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Abstract—A probe-compensated near-field-far-field (NF-FF) trans-
formation with spherical spiral scanning, which makes possible to lower
the number of needed measurements, as well as the time required
for the data acquisition when characterizing quasi-planar antennas,
is experimentally verified in this paper. Such a technique, based on
the nonredundant representation of electromagnetic fields, has been
achieved by properly applying the unified theory of spiral scans for
nonspherical antennas and adopting a very flexible source modelling,
formed by two circular “bowls” with the same aperture diameter but
different bending radii. A two-dimensional optimal sampling interpo-
lation formula allows one to reconstruct the NF data at any point on
the measurement sphere and, in particular, at those required by the
classical NF-FF transformation with spherical scanning. The reported
NF and FF reconstructions, obtained from the nonredundant samples
acquired on the spiral, assess the accuracy of the proposed technique.

1. INTRODUCTION

Near-field-far-field (NF-FF) transformation techniques represent
nowadays a very useful tool to overcome those problems and
limitations, which make impossible or impractical the measurement
of the antenna radiation patterns on a conventional FF range [1–3].
The antenna measurement people community has spent over the years
many efforts to satisfy the ever growing demand of innovative solutions
to the open issues [4]. Among them, the reduction of the time needed
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for the NF data acquisition is assuming a significant importance,
since such a time is currently very much greater than that required
to perform the transformation. This challenge can be tackled by
decreasing the number of the NF data to be collected and/or by making
faster the acquisition of each NF value. A convenient way of reducing
the number of the needed NF data is offered by the nonredundant
sampling representations of electromagnetic (EM) fields [5, 6]. As a
matter of fact, the EM fields radiated by finite size sources enclosed in
a convex domain D, bounded by a surface Σ with rotational symmetry
and observed on a regular surface M external to D and having the
same symmetry, can be always represented by a finite number of
NF data also for an unbounded observation domain, provided that
a proper phase factor is extracted from the field expression and proper
parameterizations are adopted to describe M. It has been so possible
to develop efficient NF-FF transformation techniques with planar [7–
9], cylindrical [10, 11], and spherical [12, 13] scannings, which generally
require a number of NF data remarkably lower than the standard
ones. In fact, the NF data needed by the corresponding standard NF-
FF transformation [14–16] are accurately recovered by interpolating
the minimum set of measurements via optimal sampling interpolation
(OSI) expansions.

When the NF data acquisition is made, as suggested by
Yaccarino et al. in [17], by means of continuous and synchronized
movements of the positioning systems of the probe and antenna under
test (AUT), then a faster NF scanning results. This suggestion
has enabled the development of the innovative spiral scanning
techniques [18–29]. Besides the use of continuous movements, the
drastic time saving characterizing these scanning techniques is due
to the significantly reduced number of needed NF data related
to the application of the aforementioned nonredundant sampling
representations, which can be further lowered if the surface Σ enclosing
the AUT fits better its actual shape. Thus, such a number is
reduced more and more passing from the quite general spherical AUT
modelling for volumetrical antennas to those particularly suitable for
AUTs having one or two dimensions very different from the third
one. An efficient two-dimensional OSI formula, obtained by choosing
the spiral step equal to the sample spacing needed to interpolate the
data along a meridian curve (radial line, generatrix, and meridian),
allows one to recover the NF data required to perform the NF-FF
transformation using the corresponding classical scanning. Moreover,
in order to match the advantages of the direct cylindrical NF-FF
transformation [30, 31] with those own of the fast helicoidal scan, direct
NF-FF transformations with helicoidal scanning, which allow one to
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evaluate the antenna far field in any cut plane directly from a minimum
set of NF data without interpolating them, have been recently proposed
in [32, 33].

Among the NF-FF transformations, that employing the spherical
spiral scanning [23–28], as well as that employing the spherical
one [12, 13, 16, 34–36], have attracted considerable attention, since
they allow the full reconstruction of the AUT radiation pattern, even
though the data processing is considerably more complex than that
needed by planar and cylindrical NF facilities [1, 2]. In particular,
the nonredundant sampling representation on the sphere from samples
collected along the spiral and the related OSI expansion have been
developed in [23–25] by assuming the AUT as enclosed in the smallest
sphere able to contain it and choosing the spiral step equal to the
sample spacing required for the interpolation along a meridian. Then,
NF-FF transformations with spherical spiral scanning tailored for
electrically long or quasi-planar antennas have been proposed in [26–28]
by properly applying the unified theory of spiral scans for nonspherical
antennas [29]. In particular, a prolate [26] and an oblate [26, 27]
ellipsoid have been adopted to model an elongated and a quasi-planar
antenna, respectively. Whereas in [28], an elongated AUT has been
considered as enclosed in a cylinder ended in two half spheres (rounded
cylinder), and a surface formed by two circular bowls with the same
aperture diameter but different bending radii (two-bowls modelling)
has been used for modelling quasi-planar antennas. Generally, these
last two flexible AUT modellings result to be more effective from the
data reduction viewpoint than the corresponding ellipsoidal ones, since
they are able to fit better the AUT shape by properly setting their
geometric parameters.

The NF-FF transformation with spherical spiral scan [28], using
the two-bowls modelling (Fig. 1) to shape quasi-planar antennas,
is experimentally validated in this paper. The tests have been
performed at the Antenna Characterization Lab of University of
Salerno, equipped with a roll over azimuth spherical NF facility system,
and have fully confirmed the effectiveness of the technique.

2. NONREDUNDANT REPRESENTATION OF THE
PROBE VOLTAGE ON A SPHERE FROM SAMPLES
COLLECTED ALONG A SPIRAL

In the spherical spiral scanning, the AUT is located at the origin of
a spherical coordinate system (r, ϑ, ϕ) and the field radiated by it is
measured by a probe scanning a spiral lying on a spherical surface M
having radius d (Fig. 1). It has been shown [37] that the voltage V
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Figure 1. Spherical spiral scanning for a quasi-planar antenna.

measured by a nondirective probe is characterized by the same effective
spatial bandwidth of the field and, accordingly, the theoretical results
relevant to the nonredundant sampling representation of EM fields [5]
can be applied to it. To this end, let us consider the AUT as enclosed
in an opportune rotational surface Σ bounding a convex domain D and
an observation curve C on M described by a proper parameterization
r = r(η). Under these hypotheses, the “reduced voltage”

Ṽ (η) = V (η)ejψ(η), (1)

obtained by extracting a proper a phase function from the expression
of each of the voltages V1 and V2 measured by the probe and
rotated probe, can be closely approximated by a spatially bandlimited
function [5]. The resulting bandlimitation error, which exhibits a step-
like behaviour, becomes negligible as the bandwidth exceeds a critical
value Wη [5]. As a consequence, such an error can be easily controlled
by choosing the bandwidth of the approximating function equal to
χ′Wη, where χ′ is an enlargement bandwidth factor, slightly greater
than unity for electrically large antennas.

When the AUT geometry departs from the spherical one, as in the
case of an antenna characterized by a quasi-planar geometry, the use of
the quite general spherical AUT modelling is not very satisfactory from
the data reduction point of view. In such a case, it is convenient for
reducing the volumetrical redundancy of the spherical modelling [23–
25] to choose the surface Σ enclosing it coincident with that formed by
two circular “bowls” with the same aperture diameter 2a, but lateral
bends which can be eventually different to fit the AUT geometry better.
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According to the unified theory of spiral scans for nonspherical
AUTs [29], heuristically derived by paralleling the rigorous approach
based on the use of the spherical AUT modelling [24], a two-
dimensional OSI expansion to reconstruct the voltage from a
nonredundant number of samples collected by the probe along a
spherical spiral can be obtained: a) by choosing the spiral pitch equal
to the sample spacing required to interpolate the data along a meridian;
b) by developing a nonredundant sampling representation of the probe
voltage on the spiral.

In particular, the bandwidth Wη, the parameterization η, and the
corresponding phase function ψ, which allow one to fix the sampling
representation along a meridian and match the requirement a), are
given by [28, 29]:

Wη = β`′
/
2π (2)

η =
π

`′
[
R1 −R2 + s′1 + s′2

]
(3)

ψ =
β

2
[
R1 + R2 + s′1 − s′2

]
(4)

where β is the wavenumber, `′ = 2[b + b′ + (c + c′)π/2], b = a − c,
b′ = a − c′, and the expressions of the distances R1, 2 and curvilinear
abscissae s′1, 2 change depending on the location of the tangency points
P1, 2, as ϑ varies in the range [0, π] (see Fig. 2). Thus, five cases must
be considered [28]. Their explicit evaluation is reported in Appendix A
for reader’s convenience.

z

P

A

d R1

b

x

c

C

B

D

s

2

'

ϑ
R

s '

P1

s '
2

P2

c ' o b '

a

Figure 2. Double bowl modelling.
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According to [28, 29], the spiral can be obtained by projecting
on the scanning sphere, via the curves at η = const, a proper
spiral wrapping Σ whose step is equal to the sample spacing ∆η =
2π/(2N ′′ + 1) needed to interpolate the voltage along a meridian. Note
that N ′′ = Int(χN ′) + 1, where N ′ = Int(χ′Wη) + 1, χ > 1 is an
oversampling factor [28, 29], and Int(x) is the integer part of x.

To match the requirement b) and develop the nonredundant
sampling representation of the probe voltage on the spiral, its
equations, the parameter ξ to describe it and the phase factor ejγ

to be multiplied by the voltage expression when interpolating along
it have to be determined. The parametric equations of the spiral are
given by [28, 29]: 




x = d sin θ(η) cos φ

y = d sin θ(η) sinφ

z = d cos θ(η)
(5)

wherein d is the radius of the scanning sphere, φ the parameter
describing the spiral, and η = kφ = φ/(2N ′′ + 1). Note that the
spiral angle θ, unlike the zenithal angle ϑ, can assume negative values.
The optimal parameter ξ describing the scanning spiral is enforced to
be equal to β/Wξ times the arclength of the projecting point on that
wrapping the surface Σ and the related phase function γ is coincident
with ψ. Moreover, Wξ is chosen equal to β/π times the length of the
spiral wrapping Σ from pole to pole [28, 29]. Note that the spiral, γ
and ξ are such that they coincide with those relevant to the spherical
modelling, when the surface Σ leads to a sphere [29].

By taking into account the above results, the voltage at any point
Q of the spiral is retrieved via the following OSI formula [28]:

Ṽ (ξ) =
m0+p∑

m=m0−p+1

Ṽ (ξm) G
(
ξ, ξm, ξ̄, M,M ′′) (6)

where m0 = Int(ξ/∆ξ) is the index of the sample nearest (on the left) to
Q, 2p is the number of the retained samples Ṽ (ξm), and ξm = m∆ξ =
2πm/(2M ′′ + 1) with M ′′ = Int(χM ′) + 1 and M ′ = Int(χ′Wξ) + 1.
Moreover,

G
(
ξ, ξm, ξ̄,M,M ′′) = ΩM

(
ξ − ξm, ξ̄

)
DM ′′ (ξ − ξm) (7)

is the product of the Dirichlet and Tschebyscheff sampling functions [5]

DM ′′(ξ) =
sin ((2M ′′+1) ξ/2)
(2M ′′+1) sin(ξ/2)

;

ΩM (ξ) =
TM

[
−1+2

(
cos(ξ/2)/cos

(
ξ̄/2

))2
]

TM

[−1+2/cos2
(
ξ̄/2

)]
(8)
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wherein TM (ξ) is the Tschebyscheff polynomial of degree M = M ′′−M ′
and ξ̄ = p∆ξ. Note that, when interpolating the voltage nearby the
poles (ϑ = 0 and ϑ = π), it is necessary to increase the excess
bandwidth factor χ′ to avoid a serious growth of the bandlimitation
error in these zones.

The OSI expansion (6) is employed to recover the “intermediate
samples”, namely, the voltage values at the intersection points between
the spiral and the meridian through the observation point P . Once
these samples have been evaluated, the voltage at P on the meridian
at ϕ can be reconstructed via the OSI expansion:

Ṽ (η(ϑ), ϕ) =
n0+q∑

n=n0−q+1

Ṽ (ηn) G
(
η, ηn, η̄, N,N ′′) (9)

wherein, N = N ′′−N ′, n0 = Int[(η− η0)/∆η], 2q is the number of the
retained intermediate samples Ṽ (ηn),

ηn = ηn(ϕ) = kϕ + n∆η = η0 + n∆η (10)
and the other symbols have the same or analogous meaning as in (6). It
is so possible to reconstruct the reduced voltage at the points required
by the spherical NF-FF transformation [16], as modified in [12, 13].
The voltages which would be measured by the probe at the same points
are then obtained by reinserting the corresponding phase factor.

3. EXPERIMENTAL TESTING

This section is devoted to show some experimental results assessing
the effectiveness of the described NF-FF transformation with spherical
spiral scanning for quasi-planar antennas. They have been performed
at the anechoic chamber of the Antenna Characterization Lab of
University of Salerno, which is provided with a roll (ϕ axis) over
azimuth (ϑ axis) spherical NF facility supplied by MI Technologies.
The chamber, whose dimensions are 8 m × 5m × 4m, is covered with
pyramidal absorbers ensuring a background noise lower than −40 dB.
An open-ended WR90 rectangular waveguide is used as probe and its
response has been collected on a spiral wrapping a sphere having radius
d = 45.2 cm. The amplitude and phase measurements are performed
via a vectorial network analyzer. The considered AUT is a X-band flat
plate slot array of Rantec Microwave Systems Inc., having a diameter
of about 46 cm, located on the plane z = 0 of the reference system
(Fig. 1). Its optimal working frequencies are: 9.2, 9.3, 9.4, and 9.5 GHz.
The reported results are relevant to 9.3 GHz. According to the adopted
representation, it has been modelled by a two-bowls modelling having
a = 23.71 cm, c = 6.45 cm, and c′ = 4.84 cm.
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Figure 3. Amplitude of V1 on the
meridian at ϕ = 0◦. Solid line:
measured. Crosses: recovered
from NF data acquired via the
spherical spiral scanning. Dashed
line: reconstruction error.
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Figure 4. Amplitude of V2 on the
meridian at ϕ = 90◦. Solid line:
measured. Crosses: recovered
from NF data acquired via the
spherical spiral scanning. Dashed
line: reconstruction error.
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Figure 5. Phase of V1 on the
meridian at ϕ = 0◦. Solid line:
measured. Crosses: recovered
from NF data acquired via the
spherical spiral scanning.
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Figure 6. Phase of V2 on the
meridian at ϕ = 90◦. Solid line:
measured. Crosses: recovered
from NF data acquired via the
spherical spiral scanning.

The effectiveness of the two-dimensional OSI expansion is assessed
by comparing in Figs. 3 and 4 the amplitudes of the recovered voltages
V1 and V2 relevant to the meridians at ϕ = 0◦ and ϕ = 90◦, respectively,
with those directly acquired on the same meridians. The corresponding
reconstruction errors are reported in the same figures, whereas the
comparisons between the phases of the reconstructed voltages and
those directly measured are shown in Figs. 5 and 6. As can be seen,
a very good agreement between the reconstructed voltages (crosses)
and the measured ones (solid line) results save for the peripheral zone
(below about −60 dB), wherein a small error, imputable to the noise
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and the residual reflections from the anechoic chamber walls, is present.
It is worthy to note that a bandwidth factor χ′ such that the sample
spacing is reduced by a factor 7 has been adopted in the zones of the
spherical spiral specified by the 30 samples around the poles, in order
to reduce the interpolation error nearby them.

At last, the FF patterns in the principal planes E and H
reconstructed from the NF set of measurements acquired through
the spherical spiral scan are compared in Figs. 7 and 8 with those
(references) obtained from the NF data directly measured on the
classical spherical grid. In both the cases, the software package MI-
3000 has been used to get the FF patterns. These plots are shown
together with the reconstruction error, in order to appreciate the error
levels. As can be seen, the reconstructions are very accurate, thus fully
confirming the effectiveness of the approach. Quite analogous results
(not reported here for brevity) have been obtained for other working
frequencies.
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Figure 7. E-plane pattern.
Solid line: reference. Crosses:
recovered from NF data acquired
via the spherical spiral scanning.
Dashed line: reconstruction error.
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Figure 8. H-plane pattern.
Solid line: reference. Crosses:
recovered from NF data acquired
via the spherical spiral scanning.
Dashed line: reconstruction error.

Note that the number of employed samples is 4 408, significantly
less than those (6 392 and 7 320) required by the NF-FF
transformation [23, 24] based on the spherical AUT modelling and
by the MI software package implementing the classical NF-FF
transformation with spherical scanning [16], respectively. In particular,
the number of “regular samples” at spacing ∆ξ is 4 048, whereas the
number of “extra samples” at reduced spacing is 360.

For what concerns the time needed for the NF data acquisition, the
proposed technique is certainly quicker than the traditional one, if the
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acquisition is performed by continuous and synchronized movements
of the positioning systems [17]. From the computational viewpoint, an
additional time is required by the OSI algorithm to reconstruct the NF
data needed to perform the classical NF-FF transformation from the
nonredundant ones acquired along the spiral. In any case, such a time
is many order of magnitude smaller than that needed for the NF data
acquisition. For instance, the reconstruction process has taken in the
considered case a CPU time of about 2.3 seconds on a PC equipped
with an Intel Core 2 Duo @ 3.33GHz.

4. CONCLUSIONS

An experimental validation of the NF-FF transformation technique
with spherical spiral scanning suitable for quasi-planar antennas and
using a two-bowls modelling of the AUT has been provided in this
paper. The very good agreements found both in the near-field and
in the far-field reconstructions confirm also from the experimental
viewpoint the validity of such an innovative transformation, which
allows a drastic reduction of the measurement time by retaining the
accuracy of the classical spherical one. It is worthy to note that the
proposed technique, as well as all those using the spiral scannings,
allow also the frequency extension of existing near-field ranges, since
both measurement axes are used simultaneously hence reducing the
effect of backlash.

APPENDIX A. EVALUATION OF R1,2 AND S′
1,2 AS

FUNCTION OF ϑ

The explicit evaluation of the distances R1, 2 of the observation point
P from the tangency points P1, 2 and their curvilinear abscissae
s′1, 2 in (3) and (4) is reported in the following. Their expressions
change depending on the location of the points P1, 2(see Fig. 2) and,
accordingly, five cases must be considered for ϑ ranging in [0, π].

When 0 ≤ ϑ ≤ ϑA = sin−1(a/d), it results:

R1 =
√

d2 + b2 + 2bd sinϑ− c2; s′1 = −(b + cα1) (A1)
α1 = tan−1 (R1/c)− tan−1 [(b + d sinϑ)/d cosϑ] (A2)

R2 =
√

d2 + b2 − 2bd sinϑ− c2; s′2 = b + cα2 (A3)
α2 = tan−1 (R2/c)− tan−1 [(b− d sinϑ)/d cosϑ] (A4)

When ϑA < ϑ ≤ ϑB = cos−1(c/d), R1, s′1, and α1 are again given
by (A1) and (A2), whereas it results:

R2 =
√

d2 + b′2 − 2b′d sinϑ− c′2; s′2 = b + c(π/2) + c′α2 (A5)
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α2 = tan−1
(
R2/c′

)− tan−1
[
d cosϑ/

(
d sinϑ− b′

)]
(A6)

When ϑB < ϑ ≤ ϑC = π − cos−1(c′/d), R2, s′2, and α2 are again
given by (A5) and (A6), whereas it results:

R1 =
√

d2 + b2 − 2bd sinϑ− c2; s′1 = b + c(α1 + π/2) (A7)
α1 = − tan−1 (R1/c)− tan−1 [d cosϑ/(d sinϑ− b)] (A8)

When ϑC < ϑ ≤ ϑD = π − sin−1(a/d), R1, s′1, and α1 are again
given by (A7) and (A8), whereas it results:

R2=
√

d2 + b′2 + 2b′d sinϑ− c′2; s′2 =b+2b′+
(
c+c′

)
(π/2)+c′α2 (A9)

α2=tan−1
(
R2/c′

)−tan−1
[
(d sinϑ + b′)/|d cosϑ|] (A10)

At last, when ϑD < ϑ ≤ π, R2, s′2, and α2 are again given by (A9)
and (A10), whereas it results:

R1=
√

d2+b′2−2b′d sinϑ−c′2; s′1 =b+c(π/2)+c′(π/2−α1) (A11)
α1=tan−1

(
R1/c′

)− tan−1
[
(b′ − d sinϑ)/|d cosϑ|] (A12)
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