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Abstract—This paper presents the analysis of novelistic fractal
optical antenna arrays in a conceptual manner. Fractal antennas are
array antennas with converging and diverging growth of basic element
or elements for multi-wideband capturing of the electromagnetic
waves. Most of these antennas relay on two components for their
characteristics. First one is the basic stage shape and second one
is the number of stages of growth. For computing the direction of
radiation the well-defined fractal array manifold and a good estimate
of the covariance matrix of the fractal array response is needed.

1. INTRODUCTION

FRACTAL THEORY is a relatively emerging field of mathematics
that has changed the way scientists view of looking at a natural
occurring phenomena in this world [1–9]. This paper makes an
attempt of extending the concept of fractal antenna array to the
optical regime for the design of fractal optical antenna arrays. Being
seen as a breakthrough technology, free space optics system has
stringent requirements for the design of the optical antenna. An optical
antenna has many characteristics for its performance measurement.
Some of the figures of merit for optical antennas includes impedance
of a nano antenna such as a vacuum, a micro cavity, a dipolar
nano antenna, plasmonic antenna and antenna array, comparison of
a micro cavity and nano antenna, its ohmic and radiative losses,
the impedance of a quantum emitter, two level system impedance
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and multiple scattering, properties of coated nano particles, field
enhanced spectroscopy, directionality, polarization and enhancement,
quantum optics and near field microscopy, nonlinear optical antenna
characteristics and coherent control of nano particle excitations. The
explosive growth of free space optic communication devices, and their
importance in all aspects of our lives, made a growing need to develop
portable and higher data rate free space optic components. A vital role
is played by optical antenna in this regard. For next generation devices,
the need for optic antennas and free space optic front-ends, without
compromising performance, has emerged as a key driver in marketing
and realizing. Several new applications utilizing the optical frequency
range have been evolved, and new antennas have been designed and
tested. In this paper, novel fractal optical antenna arrays are analyzed
in a conceptual manner. The paper is arranged as follows. Section 2
highlights the analysis of the fractal antenna and novel fractal optical
antenna array. Finally Section 3 concludes with the conclusion and
gives some direction for future research.

2. NOVEL FRACTAL ANTENNA ANALYSIS AND A
CONCEPTUAL APPROACH FOR FRACTAL OPTICAL
ANTENNA ARRAYS

In the RF regime, for linear, time invariant, isotropic media,considering
isotropic point source radiators, the time domain constitutive equation
relating the electric field density D̄ is typically cast as a convolution
between Ē and the permittivity as follows[10]

D̄(r̄, t) =
∫ t

−∞
ε(r̄, t− τ)Ē(r̄, τ)dτ (1)

ε(r̄, t) = ε0δ (t) + ε0χe(r̄, t) (2)
where ε(r̄, t) = F−1[ε(r̄, ω)] is the time domain permittivity function,
and F stands for Fourier transformation. ε0 is the vacuum permittivity,
δ(t) the Dirac delta function, and χe(r̄, t) the time domain electric
susceptibility function. In FDTD or FETD, the time variable is
discretized as tl = l∆t with = 0, 1, 2 . . . . We denote

Ē (l∆t) = Ēl (3)
From which we can write

N1∑

p=0

ap(r̄)
∂pD̄(r̄, t)

∂tp
=

N2∑

p=0

bp(r̄)
∂pĒ(r̄, t)

∂tp
(4)

where ap(r̄) and bp(r̄) equate the relation between dielectric constant,
flux density and electric field intensity. The Maxwell’s equation relates
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the electric field intensity and the magnetic flux density given by

∇s × Ē = jωB̄ (5)

and the magnetic field intensity, electric flux density and electric field
by the following equation

∇s × H̄ = −jωD̄ + σĒ (6)

where
∇s = x̂

1
sx

∂

∂x
+ ŷ

1
sy

∂

∂y
+ ẑ

1
sz

∂

∂z
(7)

and si denotes
si = ai + jΩi, i = x, y, z (8)

From Equation (7)

1
sx

∂

∂x
x̂× Ē = jωB̄sx (9)

1
sx

∂

∂x
x̂× H̄ = −jωD̄sx + σĒsx (10)

∂

∂x
x̂× Ē = jωaxB̄sx − ΩxB̄sx (11)

A fractal is a recursively generated object having a fractional
dimension. Many objects, including antennas, can be designed using
the recursive nature of a fractal. The important properties of fractal
arrays are frequency independent multi band characteristic schemes for
realizing low side-lobe designs, systematic approaches to thinning, and
the ability to develop rapid beam-forming algorithms by exploiting the
recursive nature of fractals. These arrays have fractional dimensions
that are found from generating sub array used to recursively create
the fractal array. Repetitive application of a generating sub array can
form a rich class of fractal array. A generating sub array is a small
array at scale one (P = 1) where P is the scale factor and used to
construct larger arrays of higher scales (P > 1). The generating sub
array elements are turned on and off in a particular pattern in many
cases. A set of formulas for copying, scaling, and translation of the
generating sub array are then followed in order to produce the fractal
array. Hence, fractal arrays created in this manner will be composed
of a sequence of self-similar sub arrays. In other words, this may be
conveniently considered as an array of arrays. The array factor for a
fractal array [6] of this type may be expressed in the general form:

AFP (ψ) =
P∏

i=1

ĜA
(
δi−1ψ

)
(12)
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where GA(ψ) represents the array factor associated with the generating
sub array. The parameter δ is a scale or expansion factor that governs
how large the array grows with each recursive application of the
generating sub array. The expression for the fractal array factor given
in Equation (12) is simply the product of scaled versions of a generating
sub array factor. Therefore, Equation (12) may be regarded as
representing a formal statement of the pattern multiplication theorem
for fractal arrays.

For the novel fractal antenna, as the number of stages P is
varied, the size of the fractal element also varies i.e., the δ value also
changes. For analysis purpose, we will introduce the parameter ‘x’
which indicates the size increase proportion. In the case of diverging
growth, the value of ‘x’ is greater than unity, and in the case of
converging growth, the ‘x’ value is less than unity. The larger is the
value of ‘x’, the higher will be the growth. Implementing this change
in the equations above for P = 1 and δ = 1, the equations become

1
sx1,1x

∂

∂x1,1x
x̂× Ē1,1x = jωB̄sx1,1x (13)

1
sx1,1x

∂

∂x1,1x
x̂× H̄1,1x=− jωD̄sx1,1x + σĒsx1,1x (14)

∂

∂x1,1x
x̂× Ē1,1x = jωax1,1xB̄sx1,1x − Ωx1,1B̄sx1,1x (15)

These equations can be extended to find the magnetic field intensity
from the electric field intensity and the electric flux density by the
following equation. Since the antenna is fabricated in the same
substrate and material, everything else remains constant only the fields
produced by each growth will vary

∂

∂x1,1x
x̂× H̄x1,1x = −jωax1,1xD̄sx1,1x + Ωx1,1xD̄sx1,1x + ax1,1xσĒsx1,1x

+j
Ωx1,1x

ω
σĒsx1,1x (16)

∂

∂x1,1x
x̂× Ēx1,1x = −ax1,1x

∂

∂t
B̄sx1,1x − Ωx1,1xB̄sx1,1x (17)

∂

∂x1,1x
x̂× H̄x1,1x = ax1,1x

∂

∂t
D̄sx1,1x + Ωx1,1xD̄sx1,1x + ax1,1xσĒsx1,1x

+Ωx1,1xσ

∫ t

0
Ēsx1,1x(τ)dτ (18)

The magnetic field intensity and the magnetic flux density are related
by

B̄sx1,1x = µH̄sx1,1x (19)
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Similarly the electric field intensity and the electric flux density are
related by

D̄sx1,1x = ε (t) ∗t Ēsx1,1x (20)

The electric permittivity in time domain is related to the electric
susceptibility of the medium in frequency domain by the Fourier inverse
function given by

ε(t) = F−1[ε(ω)] (21)

where ε(t) is the N-species Lorentzian dispersive medium given by the
following frequency-dependent relative permittivity function

ε(ω) = ε0[ε∞ + χ(ω)] (22)

ε0ε∞ + ε0(εs−ε∞)
N∑

m=1

Gmω2
m

ω2
m − j2ωαm − ω2

(23)

where ε0 and ε∞ are the static and infinite frequency permittivities,
and εs is the permittivity for the given values. An equivalent time
domain susceptibility function can be defined by

χ̂(t) =
N∑

m=1

χ̂m(t) =
N∑

m=1

jγme−(αm+jβm)u(t) (24)

where
βm =

√
ω2

m − α2
m (25)

And

γm = (εs−ε∞)
Gmω2

m

βm
(26)

Note that the limit value for Gm is unity which is a normalized quantity.
N∑

m=1

Gm = 1 (27)

the electric flux density for the proposed fractal antenna is given by

D̄x1,1x(t) = ε0ε∞Ēx1,1x(t) + ε0χx1,1x (t) ∗t Ēx1,1x(t) (28)

D̄x1,1x(t) = ε0ε∞Ēx1,1x (t) + ε0

N∑

m=1

Re{χ̂x1,1x (t) ∗t Ēx1,1x(t)} (29)

The electric field at t = l∆t using piecewise-linear approximation for
the time discretization can be written as

Ē (t)=Ēl +
t− l∆t

∆t

(
Ēl+1 − Ēl

)
(30)
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When substituted we get,

D̄l = ε0ε∞Ēl + ε0

N∑

m=1

Re{Q̄l
m} (31)

where

Q̄l
m =

l−1∑

p=0

[(
χ̂0

m − ζ̂0
m

)
Ēl−p + ζ̂0

mĒl−p−1
]
e−(αm+jβm)p∆t (32)

With the constants given by χ̂0
m=

∆t∫
0

χ̂m(t)dt= jγm
(αm+jβm){1−e−(αm+jβm)∆t}

ζ̂0
m =

∆t∫

0

tχ̂m (t) dt =
jγm

∆t(αm + jβm)2

{
1− [((αm + jβm)∆t + 1)] e−(αm+jβm)∆t

}
(33)

The following recursive calculation can be carried out for determining
Q̄l

m

Q̄l
m =

{
0 l = 0(
χ̂0

m − ζ̂0
m

)
Ēl + ζ̂0

mĒl−1 + Q̄l−1
m e−(αm+jβm)∆t l ≥ 0 (34)

After substituting this into electric flux density the equation becomes

D̄l = ε0

(
ε∞ +

N∑

m=1

Re
(
χ̂0

m − ζ̂0
m

))
Ēl + ε0

N∑

m=1

Re
(
ζ̂0
m

)
Ēl−1

+ε0

N∑

m=1

Re
(
Q̄l−1

m e−(αm+jβm)∆t

)
(35)

And simplified becomes

D̄l = ε0

(
λ0Ē

l + λ1Ē
l−1 + P̄ l−1

)
(36)

λ0 =

(
ε∞ +

N∑

m=1

Re
(
χ̂0

m − ζ̂0
m

))
(37)

and

λ1 =
N∑

m=1

Re
(
ζ̂0
m

)
(38)
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and

P̄ l−1 =
N∑

m=1

Re
(
Q̄l−1

m e−(αm+jβm)∆t

)
(39)

All these equations pertain to a single element of a single stage. The
same equations can be repeated for the other elements in single stage
and all the elements in subsequent stages of growth with the subscripts
changed. The total electric field is given by the vector addition of the
electric field produced by the individual stages.
Ētot (t) ≈ Ēx1,1x (t)+Ēx2,2x (t)+Ēx3,3x (t)+Ēx4,4x (t)+Ēx5,5x (t) (40)

The total electric flux density is given by
D̄tot (t)≈D̄x1,1x (t)+D̄x2,2x (t)+D̄x3,3x (t)+D̄x4,4x (t)+D̄x5,5x (t) (41)

This equation holds well as long as the distance between different stages
of growth is so small so that it can be neglected in far field calculations.
This is a proven numerical method. This analysis carried out in the RF
regime can be applied to optical regime for the design of fractal optical
antenna arrays carefully incorporating the similarities and differences
mentioned below. The fractal antenna array factor pattern and the
directivity pattern in the RF regime and optical regime fundamental
mode of operation considering the linear array of isotropic point source
radiators for P ∈ {1, 2, 3, 4} and δ = {3, 5, 7} are shown in Figures 1
to 4 [6].

The design procedure and equations for designing antenna arrays
in the optical regime has many similarities to the design of antenna
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Figure 1. Combined fractal
array factor pattern in the optical
regime is the same as RF regime
when operated in fundamental
mode for δ = 3.
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when operated in fundamental
mode for δ = 5.
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Figure 3. Combined fractal
array factor pattern in the optical
regime is the same as RF regime
when operated in fundamental
mode for δ = 7.

Figure 4. Combined fractal
antenna directivity pattern in the
optical regime is the same as
RF regime when operated in
fundamental mode.
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Figure 5. Block diagram of fractal optical antenna arrays.

array in the RF regime [11]. Figure 5 shows the block diagram of
fractal optical antenna arrays. In the case of optical antenna array,
the elements considered here are linear array of plasmonic dipoles.
The fractal concept can be applied with the linear array. The basic
Triadic cantor set can be followed in the case of linear array, or the
Sierpinski carpet set can be followed in the case of planar array.

The most employed antenna element in the RF regime is the half
wave length antenna. A RF antenna has its dipole resonance at a
length of approximately half the free space wave length. However,
the resonance length of an optical antenna is not dictated by the
free space or vacuum wave length, but by the SPP (Surface Plasmon
Polaritons) wavelength in the metal [11]. Considering the thickness
of the wire used in an optical antenna, this expression changes. The
electromagnetic fields are not required to vanish at the physical wire
ends considering the boundary conditions in the case of RF. Their
penetration into the surrounding medium leads to an additional phase
that is picked up upon reflection. This is also known as apparent length
increase of an antenna. Both effects lead to a substantial decrease of
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the antenna resonance length. There are several ways of incorporating
this difference into the array design of fractal optical antenna. The
non-trivial method is to simulate the individual antenna elements first.
This will take care of the apparent length increase effect and SPP
wavelength effect. For cylindrical antennas, analytical expressions are
derived to calculate the SPP wavelength of an infinitely long wire and
the phase pickup upon reflection for an abruptly ending nano wire.

Yet another more subtle consequence is caused by the difference
between SPP wavelength and free-space wavelength. Compared with
the current distribution in wire antennas which results in standing
wave pattern, the current in the optical antenna builds up a standing
wave pattern similar to that of the RF antennas. However, the
distance between the subsequent current lobes is not the same. Only
when operated in fundamental mode, the emission pattern of the two
antennas has nearly the same shape [11]. However, for higher mode of
antenna operation, the different wavelengths can lead to fundamentally
different emission patterns. Therefore, care has to be taken when the
design of an antenna array that involves higher order resonance modes
is shifted to optical regime wavelengths.

In the RF regime, the losses in antennas are mainly due to
radiation damping. However, plasmonic currents in optical antennas
also suffer from ohmic losses. Depending on the operation wavelength,
the antenna efficiency decreases which cannot be ignored. For an
antenna array consisting of only active elements, the effect will be
less emitted radiation. But when an antenna array includes passive
elements that are driven by the fields of active elements, adding further
element can lead to a decrease of the antenna gain. A classic example
is the Yagi-Uda antenna with an active feed element, a passive reflector
and several passive directors. In the RF regime, the emitted power in
the direction along the directors is enhanced when adding a second and
third director. However, in the visible wavelength range, the losses in
the Au elements lead to maximal radiation enhancement of an optical
Yagi-Uda antenna with only one director [11].

State of the art nano fabrication techniques like EBL (Electron
Beam Lithography) or FIB (Focussed Ion Beam) milling precisely
pattern homogeneous nano structures in a 2D periodic arrangement.
Similar to RF antenna arrays, plasmonic antenna arrays can achieve a
higher directionality [11]. Application of the fractal concepts leads
to further increasing the directivity, easily producing rapid beam
forming algorithms, increasing the computational speed, enhancing
the multiband operation and wider bandwidth with less computational
complexity.

As with their RF counterparts, optical antennas have the ability
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to focus free space radiation to a very small subwavelength volume with
high field enhancements. Vice versa, coupling of a nanoscopic source,
like quantum emitters, to an optical antenna results in modification of
the transition rates and a redirection of the emission. Optical antenna
arrays have superior properties regarding directivity, field confinement,
absorption cross-section and flexibility in beam shaping compared with
single plasmonic antennas. The future applications of optical antenna
arrays are very interesting: nanoscale spectroscopy, efficient quantum
light sources, and coherent control of field localization or high speed
data transmission. However, current research is mainly focused on
single optical antennas [11].

3. CONCLUSION

The diverging and converging fractal antennas are analyzed and
studied, and the concept is extended to optical antenna arrays. The
obtained analytical expressions are promising for future applications.
The numerical method gives an insight to the mathematical analysis
and the field values obtained. Further research can be continued with
different basic cell shapes, and nonlinear array can be introduced
to tailor the result according to the application requirements for
challenging problems in fractal optical antenna arrays. In this case, the
converging fractal structure is used in which case the fractal stage of
growth converges as the growth approaches infinity. The other fractal
structure is the diverging fractal concept in which the stage approaches
infinity as the growth approaches infinity.
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