (b) a high TBP and (c), (d) low TBP.
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(a) (b)

Figure 9. The degradation of the resolution of the multi-look SAP
caused by the quadratic phase error on the multi-look processing
interval versus the number of looks for the (a) low TBP and (b) high
TBP cases.

6. HARMONIC PHASE ERROR ON MULTI-LOOK
PROCESSING INTERVAL

In this section, we consider the defocusing effect of a harmonic phase
error determined on the multi-look processing interval. The error is
described as

ϕE(t) = Φp sin (2πFpt) . (45)
Here Φp is the amplitude and Fp the frequency of the harmonic error.
Such phase error describes periodic trajectory deviations induced, for
example, by an autopilot operation or by a cross-track antenna motion
due to the aircraft roll motion.

The LLPE and LQPE of the harmonic error at the moment of
time tL are given by

αEL =
1
2π

ϕ′E(tL)TS = (FpTS)Φp cos(2πFptL), (46)

βEL =
1
2π

ϕ′′E(tL)T 2
S = −2π(FpTS)2Φp sin(2πFptL). (47)

The maximum LLPE is reached when the LQPE is zero (the most
shifted looks are not defocused), and vice versa, the maximum LQPE
is reached when the LLPE is zero (the most defocused looks are not
shifted).

It is convenient to introduce the dimensionless frequency as
αp = FpTS . (48)

The local phase error consideration is valid if the synthesis interval is
shorter that the half-period of the harmonic error TS < 1/(2Fp). Also,
the period of the harmonic error should be less than the length of the
multi-look processing interval, 1/Fp < TML. Thus, the appropriate
values of the dimensionless frequency of the harmonic phase error are

1/NL ≤ αp ≤ 1/2. (49)
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The extreme values of the LLPE and LQPE observed on the multi-
look processing interval are ±αE max and ±βE max,

αE max = αpΦp, (50a)

βE max = 2πα2
pΦp = 2παpαE max. (50b)

Since the maximum LLPE and LQPE are determined only by the
amplitude and the frequency of the phase error, the defocusing effect
of the harmonic phase error does not depend on the number of looks.

The resolution degradation of the multi-look SAP in the case of
the harmonic phase error was obtained by numerical simulations, and it
is illustrated in Fig. 10. The resolution is the function of two variables:
the frequency αp and the LLPE αE max. From Fig. 10 it is seen that
the resolution slightly depends on the frequency αp of the harmonic
error, if the value of αE max is kept constant, provided the amplitude
Φp is inversely proportional to the frequency according to (50a). The
slight degradation of the resolution with the frequency is caused by the
growing βE max (50b).

Figure 10. The resolution degradation of the multi-look SAP in the
case of the harmonic error (numerical simulations).

The resolution as the function of αE max for the given frequency
αp = 0.25 is shown in Fig. 11 along with the approximation (39)
represented by the solid curve.

Strictly speaking, the assumption of the uniform distribution of
the LLPE shifts used to derive (39) is not valid for the harmonic error.
Actually, the phase ϕL = 2πFptL in (46)–(47) is uniformly distributed
within the interval [−π, π] but not the LLPEs (46). It means that
in order to calculate the maximum of the multi-look SAP, we should
average the single-look SAPs shifted by the LLPEs (46) and broadened
by the LQPE (47) based on the uniformly distributed phase instead of
using the simple averaging (36).
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Note that the uniform distribution of the single-look SAP shifts
leads to the flat and smooth maximum of the multi-look SAP. Non-
uniform distributions lead to peaks on the SAP as those shown in
Fig. 12 for the case of the harmonic error. The integral resolution
depends on the way how the SAP maximum value is chosen. In the
calculations presented in Fig. 11, the mean value between the true
maximum Imax

ML (in the peaks) and the central value IML(0) is used
as the SAP maximum. Such choice allows us to compensate in some
extent the non-uniform distribution and improves the agreement of the
simulation and the approximation.

Figure 11. The resolution
degradation of the multi-look
SAP in the case of the harmonic
error as the function of αE max for
αp = 0.25.

Figure 12. The multi-look SAP
degradation in the case of the
harmonic error as the function of
αE max for αp = 0.25.

Figure 13. Error-free multi-look SAR image of the scene.
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7. THE PHASE ERROR EFFECTS IN SAR IMAGES

In this section, we shall illustrate the described phase error effects
by using real SAR data obtained with the X-band airborne SAR
system [5, 6].

The SAR image of a test scene is shown in Fig. 13. The
image is composed of 31 looks (built from half-overlapped intervals)
with a 3-m resolution. Phase errors in the received data were
compensated accurately by using the local-quadratic map-drift
autofocus (LQMDA) [11, 12]. The scene contains several bright point
targets, one of which is indicated by the arrow in the figure. By
observing images of such targets it is convenient to illustrate phase
errors effects.

In order to demonstrate how the phase errors distort SAR images,

(a) (b)

(c) (d)

Figure 14. SAR images distorted by the quadratic phase errors
introduced on the multi-look processing interval. (a) 15 looks, 2 ∗
pi∗βp = 10. (b) 31 looks, 2∗pi∗βp = 10. (c) 15 looks, 2∗pi∗βp = 15.
(d) 31 looks, 2 ∗ pi ∗ βp = 15.
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we intentionally introduce phase errors in the real SAR data for the
scene in Fig. 13. Two types of errors are considered: the quadratic
phase errors (40) and the harmonic phase error (45) determined on
the multi-look processing interval.

Multi-look SAR images built in the presence of the quadratic
phase errors are shown in Fig. 14. By comparing the 15-look SAR
images in Figs. 14(a) and 14(c) with the 31-look SAR images in
Figs. 14(b) and 14(d) one can observe that the resolution degrades
proportionally to the number of looks. This effect has been predicted
and discussed in Section 5.

Evidently, the larger the error the more significant is the
defocusing effect. This can be seen by comparing Figs. 14(a) and 14(b)
(2 ∗ pi ∗ βp = 10) with Figs. 14(c) and 14(d) (2 ∗ pi ∗ βp = 15).

The multi-look SAR images built in the presence of the harmonic

(a) (b)

(c) (d)

Figure 15. SAR images distorted by the harmonic phase errors with
αp = 0.3 introduced on the multi-look processing interval. (a) 15 looks,
βE max = 10. (b) 31 looks, βE max = 10. (c) 15 looks, βE max = 15.
(d) 31 looks, βE max = 15.
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Figure 16. Point target azimuth profiles (taken from Figs. 13, 14(a),
and 15(a), for the target indicated by the arrow).

phase errors are shown in Fig. 15. The dimensionless error
frequency (48) is αp = 0.3. It means that there are about 3 non-
overlapped single-look synthetic aperture intervals within the period
of the harmonic phase error. The amplitudes of the error are set so
that the maximum LQPEs are βE max = 10 and βE max = 15, as it is
given by (50).

One can see that the defocusing does not depend on the number of
looks, as it has been predicted and explained in Section 6, but obviously
depends on the error value βE max.

The effect of the non-uniform distribution of the shifts of single-
look SAR images, described in Section 6, can be observed in Fig. 15.
The single-look SAR images are shifted with a higher probability closer
to the extreme values determined by the maximum LLPE (50a). The
resulting multi-look SAR images show the appearance of two brighter
points at the opposite ends of the defocused images of point targets.
This effect is more evidently illustrated in Fig. 16, where the azimuth
profiles are plotted for the point target indicated by the arrow in
Figs. 13, 14(a), and 15(a). The two peaks on the profile for the
harmonic error correspond to the peaks in the simulated multi-look
SAP in Fig. 12.

8. CONCLUSION

The degradation of the resolution of the single-look and the multi-
look SAPs caused by the uncompensated phase errors is considered
in details and thoroughly illustrated by the numerical simulations.
The new approach is proposed to characterize the influence of the
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phase error in terms of its local linear and local quadratic phase
errors (LLPE and LQPE). Based on this approach, the approximate
analytical expressions have been derived to describe the azimuth
resolution degradation. The efficiency of the method is demonstrated
on two important practical examples: the quadratic and the harmonic
phase errors presented on the multi-look processing interval.
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