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Abstract—In this paper, we investigate an expectation-maximization
(EM) maximum likelihood (ML) algorithm of direction finding (DF)
for bistatic multiple-input multiple-output (MIMO) radar, where it
is shown that the DF problem can be described as a special case of
ML estimation with incomplete data. First, we introduce the signal
and the noise models, and derive the ML estimations of the direction
parameters. Considering the computational complexity, we make use
of the EM algorithm to compute the ML algorithm, referred to EM ML
algorithm, which can be applied to the arbitrary antenna geometry and
realize the auto-pairing between direction-of-departures (DODs) and
direction-of-arrivals (DOAs). Then the initialization is considered. In
addition, both the convergence and the Cramer-Rao bound (CRB)
analysis are derived. Finally, simulation results demonstrate the
potential and asymptotic efficiency of this approach for MIMO radar
systems.

1. INTRODUCTION

MIMO radar has gotten considerable attention in a novel class of radar
system in the last decade ([1, 2] and references therein). There are two
basic regimes of architecture considered in the current literature [3].
One is called statistical MIMO radar with widely separated antennas,
which captures the spatial diversity of the target’s radar cross section
(RCS) [2]. The other is called coherent MIMO radar with colocated
antennas, which can obtain the waveform diversity and larger degrees
of freedom (DOF) to improve the target parameter estimation,
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parameter identifiability and more flexibility for transmit beampattern
design [1]. Furthermore, based on the placement geometry of transmit
and receive antennas, the coherent MIMO radar can be distributed
into two classes: One is bistatic MIMO radar; the other is monostatic
MIMO radar. In this paper, we mainly discuss a bistatic MIMO radar
architecture, whose direction finding (DF) is considered extensively [4–
8]. Furthermore, the corresponding results derived here can be
extended to monostatic MIMO radar [9–11] stemming from its virtual
array.

Target direction estimation is a basic function of a radar
system [12–19]. Many advanced DF algorithms for MIMO radar
have been extensively discussed in the current literature [4–11]. For
example, the direction estimation proposed in [20] achieves more
accurate results by extracting and making use of the phase delay
information between each transmit/receive antenna pair. A joint
direction of DOD and DOA estimation for bistatic MIMO radar via
both estimation of signal parameters by the rotational invariance
techniques (ESPRIT) and singular value decomposition (SVD) of
cross-correlation matrix of the received data from two transmit
subarrays is presented in [4], and the authors in [8] have presented
a joint DOA and DOD estimation algorithm for bistatic MIMO radar
via ESPRIT by means of the rotational factor produced by multi-
transmitter. The polynomial root finding algorithm for the joint
DOA-DOD estimation is given in [5]. Multitarget identification and
localization using bistatic MIMO radar systems have been proposed
in [30]. The authors in [9] have developed a new tri-iterative least-
square (TI-LS) method for bearing estimation in MIMO radar.

However, among all estimation methods, maximum likelihood
(ML) method has the best asymptotic performance and is, in some
sense, robust against small sample numbers and coherent source
signals [23]. Unfortunately, the high-dimensional search associated
with the standard computation of ML is its handicap in applications.
At all times, more works in dealing with the ML techniques have been
devoted to decomposing the high-dimensional search problem into a
sequence of much smaller dimensional search problems, which can
drastically reduce their computational complexity and can handle the
array of arbitrary geometry [31–34]. One of the popular approaches
is the expectation-maximization (EM) algorithm [22], which is a well-
known iterative method for finding the maximum likelihood estimate
when the likelihood function is difficult to maximize directly. The
EM algorithm has been applied to DF problem of passive array for a
deterministic signal model [33] or for both deterministic and stochastic
signal models [35], assuming known noise covariance.
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In this paper, we propose an EM ML algorithm of direction
finding for bistatic MIMO radar, which can be applied to the arbitrary
antenna geometry and realize the auto-pairing between DODs and
DOAs. For the statistical characteristic of noise, we assume that
it is Gaussian with an unknown level, which is different from the
most assumptions in [4–11], while more reasonable. Then, we apply
the standard EM algorithm to bistatic MIMO radar. Since the EM
algorithm is sensitive to initialization, the algorithm is initialized using
the methods proposed in primary works [22–35]. The convergence
of the EM ML algorithm is proven, and the rate of convergence
is investigated. Considering evaluating the EM ML algorithm, we
derive the Cramer-Rao bound (CRB) on the direction parameters.
To simplify the computation, we use the concentrated CRB theory
in [29], which can discard the nuisance parameters and only considers
the interested ones, to calculate the CRB on the direction parameters.

This paper is arranged as follows. In Section 2, we show the
general signal model for bistatic MIMO radar and its assumption first.
Then, the ML estimations of direction parameters are derived. In
Section 3, we first derive the EM ML algorithm for bistatic MIMO
and give the suggestion of the initialization. The convergence and the
CRB analyses are also derived. In Section 4, several simulation results
are presented. Finally, Section 5 concludes the paper.

Notation: in this paper, we use boldface lowercase letters for
vectors and boldface uppercase letters for matrices. Superscripts {·}T ,
{·}−1 and {·}H for the transpose, inverse and complex conjugate
transpose operator of a matrix, respectively. vec{·} denotes the
vectorization operator (stacking the columns on top of each other)
of a matrix. <{·} denotes the real part of a complex-value matrix.
‖ · ‖ denotes the Euclidean norm of a vector, and IM and 1M are the
Mth-order identity matrix, the column vector with M unity-elements,
respectively. ⊗ and ¯ stand for Kronecker product and element wise
product, respectively. Finally, ∇x represents the first-order partial
derivative operator, i.e., ∇x = [ ∂

∂x1
, . . . , ∂

∂xN
]T .

2. PROBLEM STATEMENT

In this section, we will present the signal and the noise models used
in this paper as well as the underlying assumptions needed for their
validity first. Then, the maximum likelihood estimations of the target’s
directions are derived.
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2.1. Data Model

Consider a bistatic MIMO radar system with Mt transmit antennas
and Mr receive antennas, which are all identical and omnidirectional.
For simplicity, assume all antennas and targets are on the same plane.
The transmit and the receive antennas are located at ti = [xt

i, y
t
i ]

T ,
i = 1, . . . , Mt and rl = [xr

l , y
r
l ]

T , l = 1, . . . , Mr, respectively, both
in half-wavelength units. The results, obtained in this paper, can be
extended to 3-dimensional (3-D) case easily. Assume that the transmit
antennas simultaneously emit Mt temporally orthogonal waveforms,
i.e., x[n] = [x1[n], . . . , xMt [n]]T , n = 1, . . . , N , where N is the number
of samples in one observation interval, then, 1/N

∑N
n=1 x[n]xH [n] =

IMt . There are K far-field targets within the same range bin located at
(φk, ϕk), k = 1, . . . , K, where φk and ϕk are the DOD and the DOA
of the kth target, respectively. The data received by such an MIMO
radar can be written as

y[n] =
K∑

k=1

b (φk) ζkaT (ϕk)x[n] + e[n], n = 1, . . . , N (1)

where y[n] = [y1[n], . . . , yMr [n]]T ∈ CMr×1 is the received data
vector; a(φk) = [e−jtT

1 kt
k , . . . , e

−jtT
Mt

kt
k ]T ∈ CMt×1 and b(ϕk) =

[e−jrT
1 kr

k , . . . , e−jrT
Mr

kr
k ]T ∈ CMr×1 are the steering vectors for the

transmitting and receiving arrays of the kth target, respectively,
where kt

k = π[cosφk, sinφk]T and kr
k = π[cosϕk, sinϕk]T are the

wavenumber vectors; {ζk ∈ C}K
k=1 are the target amplitudes, which

are proportional to the radar-cross-section (RCS) of the targets; e[n] is
the noise vector, here we only consider thermal noise component, which
can be assumed that e[n] are independent and identically distributed
circularly symmetric complex Gaussian random vectors with mean zero
and an unknown covariance matrix Q = σ2IMr .

According to (1), the unknown parameters, to be estimated
from the data vectors {y[n]}N

n=1, are ζ = [ζ1, . . . , ζK]T, directional
parameters ∇ = [φ1, . . . , φK ]T and ϕ = [ϕ1, . . . , ϕK ]T and noise
covariance level σ2, where the directional parameters φ and ϕ are the
ones of interest, while ζ and σ2 are the unknown nuisance parameters.

2.2. DF with Maximum Likelihood Estimation

From [20, 21], the independent sufficient vector can be obtained as

η̃
∆= vec

(
1√
N

N∑

n=1

y[n]xH [n]

)
≈

K∑

k=1

ζkd (φk, ϕk) + v (2)
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where

d (φk, ϕk) =
√

Nvec
(
b (φk)a(ϕk)

T
)

(3)

v = vec

(
1√
N

N∑

n=1

e[n]xH [n]

)
∼ CN (

0, σ2IMtMr

)
(4)

where d(φk, ϕk) is equivalent to the response of size MtMr array
relative to the kth target. Essentially speaking, (2) is equal to the
following expression

ȳ[n] =
K∑

k=1

ζk (b (φk)⊗ a (ϕk)) + ē[n], n = 1, . . . , N (5)

where ē[n] has the same statistical characteristic with e[n]. The
likelihood function of Ȳ = [ȳ[1], . . . , ȳ[N ]] can be given by

ln f
(
Ȳ

∣∣∇,ϕ, ζ, σ2
)
=−

N∑

n=1

[
MrMt lnπ + MrMt lnσ2

+
1
σ2

(ȳ[n]−h (φ, ϕ, ζ))H(ȳ[n]−h(φ, ϕ, ζ))
]
(6)

where

h (φ, ϕ, ζ) =
K∑

k=1

ζk (b (ϕk)⊗ a (φk)) (7)

Hence, the ML estimator of φ, ϕ, ζ and σ2 in (6) is given by
(
φ̂, ϕ̂, ζ̂, σ̂2

)
ML

= arg max
φ,ϕ,ζ,σ2

ln f
(
Ȳ

∣∣φ, ϕ, ζ, σ2
)

(8)

After optimization with respect to ζ̂ and σ̂2, the ML estimator for φ
and ϕ is given by

(
φ̂, ϕ̂

)
ML

= arg max
φ,ϕ

ln f
(
Ȳ

∣∣∣φ, ϕ, ζ̂, σ̂2
)

(9)

Obviously, to resolve the ML estimate problem, the searches with the
high computational complexity are needed. Moreover, realizing the
auto-pairing between the DODs and DOAs is also a key capability
of the DF algorithm for bistatic MIMO radar. In Section 3, we will
propose a DF method using EM algorithm, which can reduce greatly
the complexity of ML estimate and has the auto-pairing.
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3. EM ML ALGORITHM

The EM ML algorithm is a very effective method for locating modes
of a likelihood function. The basic idea of EM algorithm is as
follows [23]: Rather than performing a complicated maximization,
one works with augmented data that can simplify the calculation
and performs a series of simple maximizations. More specially,
each iteration consists of two steps: 1) E-step (expectation step),
which calculates the conditional expectation of the complete-data log-
likelihood, and 2) M-step (maximization step), which maximizes the
augmented data likelihood. The E and M-steps iterate repeatedly
until the estimates converge. For a detailed review of this method,
we encourage readers to refer to [24]. In this section, we propose
an EM ML direction finding algorithm for bistatic MIMO radar first,
then we give its initial condition, convergence analysis, computational
complexity, and CRB results.

3.1. EM ML Direction Finding Algorithm

According to the superposition property of array outputs [25], we give
the augmented data z[n] = [z1[n], . . . , zK [n]]T , n = 1, . . . , N first.
Decomposing the expression in (5) into the following components as

zk[n] = ζk (b (ϕk)⊗ a (φk)) + ek[n], k = 1, . . . , K (10)

Stacking zk[n] into a matrix yields

Z[n]=
[
zT
1 [n], . . . , zT

K [n]
]T

=




ζ1 (b (ϕ1)⊗ a (φ1))
...

ζK (b (ϕK)⊗ a (φK))


+




e1[n]
...

eK [n]


 (11)

where ek[n], (n = 1, . . . , N ; k = 1, . . . , K) are the noise processes,
which are independent, complex Gaussian distributed with zero mean
and covariance matrices σ2

kI, k = 1, . . . , K, with the constraint∑K
k=1 σ2

k = σ2, 0 < σ2
k < σ2. Generally, a convenience choice

is σ2
k = σ2/K. Denote the estimated parameter vector by ϑ =

[ϑ1, . . . , ϑk, . . . ,ϑK ], where ϑk = [φk, ϕk, ζk, σ2
k]. Then, the

augmented data log-likelihood function can be written as

ln fZ (ϑ) = −
K∑

k=1

N∑

n=1

[
Mr ln π + lnσ2

k +
1
σ2

k

(zk[n]− h (φ, ϕ, ζ))H

· (zk[n]− h (φ, ϕ, ζ))] =
K∑

k=1

ln fzk
(ϑk) (12)
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According to (12), ln fZ (ϑ) can be decomposed into a series of
ln fzk

(ϑk) for the independence of ek[n], k = 1, . . . , K. Since
ln fzk

(ϑk) depends only on the parameter vector ϑk, optimizing
ln fZ(ϑ) can be obtained by maximizing each ln fzk

(ϑk). Therefore,
the complicated multidimensional search over φ and ϕ is now replaced
by a series of one-dimensional (1-D) searches, which is similar with the
computationally efficient angle ML estimation for signals with known
waveforms in [26]. It is worth to note that the decoupled estimation
in [26] is a natural result (which results from the signal model for
uncorrelated narrowband plane waves and unknown amplitudes), while
the decoupled estimation in (12) is an asymptotic result.

Given the estimate of the ith iteration of ϑ except for the noise
level, i.e., φ[i], ϕ[i] and ζ[i]. Then, the (i + 1)th iteration of the EM
ML algorithm is as follows.
• E-step

Compute
Q

(
ϑ,ϑ[i]

)
= E

{
ln fZ (ϑ) |Y,ϑ[i]

}
(13)

which is equivalent to calculate the following conditional
expectations:

σ2[i] =
1

MrMtN

N∑

n=1

[(
ȳ[n]− h

(
φ[i],ϕ[i], ζ[i]

))H

·
(
ȳ[n]− h

(
φ[i], ϕ[i], ζ[i]

))]
(14)

ẑk

(
n,ϑ

[i]
k

)
= E

{
zk[n]

∣∣∣Ȳ,ϑ[i]
}

= ζ
[i]
k

(
b

(
ϕ

[i]
k

)
⊗ a

(
φ

[i]
k

))

+
σ2

k

σ2[i]

(
ȳ[n]− h

(
φ[i],ϕ[i], ζ[i]

))
(15)

R̂zk

(
ϑ

[i]
k

)
= E

{
1
N

N∑

n=1

zk[n]zH
k [n]|Ȳ,ϑ[i]

}

=
1
N

N∑

n=1

ẑk

(
n,ϑ

[i]
k

)
ẑH

k

(
n, ϑ

[i]
k

)
+

(σ2
k)

2

σ2[i]
I (16)

• M-step
Update φ[i], ϕ[i] and ζ[i] by maximizing Q(ϑ, ϑ[i]), which is
equivalent to the following K groups of equations:

φ
[i+1]
k =arg max

φk

(
b
(
ϕ

[i]
k

)
⊗a(φk)

)H
R̂zk

(
ϑ

[i]
k

)(
b
(
ϕ

[i]
k

)
⊗ a(φk)

)

∥∥∥b
(
ϕ

[i]
k

)
⊗a(φk)

∥∥∥
2 (17)
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ϕ
[i+1]
k

= arg max
ϕk

(
b(ϕk)⊗a

(
φ

[i+1]
k

))H
R̂zk

(
ϑ

[i]
k

)(
b(ϕk)⊗a

(
φ

[i+1]
k

))

∥∥∥b (ϕk)⊗ a
(
φ

[i+1]
k

)∥∥∥
2 (18)

ζ
[i+1]
k =

(
b

(
ϕ

[i+1]
k

)
⊗ a

(
φ

[i+1]
k

))H

N
∥∥∥b

(
ϕ

[i+1]
k

)
⊗ a

(
φ

[i+1]
k

)∥∥∥
2

N∑

n=1

ẑk

(
n, ϑ

[i]
k

)
(19)

• Terminating criterion
If

max
k

∥∥∥ϑ
[i+1]
k − ϑ

[i]
k

∥∥∥ < ε (20)

where ε is a small constant (which determines the number of
iteration times and the estimate accuracy), ϑ̂ = ϑ[i], otherwise,
i = i + 1, go to E-step.

3.2. Initial Conditions

Initialization of the EM algorithm is very important in order to
reduce the likelihood of convergence to local extrema in the likelihood
function, which will be validated in simulation part. Here, we give
a revelatory method that all initial estimates of direction parameters
are first computed by using the subspace-type algorithms proposed
in [4–8], then, an initialization cycle of EM algorithm is carried out
to calculate the initial estimates of remaining parameters, i.e., ζ and
σ2. Till now, the initialization of the EM algorithm has been finished,
and the E-M-step iteration will be repeated until some convergence
criterion is achieved.

3.3. Convergence Analysis

In this section, we investigate the convergence property of the
algorithm proposed in Section 3, which is based on [22, 23, 27, 28].
Using a Taylor expansion, in a neighborhood of an interior point of
parameter space, ϑ∗, the estimates ϑ[i] have the following approximate
relationship for sufficiently large i

ϑ[i+1] − ϑ∗ = M
(
ϑ[i] − ϑ∗

)
(21)

where M is defined as the rate matrix of the algorithm. It is worth
to note that the convergence rate is determined by the spectral radius
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ρ (M). Definitely speaking, a larger ρ (M) means a slower convergence
speed. According to [22], the rate matrix of the EM algorithm is

M = I− I−1
EMIobs (22)

where
IEM = E

{−∇ϑ∇T
ϑ ln fZ (ϑ) |Y, ϑ

}∣∣
ϑ=ϑ∗ (23)

is the excepted augmented information matrix, and
Iobs = −∇ϑ∇T

ϑ ln fY (ϑ)
∣∣
ϑ=ϑ∗ (24)

is the observed information matrix. Based on the characteristic of the
likelihood function in [23], we can get

IEM > Iobs (25)
then,

I−1
EM < I−1

obs (26)
Thus

0 < ρ (M) = ρ
(
I− I−1

EMIobs

)
< 1, (27)

i.e., the EM algorithm in Section 3 converges in its parameter space. It
is worth to note that, if the exact convergence speed of EM algorithm
is needed, we should calculate IEM and Iobs in (22) first, and compute
the spectral radius of M. For the limit of the space, we do not give
the detailed derivation.

3.4. Computational Complexity

In this subsection, we will analyze the computational complexity
of our proposed EM ML algorithm. The main computational
cost of our method is in E-step and M-step. For each iteration,
computing σ2 in (15) takes a complexity of about O(NMtMr);
for each target, computing R̂zk

and R̂zk
in E-step take O(MtMr)

and O(N(MtMr)
2), respectively; in M-step, for each target, both

the complexity for computing φk and ϕk is O((MtMr)3), and the
complexity for computing ζk is O(N(MtMr)2). Therefore, the
complexity per iteration of our EM ML algorithm is O(NMtMr +
K(MtMr +2N(MtMr)2+(MtMr)3)). Assume the algorithm converges
within L steps, then the total computational complexity of our method
is about O(LNMtMr + LK(MtMr + 2N(MtMr)2 + (MtMr)3)).

For the same scenario, the total computational complexity of the
TI-LS method in [9] is O(N(2(MtMr)3 + K(MtMr)2 + K2(MtMr) +
3LK3 + 8LK2)). The computational complexity of our algorithm
subtracts from the one of the TI-LS method gives about O((2N −
LK)(MtMr)3). Since the number of sampling is usually large, i.e.,
(2N − LK) > 0, our proposed algorithm is more efficient than the
algorithm in [9].
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3.5. CRB Results

For the sake of evaluating the asymptotic performance of the EM
ML algorithm in simulation part, we derive the CRB of unknown
parameters, i.e., ζ, φ, ϕ and σ2, according to (2). First, we rewrite (2)
as the matrix form

η̃ = A (φ, ϕ) ζ + v (28)
where

A (φ, ϕ) =
[
vec

(
b (ϕ1)aT (φ1)

)
, . . . , vec

(
b (ϕK)aT (φK)

)]
(29)

In what follows, we omit the arguments φ and ϕ of A (φ, ϕ) for
simplicity. According to the data model in (28), the directional
parameters φ and ϕ are the ones of interest, while ζ and σ2 are
nuisance parameters. To simplify the analytical computation, we use
the concentrated CRB expression in [29]. Based on the Theorem 3.1
in [29], the expression of CRB on φ and ϕ is given by

CRB (φ, ϕ) =
σ2

2N

{
<

[
(U ⊗ 12K)¯ (

DHΠcD
)T

]}−1
(30)

where
U = P

(
AHAP + σ2I

)−1
AHAP (31)

P =
K∑

k=1

|ζk|2 (32)

Πc = IMtMr −A
(
AHA

)−1
AH (33)

D =
[
d(1)

1 , . . . ,d(1)
K ,d(2)

1 , . . . ,d(2)
K

]
(34)

d(1)
k =

∂[A]k
∂φk

=
∂

(
vec

(
b (ϕk)aT (φk)

))

∂φk
(35)

d(2)
k =

∂[A]k
∂ϕk

=
∂

(
vec

(
b (ϕk)aT (φk)

))

∂ϕk
(36)

According to (33), now we consider the term

DHΠcD = DHD−DHA
(
AHA

)−1
AHD (37)

Without loss of generality, we choose the origin of our coordinate
system to be the array centroid of the transmit array. It is then clear
that

DHA = 02K×K and AHD = 0K×2K (38)
It follows immediately from (38) that the second term of (37) is zero.
Thus, (30) can be simplified to

CRB (φ, ϕ) =
σ2

2N

{
<

[
(U ⊗ 12K)¯ (

DHD
)T

]}−1
(39)
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4. NUMERICAL EXAMPLES

We present some numerical examples that illustrate the performance
of EM ML algorithms proposed in this paper, compared with that
of the TI-LS method in [9]. In all simulations, we performed 500
Monte Carlo trials. Each following curves correspond to the mean
over 500 simulations. Assume a bistatic MIMO radar with 4 transmit
antennas and 4 receive antennas, where the half-wavelength spacing
is respectively used. Without loss of generality, we assume the
carrier frequency is f = 5GHz and the pulse repetition interval is
T = 1/5000 s. The pulse duration is Tp = N×5×10−8 s, where N = 100
is the number of sampling. Each transmit node uses uncorrelated
quadrature phase shift keying (QPSK) waveforms. Four following
scenarios, for comparisons, are considered:

Scenario 1 : Assume three target are located at (21◦, 10◦),
(44◦, 15◦) and (63◦, 45◦), respectively, with the equal target
amplitudes, i.e., ζ1 = ζ2 = ζ3 = 1 × ej π

4 . The signal-to-noise
(SNR), which is defined by the ratio of signal power to single channel

noise power 10 log[
N∑

n=1
‖xi[n]‖2/σ2], ranges from −10 to 10 dB with

the step 2 dB. The maximum number of iteration is set to be 100.
The initialization conditions are (18◦, 14◦), (40◦, 13◦) and (60◦, 40◦),
respectively. The algorithm is terminated if (20) is satisfied with
ε = 10−2. For comparison, the simulated annealing (SA) algorithm [36]
is applied to the same batch of data to find the global ML estimate.

Scenario 2 : Aiming to consider the convergence rate with
termination condition, the specifications of this scenario is the same
with the scenario 1, except for ε= 5× 10−2.

Scenario 3 : Aiming to investigate the effects of the separation of
the targets in space, we assume three target are located at (21◦, 10◦),
(22◦, 42◦) and (63◦, 41◦), respectively, and the initialization conditions
are (18◦, 14◦), (20◦, 41◦) and (60◦, 40◦), respectively. The other
specifications of this scenario is the same with the scenario 1.

Scenario 4 : Aiming to study the effects of the initialization,
we arbitrarily assume that the initialization conditions are (10◦, 10◦),
(10◦, 10◦) and (10◦, 10◦), respectively, which indicates that there is no
prior information about the targets’ direction. The other specifications
of this scenario is the same with the scenario 1.

Figure 1 shows the curves of the iteration number and the root
mean square error (RMSE) versus for scenario 1, respectively. We
find that the number of iterations decreases with the increasing of
SNR and the EM ML algorithm proposed in this paper has a good
asymptotic performance in the higher SNR (more than −5 dB). It
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Figure 1. Curves of iteration number and RMSE versus SNR for
scenario 1. (a) Curve of iteration, (b) curve of RMSE.
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Figure 2. Mean of log-function and direction estimations versus
the number of iterations for scenario 1. (a) Curves of mean of log-
function, (b) curves of direction estimations with SNR = 10dB.
[φ̂, ϕ̂] = [20.8◦, 43.7◦, 62.9◦, 10.1◦, 15.2◦, 44.9◦].

is worth to note that the curves in Figure 1(b) are the arithmetical
mean over the 500 trials. As expected, our EM ML algorithm is
shown to be computationally more efficient and has a substantially
better estimation performance than the TI-LS method. To examine
the mean log-function of each iteration of EM ML algorithm, the
mean log-function curve corresponding to the global ML estimate using
SA algorithm is also portrayed in Figure 2(a) at SNR = 0, 10 dB. As
expected, the log-likelihoods have a monotonic increase with iterations.
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Furthermore, the EM ML algorithm attains the global maximum log-
likelihood. Figure 2(b) depicts the direction estimates of each iteration
at SNR = 10dB. We can find that the direction parameters attains
their true values after the larger number of iterations.

To examine the effects of termination condition on convergence
rate, we show the mean of log-function and the direction estimates
versus the number of iterations for scenario 2 in Figure 3,
correspondingly to scenario 1 in Figure 2. According to Figure 3(a),
the EM ML algorithm attains the global maximum log-likelihood
more quickly than it in Figure 2(a), i.e., the scenario 2 has a faster
convergence rate than scenario 1. However, the estimate accuracy
is worse. Figure 2(b) shows that the iterates obtained by EM ML
algorithm converge to [φ̂, ϕ̂] = [20.8◦, 43.7◦, 62.9◦, 10.1◦, 15.2◦, 44.9◦],
whereas the Figure 3(b) shows that the iterates converge to [φ̂, ϕ̂] =
[20.9◦, 43◦, 62.8◦, 10.2◦, 15.6◦, 45.3◦].
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Figure 4 shows the curves of iteration number and RMSE versus
SNR for scenario 3, respectively. Compared with Figure 1, we find
that both EM ML algorithm and TI-LS method need more iteration
times and attains a higher CRB with a higher RMSE. However, our
EM ML algorithm is still shown to be computationally more efficient
and has a substantially better estimation performance than the TI-
LS method. This results from the effects of more adjacent targets,
i.e., the more adjacent targets mean harder to estimate their direction
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Figure 4. Curves of iteration number and RMSE versus SNR for
scenario 3. (a) Curve of iteration, (b) curve of RMSE.
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Figure 5. Curves of iteration number and RMSE versus SNR for
scenario 4. (a) Curve of iteration, (b) curve of RMSE.

parameters [37]. Figure 5 shows the curves of iteration number
and RMSE versus SNR for scenario 4, respectively. Similarly with
Figure 4, we find that the EM ML algorithm needs more iteration
times and attains the CRB with a higher RMSE, compared with
Figure 1. Furthermore, both computational efficiency and estimation
performance of EM ML algorithm are worse than TI-LS method. It
demonstrates that the initialization conditions are very important for
EM ML algorithm.
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5. CONCLUSIONS

We have proposed an EM ML algorithm of DF for bistatic MIMO
radar, which can be applied to the arbitrary antenna geometry and
realize the auto-pairing between the DODs and the DOAs. First, we
showed that the DF problem for bistatic MIMO radar can be described
as a special case of ML estimation with incomplete data. Because
of the high computational complexity associated with the standard
implementation of ML, the EM algorithm, which decomposes the
multi-dimensional search into a sequence of much smaller dimensional
search problems, was used. Then, the methods of initialization, such
as the subspace-type algorithms, were suggested. In addition, the
convergence rate and the closed-form CRB expression of direction
parameters were respectively derived. Finally, simulations demonstrate
the potential of our estimates and confirm its asymptotic efficiency for
MIMO radar systems. It is worth to note that the EM ML algorithm
of DF for bistatic MIMO radar proposed in this paper can be extended
to monostatic MIMO radar scenario correspondingly.
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