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Abstract—Cooperative wide-band spectrum sensing has been
considered to enable cognitive radio operation of wireless regional area
networks (WRAN) in the UHF and VHF TV broadcasting bands.
In this paper, cooperative compressed spectrum sensing is considered
to enable fast sensing of the wide-band spectrum. The speed and
accuracy of spectrum sensing are improved by further optimization of
the compressed sensing receiver, which is done blindly without any
prior knowledge of the sensed signal. Enhanced compressed spectrum
sensing algorithms are proposed for the cases of individual spectrum
sensing and cooperative spectrum sensing. The cooperative signal
reconstruction process is modified to optimally combine the received
measurements at the fusion center. A low complexity authentication
mechanism, which is inherent to cooperative compressed spectrum
sensing, is proposed to make the cognitive radio system immune to
adversary attacks.

1. INTRODUCTION

Cognitive radio (CR) technology has the potential to alleviate the
scarcity of wireless spectrum by allowing the next generations of
wireless devices to utilize the white spaces in the wireless spectrum. CR
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allows a secondary user to reuse a wireless spectrum band as long as its
licensed user is protected against harmful interference [1, 2]. The IEEE
802.22 wireless regional area network (WRAN) standard [3] allows
WRAN systems to utilize channels in the UHF and VHF bands in
the frequency range from 54MHz to 862 MHz, as long as they do not
interfere with licensed broadcast incumbent services on these bands,
such as wireless microphones and TV broadcasting services. WRAN
systems should also be capable of dynamic frequency selection due to
the fragmented and time-varying spectrum capability in the specified
TV broadcasting band. Hence, WRAN terminals should be equipped
with cognitive radio features for real-time sensing of this wide-band
spectrum and quick detection of any activity by an incumbent primary
user (PU) or other WRAN terminals on the channels of interest. To
aid in frequency selection, the spectrum sensing information can be
used jointly with geolocation databases to decide on the local vacant
channels, the WRAN transmission band and power.

Spectrum sensing is challenging due to the requirements set
by the FCC on the sensing speed and accuracy [4]. This is
particularly manifested in wide-band systems due to the high sampling
rates required, which means complex and expensive hardware with
high power consumption. Conventional wide-band spectrum sensing
techniques include successive scanning of multiple frequency bands
through tunable band-bass filters [5, 6]. This technique is not very
attractive due to its extensive RF hardware, and may fail to scan
all the bands with the desired speed. Another approach to wide-
band spectrum sensing is to search the multiple frequency bands
simultaneously by deploying a wide-band RF front-end together with
high-speed signal processing architectures [7]. However, the high
sampling rate, which is at least the Nyquist rate or twice the
bandwidth, required for conventional spectrum estimation of a wide-
band signal poses a major practical challenge to the deployment of
this technique. Also, the timing requirements for rapid sensing may
only allow for acquisition of a small number of samples, which may
not provide sufficient statistics when conventional signal reconstruction
methods are used.

Compressed sensing (CS) allows sensing of sparse signals at
sub-Nyquist sampling rates, and their reliable signal recovery via
computationally efficient algorithms [8–10]. CS states that a signal
can be recovered from a small number of projections over a sensing
basis (measurements) if it is sparse over a representation basis that
is incoherent with the sensing basis. The minimum number of
measurements required for reliable signal recovery depends on the
sparsity of the signal representation with the sparsifying basis. In
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the context of image and audio compression, it has been shown
that CS recovery can be made more efficient by adopting a tree-
structured dictionary of orthogonal bases adapted to the measured
signal [11]. CS has also been successfully deployed in track-before-
detect radar systems, which reconstruct the whole radar scene from
sparse measurements [12]. Also using CS, low-cost high-quality
sparse array 3-D microwave imaging have recently been shown to be
feasible [13].

Compressed spectrum sensing (CSS) is an attractive solution for
wide-band spectrum sensing [14–16]. In a two-step CS approach, the
sparsity order of the wide spectrum is quickly estimated using a small
number of samples at the first step, then the total number of samples
collected is adjusted according to the estimated signal sparsity order
at the second step [17]. Wavelet edge detection can be utilized to
improve CS performance, where the wide-band spectrum is viewed
as sub-bands, and the detected spectrum edges indicate a change in
spectrum occupancy [14, 18].

In cooperative spectrum sensing, several CR terminals sense the
spectrum and cooperate to decide on the availability of the CR
channels. By exploiting spatial diversity, cooperative sensing helps
mitigate hidden-node problems and improve the detection performance
at low SNRs [19]. Cooperative sensing can be centralized, where a
common control channel is assigned to CR terminals to report their
local sensing data to the fusion center (FC), which in turn makes
a global decision on the spectrum availability [20]. In distributed
cooperative spectrum sensing, the CR terminals share their sensing
decisions with other nodes to reach a global decision [21]. CS can be
deployed with cooperative sensing, where compressed measurements
from multiple sensing terminals are sent to the FC to reconstruct an
estimate of the received signal [22]. Security poses a major challenge
to cooperative sensing, where greedy secondary users may attack the
CR system to selfishly utilize the vacant spectrum, and malicious users
may attack to degrade the PU and CR system performance. In such
attacks, malicious nodes may report false measurements to the FC to
force it to make wrong decisions [23–25].

In this paper, we propose enhanced techniques for compressed
spectrum sensing of wide-band signals in the TV broadcasting band
to provide higher secondary user throughput and better incumbent
user protection. We develop blindly-optimized CS receivers for
both individual and centralized cooperative spectrum sensing systems.
Coifman and Wickerhauser (CW) optimization [26] with an entropy
cost function is deployed to find the optimum basis from a wavelet
packet dictionary. This optimization requires knowledge of the
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measured signal. However, in WRAN systems, the received signal
is unknown since it can be from TV broadcasting services, or
wireless microphones, or other WRAN users. Hence, our proposed
CS techniques blindly optimize the sparsifying basis without any
prior knowledge about the characteristics of the measured signal.
Our proposed spectrum sensing techniques improve PU detection
probabilities at given false alarm probabilities. To enhance the security
of the proposed cooperative CSS system and protect the PU and SUs
against malicious attacks, we propose an authentication technique
at the WRAN base station (or fusion center), which is inherent to
the cooperative CSS algorithm, and can successfully discard false
measurements from terminals prior to incorporating them in the
signal reconstruction and decision-making processes. The following
abbreviations will be used for the algorithms investigated in this paper,
CS for compressed sensing, CSS for compressed spectrum sensing,
CCSS for cooperative CSS, GOCS for genie-aided optimized CS,
GOCCS for genie-aided optimized CCSS, BOCS for blindly optimized
CS, BOCCS for blindly optimized CCSS, and SBOCCS for secure
BOCCS.

The rest of this paper is organized as follows. In Section 2,
the spectrum sensing system model is described. In Section 3, the
tools deployed in this paper for individual and cooperative CSS and
reconstruction are described. The proposed genie-aided and blindly
optimized CSS algorithms are described and analyzed in Sections 4
and 5, respectively. The proposed authentication algorithm for secure
CCSS is described and analyzed in Section 6. Section 7 concludes the
paper with some discussions.

2. COGNITIVE RADIO SPECTRUM SENSING MODEL

In this section, we describe the system model used to develop the
algorithms described in this paper.

2.1. Spectrum Sensing Model

Consider a CR system with J spectrum sensing terminals. The PU
signal received at a spectrum sensing terminal j at time index t can
be described by

rj(t) =
{

hj(t)x(t) + nj(t); PU is active
nj(t); PU is idle , (1)

where x is the transmitted PU wide-band signal, nj the zero-mean
wide-band additive white Gaussian noise (AWGN) at secondary user
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SU j with variance σ2
n, and hj the complex channel gain for the channel

between the PU and SU j, which is normalized to unity for static
AWGN channels.

For individual spectrum sensing, the outcome of the spectrum
sensing process at the jth terminal is a decision on one of two
hypotheses for each PU channel p;

Hj(p) =
{ H1; PU is active on sub-band p,
H0; PU is idle on sub-band p. (2)

For cooperative sensing with decision fusion, each sensing terminal
transmits its decision Hj(p) to the FC which decides on the global
decision H(p) for each sub-band, using a majority vote or a similar
criterion. For cooperative sensing with data fusion, all SUs transmit
their raw measurements to the FC which makes a global decision
H(p) about the PU activity on channel p. In this paper, we focus on
data fusion systems since they have better performance than decision
fusion systems, and have the advantage of shifting the computational
complexity from the low-power sensing nodes to the FC. Whereas the
sampling rates of the PU signal should be at least the Nyquist rate for
conventional spectrum sensing, the PU signal can be sampled at sub-
Nyquist sampling rates with CSS. Sub-Nyquist sampling can be done
by an analog-to-information converter [27]. An analog-to-information
converter maps a continuous time signal to a discrete sequence of
measurements. Hence, it can be modeled as two cascaded blocks; an
analog to digital converter operating at the Nyquist rate, followed by
a compressed sensing block.

Let yj be the vector of measurements obtained from sampling
rj(t) by SU j. An estimate of the PU signal is reconstructed at
SU j in case of individual CSS, or at the FC, after observing all
J measurements, in case of CCSS. Let x̂ denote the reconstructed
estimate of the sensed signal, and Ŝx denote its estimated power
spectral density (PSD). An energy detector can be used to accumulate
the energy Ep =

∑
i∈sub-band p Ŝx(i) received in sub-band p. The FC

decides on the availability of channel p by the hypotheses

H(p) =
{ H1; Ep ≥ τ
H0; Ep < τ.

(3)

The threshold τ is a design parameter and can be empirically set to
achieve a certain target false alarm probability (FAP) which is defined
by

PF = P {H(p) = H1 | PU is idle on sub-band p} .

A false alarm is not desired as it will prevent the secondary user from
utilizing a vacant band. The detection probability PD is the probability
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of correctly identifying that the PU is active whenever it is active,

PD = P {H(p) = H1 | PU is active on sub-band p} .

The choice of τ provides a trade-off between maximizing the secondary
user throughput (by decreasing PF ), and minimizing interference to
the PU (maximizing PD). A larger τ would result in a lower false
alarm probability at the expense of a lower detection probability. On
the other hand, if τ is set to be very small, then energy due to noise
can be falsely detected, resulting in a PF of unity, as well as a PD
of unity due to the detection of PU signals with very low received
powers. Practical CR systems should operate with a false alarm
probability less than 0.1 [1, 2]. The tradeoff between the false alarm and
detection probabilities is best characterized by the receiver operating
characteristics (ROC) curve, where a better spectrum sensing system
will yield higher detection probability at a given false alarm proability.

2.2. Simulation System Model

To evaluate the performance of the proposed spectrum sensing
algorithms, a system model compatible with the WRAN system is
assumed. It is assumed that that the CR terminals would like to
utilize Np = 8 non-overlapping sub-bands, or TV channels, within the
band from 75 MHz to 600MHz, when not occupied by the incumbent
signals. This wide band is within the limits specified by the WRAN
standard [3], which also specifies that the selected Np channels may
be determined by the sensing terminals from the WRAN geolocation
database. Each sub-band or TV channel is assumed to have an
8MHz bandwidth. To determine the availability of the desired bands,
spectrum sensing of the 75–600 MHz wide-band spectrum is performed.
Slightly similar models have been adopted in previous works [16, 18].

For Monte-Carlo simulations, the carrier frequencies of the Np

channels are randomly varied in the sensed frequency band. To
average the detection performance over cases when the bands are either
occupied or available, it is assumed that only 4 of the 8 channels
are occupied by the incumbent user at any given time. For realistic
performance averaging over different PU received powers, the spectrum
sensing terminals receive the PU signals with different signal to noise
ratios (SNRs) on the occupied channels.

The sensed signal is measured according to the desired
compression ratio (m/N), where m is the number of measurements
and N is the number of discrete samples of the measured signal when
sampled at the Nyquist rate. The availability of a specific channel
can be determined from Ŝx by energy detection, c.f., (2), where the
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decision threshold τ is determined by the target PF using Monte-Carlo
simulations.

3. COMPRESSED SPECTRUM SENSING (CSS)

In this section, we describe the theory of compressed sensing for
individual and cooperative sensing.

3.1. Individual Compressed Spectrum Sensing

Let y = Φr be a vector of m measurements of an N point sampled
received vector r = x+n, where Φ is the m×N measurement matrix.
Suppose r can be represented by a sparse representation s using a
sparsifying transform Ψ. The measurement vector is expressed as

y = Φr = ΦΨs = Θs. (4)

With high probability, r can be perfectly reconstructed from y if, for
a positive constant c [9]

m ≥ c µ2(Φ,Ψ) S log n, (5)

where µ(Φ,Ψ) =
√

n max1≤m,j≤n |〈φm, ψj〉| is the coherence between
the sensing and sparsifying (representation) bases, and S = S(s) is
the maximum number of nonzero elements of s. It has been shown
that if the elements of Φ are drawn independently and identically from
a Gaussian distribution with zero mean, then with high probability,
this random orthonormal basis would have minimal coherence with
any fixed sparsifying basis Ψ [9]. In conventional CSS, Ψ is a fixed
sparsifying transform, such as the wavelet transform or full wavelet
packet (FWP) transform, which is independent of the measured signal.

An estimate of the sparse vector ŝ, and hence x̂, is reconstructed
by solving the following l1-norm minimization problem

ŝ = args′ min
∥∥s′∥∥

1
such that y = ΦΨs′, (6)

where ‖s′‖1 is the l1-norm of s′. This optimization problem can
be efficiently solved by greedy algorithms such as the orthogonal
matching pursuit (OMP) algorithm. Hence, the reconstruction process
by applying OMP to solve (6) will be denoted x̂ = OMP(y,Φ, Ψ).

3.2. Cooperative Compressed Spectrum Sensing (CCSS)

In case of CCSS with data fusion, each CR node senses its received PU
signal rj(t) and sends its measurement vector yj to the FC. To recover
the PU signal, greedy pursuit algorithms, such as the simultaneous
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orthogonal matching pursuit (SOMP) algorithm, could be used [18, 28].
The SOMP algorithm exploits the common sparse support among the
J measurements [12].

The SOMP algorithm jointly recovers all of the signals from the
measurement matrix Y = {y1,y2, . . . ,yJ}, where yj = Φrj , into
an N × J matrix X̂ = {x̂1, x̂2, . . . , x̂J} by X̂ = SOMP(Y, Φ, Ψ).
The SOMP algorithm takes as input the m × N dictionary matrix
Θ = ΦΨ, whose columns are ϑi, and the m× J measurements matrix
Y. The SOMP algorithm requires that the elementary signals be
weakly correlated [28], and this is satisfied by having independent
basis vectors, through drawing the elements of the measurement matrix
independently and identically from a zero-mean Gaussian distribution.
The SOMP algorithm is run for a maximum number of iterations T ,
which depends on the expected sparsity measure S. The output of the
SOMP algorithm includes the m×J approximation matrix AT and the
matrix of the estimated sparse signal Ŝ, from which the reconstructed
signal matrix is calculated as X̂ = ΨŜ.

With conventional CCSS, the SOMP algorithm assumes a fixed
sparsifying basis Ψ, such as the wavelet transform or the full wavelet
packet. However, better reconstruction accuracy with the same
number of measurements m can be achieved by optimizing the
sparsifying basis, as explained in the following sections.

4. GENIE-AIDED OPTIMIZED COMPRESSED SENSING

In case of single user compressed sensing, the sensing performance
can be improved by optimization of the sparsifying basis [29, 30].
In this section, we present an optimized CCSS algorithm that can
achieve better PU detection than conventional CCSS. PU detection by
CSS algorithms improves by increasing the number of measurements,
or equivalently the compression ratio m/N . Hence, it is desired to
improve the detection performance of CSS at a given false alarm
probability and sampling rate. By the condition of (5), perfect
reconstruction is possible with a smaller number of measurements if
the sparsity measure S of s is minimized. S, in turn, depends on the
choice of the sparsifying basis Ψ.

Whereas conventional CSS uses fixed sparsifying bases which are
independent of the measured signal, the proposed technique optimizes
the sparsifying basis Ψ to maximize the probability of prefect signal
reconstruction at a given sampling rate. We present hypothetical genie-
aided optimized CS by optimizing the sparsifying basis Ψ, assuming
perfect knowledge of the sensed signal r, to find the optimum basis Ψ?

that maximizes the sparsity of the representation of the sensed signal,
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i.e.,
Ψ? = argΨ minS (

Ψ−1r
)
. (7)

Rather than using the full wavelet packet transform, the wavelet
packet transform is optimized to the sensed signal, with Shannon
entropy as a cost function. The Coifman and Wickerhauser (CW)
search strategy [26] is used to search for the optimized wavelet packet
(OWP). For a signal x = [x1, x2, . . . , xn], let pn = |xn|2/‖x‖2 be the
contribution of the nth coordinate to the energy of x, then the deployed
Shannon entropy measure is defined by

H = −
∑

n

pn log pn. (8)

H is an additive cost function, and it can be shown that minimizing
H maximizes the sparsity (minimizes S) of the sparse vector
representation s (e.g., H = 0 if S = 1). This modified Shannon entropy
satisfies all characteristics of a “good” sparsity measure [31]. The
wavelet packet tree is optimized to minimize a desired cost function,
using CW optimization as follows:

Algorithm 1 Coifman and Wickerhauser Optimization
Let C1 be the cost of a non-leaf node, and C2 be the sum of the

costs of its leaves. The optimization process recourses up the tree
towards its root such that

i. if C1 ≤ C2, the node is marked as part of the best basis set and
any marks of the nodes in the sub-tree of this node are removed.

ii. if C1 > C2, keep this decomposition and use C1 as the cost of this
parent node and its sub-tree.

When the cost function is the Shannon energy entropy H, then
the CW search strategy guarantees that the coefficients collected from
the leaves of the optimized wavelet decomposition tree will have the
minimum Shannon entropy value, and thus the maximum sparsity.
Figure 1 shows an example of the fixed wavelet transform and the full

(a) (b) (c)

Figure 1. (a) Wavelet transform. (b) Full wavelet packet (FWP)
transform. (c) Example of an OWP tree with nodes 1 to 5 decomposed.
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wavelet packet transform. It also shows a best basis tree of the OWP
transform, where nodes 1 to 5 are decomposed and the remaining nodes
are not.

The optimized sparsifying basis Ψ? is constructed from the OWP
best basis tree as follows:

Algorithm 2 Optimized Wavelet Packet (OWP) Construction
Let L ≤ log2 N be the number of decomposition levels of the

OWP, N be the length of the signal to be transformed, and t be the
2L−1 best tree vector. The elements of t corresponding to the indices
of the decomposed nodes are set to ones and the other elements are
set to zeros. The OWP matrix is constructed from the OWP tree by

i. Construct the (N × N) one level wavelet transform matrix WN

from the coefficients of the corresponding wavelet low-pass filter
h0, c.f., [26].

ii. At the mth decomposition level, let the vector tm =
{t(i)}i=2m−1,...,2m−1 represent the decomposition of nodes in the
OWP tree at this level.

iii. Let d = N/2m−1, and the decomposition matrix Di be defined as

Di =
{

Wd, if tm(i) = 1
Id, otherwise ,

where Wd is the (d × d) one level wavelet transform matrix, as
explained in Step i, and Id is the (d× d) identity matrix.

iv. For each level m, construct an (N×N) transformation matrix Ψm

as

Ψm =




D1 0
D2

. . .
0 D2m−1


 .

v. Calculate the OWP matrix as a concatenated filter

Ψ? = ΨL, ΨL−1, . . . ,Ψ1.

The GOCS algorithm optimizes the basis Ψ? to the PU signal x,
using Algorithms 1 and 2. After collecting the measurements y at
the desired compression ratio m/N , GOCS then proceeds to find x̂ =
OMP(y, Φ,Ψ?). After receiving all J measurement vectors at the FC,
GOCCS reconstructs the measured signals by X̂ = SOMP(Y, Φ, Ψ?),
where Φ is known a priori by the FC.
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5. BLINDLY OPTIMIZED COMPRESSED SENSING

The genie-aided algorithms are described for theoretical understanding
of the performance limits of the proposed approach. However, in
practice, a sensing node cannot know the exact characteristics of the
sensed signal. In this section, we propose a practical solution to this
problem.

5.1. Proposed Blindly-optimized CCSS Algorithm

Since the measured signals are not known a-priori to the sensing nodes
or the FC, the proposed genie-aided algorithms are modified to blindly
optimize the sparsifying basis. In the proposed blindly optimized
compressed sensing (BOCS) algorithm, the representation basis is
optimized without any prior knowledge about the measured PU signal.
The crux of the BOCS algorithm is to optimize the basis to an estimate
of the wide-band measured signal x̂, instead of the actual measured
signal. The BOCS algorithm estimates x̂ from the measurement vector
y only, by signal reconstruction with a fixed sparsifying basis such as
the FWP or the wavelet transform. Let W denote the FWP transform
matrix, then for CS with the FWP transform (CS-WP), the estimated
reconstructed signal is

x̂W = OMP(y, Φ, W ). (9)

The BOCS algorithm optimizes the sparsifying basis Ψ? to the
estimated signal by

Ψ? = argΨ minS (
Ψ−1x̂W

)
, (10)

where the OWP tree is found for x̂W with the CW algorithm and Ψ?

is found from the estimated OWP tree, as explained above for the
genie-aided algorithms. The BOCS algorithm proceeds to reconstruct
a better estimate of the measured signal from the measurement vector
y using the optimized basis Ψ?, c.f., (6),

x̂O = OMP(y, Φ, Ψ?). (11)

For cooperative sensing, the FC deploys the following BOCCS
algorithm to estimate the PU signal x from the measurement matrix
Y:
Algorithm 3 Blindly Optimized Cooperative Compressed Sensing
(BOCCS)

i. X̂W = SOMP(Y,Φ,W ), c.f., Section 3.2

ii. x̂W = mean(X̂W )
iii. Ψ? = argΨ minS(Ψ−1x̂W ), c.f., (10)
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iv. X̂O = SOMP(Y, Φ, Ψ?)

v. x̂O = mean(X̂O).

Block diagrams of the proposed BOCS algorithm and the (secure)
BOCCS algorithm are shown in Figure 2 and Figure 3, respectively.

AIC

CW

Figure 2. Block diagram of the proposed blindly-optimized
compressed sensing (BOCS) algorithm.

CR1

CR2

CRJ

CW

AI C

Fusion Center

Authentication

Mean

Mean

Figure 3. Block diagram of the proposed secure blindly-optimized
cooperative CSS algorithm.

As shown in the simulation results of the next section,
the proposed optimized CS algorithms require a smaller number
of compressed measurements m to achieve the same detection
performance as conventional CS schemes with fixed bases. A smaller m
allows for cheaper sensing nodes with slower sampling rates and lower
power consumption, where the hardware complexity and the power
consumption of the analog-to-information converter circuit is almost
linearly proportional to m [32]. In case of cooperative sensing, a smaller
m also results in less required transmission power and bandwidth on
the reporting channels to the FC. In practice, it is important that the
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spectrum sensing nodes be cheap with low power consumption, as they
may be battery operated, and it is acceptable to shift the complexity
from the spectrum sensing nodes to the FC. The extra complexity
from the optimization process of our proposed algorithms is performed
at the FC, which has sufficient computing power. However, due to
the smaller m, the SOMP reconstruction complexity at the FC is also
reduced, as the time complexity of the SOMP algorithm is roughly
O(J2TmN) operations after T iterations, where T has the same order
as the signal sparsity [28, 33].

5.2. Performance Analysis of Blindly-optimized CSS

The effectiveness of the genie-aided OWP (G-OWP) and the blind
OWP (B-OWP) transforms in finding the most-sparse representation
is evaluated. The system model of 2.2 is assumed. The Shannon
entropy of (8) is averaged over 1000 random signals at different received
PU SNRs, where all sub-bands are received with the same SNR, and
compression ratio m/N = 0.5.

It is observed from the entropy measure in Figure 4 that the
signal representation with the G-OWP or the B-OWP transforms is
more sparse than with the conventional FWP transform. The wavelet
transform results are eliminated since they have worse performance.
Blind optimization results in a slight loss in sparsity compared to the
genie optimized transform. For illustration purposes, a sampled PU
signal and its corresponding sparse representations, assuming 10 dB

Figure 4. Sparsity of the proposed blind and genie-aided OWP
transforms compared to that of the conventional FWP transform and
the original PU signal.
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(a) H=5.06 (b) H=4.9

(c) H=4.73 (d) H=4.75

Figure 5. (a) PU signal. (b) Its sparse representations with the FWP.
(c) G-OWP. (d) B-OWP transforms.

SNR and m/N = 0.5 are shown in Figure 5. The quoted entropy values
also confirm that the B-OWP transform achieves significant sparsity
gain over the conventional FWP transform.

To illustrate the accuracy in reconstructing the measured PU
signal, the normalized mean square error (NMSE) in the reconstructed
PU spectrum Ŝx is analyzed at different measurement compression
ratios, where

NMSE = E

{
‖Sx − Ŝx‖2

‖Sx‖2

}
, (12)

E{.} denotes the expectation, and Sx is the spectrum of the
transmitted PU signal.

For Monte-Carlo simulations, the performance is averaged over
different SNRs, where the PU signals are received at the sensing
terminals with different SNRs on the four occupied channels, and
respectively given by [−10,−5, 0, 5] dB. The NMSE is evaluated for
the conventional CS with FWP transform (CS-WP) and compared to
that of the proposed BOCS and GOCS algorithms. Concurrently, the
gain achievable by cooperation between the sensing nodes is analyzed.
Hence, the performance with 10 cooperating spectrum sensing nodes is
evaluated with CS-WP and compared to that of the proposed BOCCS
and GOCCS algorithms. From Figure 6(a), it is observed that, at
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Figure 6. Comparison of proposed schemes with conventional scheme
for individual and cooperative spectrum sensing with 10 cooperative
nodes, for (a) the reconstruction normalized MSE and (b) PU detection
reliability at different sensing rates.

any compression ratio, BOCS and BOCCS provide improvements in
the PU signal reconstruction accuracy compared to CS-WP, along
with a slight loss compared to the genie-aided algorithms. The gain
from cooperation is also illustrated, where BOCCS achieves a ten
percent NMSE at m/N < 0.3 with 10 cooperating nodes, but requires
m/N > 0.95 to achieve the same NMSE with one sensing node only.

Complexity reduction by the optimized algorithms at the target
PF = 0.01 , as explained in Section 5.1, is demonstrated in Figure 6(b)
by the reduction in the sensing rate m/N at the same detection
probability.

The tradeoff between detection and false alarm probabilities is
analyzed by the ROC curves in Figure 7, and it is concluded that the
proposed optimized sensing algorithms are superior to conventional
ones that deploy FWP transforms. The cooperative gain is shown in
Figure 8(a), where detection performance is analyzed at a different
number of cooperating nodes, at m/N = 0.5 and PF = 0.01. The
effect of the received PU SNR on the reliability of the optimized CCSS
algorithms is analyzed by evaluating the detection probability when the
PU signal is received on the occupied channels with the same SNR, as
shown in Figure 8(b). From the results shown in Figures 6(b)–8(b),
it is observed that the proposed BOCCS consistently offers significant
gains in PU protection by increasing the detection probability at other



62 El-Khamy, Farrag, and El-Sharkawy

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
ROC at SNR=[-10 -5 0 5] dB and m/N = 0.5

Probability of False Alarm

P
ro

b
a
b
ili

ty
 o

f 
D

e
te

c
ti
o
n

GOCCS J=10

BOCCS J=10

CS WP J=10

GOCCS J=1

BOCCS J=1

CS WP J=1

Figure 7. Comparison of the receiver operation characteristics of
the proposed BOCCS and GOCCS with conventional CS-WP for
individual and cooperative spectrum sensing.
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Figure 8. Probability of detection of proposed schemes versus (a) the
number of cooperating nodes, (b) SNR at a target PF = 0.01.

fixed system parameters as false alarm probability, PU SNR, and
compression ratio. Also, the degradation in incumbent user detection
by the blindly-optimized algorithms, compared to the genie-aided
algorithms, is not significant. It is also observed that significant gains
can be achieved by cooperation between the sensing nodes, especially
in practical scenarios with very low received PU SNRs.

To demonstrate spatial diversity gains, a CR network constituting
of three spatially located nodes and a FC is considered. Depending
on its location, each SU node receives the PU signal with different
SNRs on the occupied channels. The received PU SNRs at the sensing
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nodes SU1, SU2, and SU3 are [−1,−1,−6,−6] dB, [0, 0,−5,−5] dB,
and [1, 1,−4,−4] dB, on the four occupied channels respectively.
Figure 9(a) shows the ROC enhancement when deploying BOCCS
with the 3 cooperating sensing terminals compared to single-terminal
BOCS. The enhanced PU protection through cooperation illustrates
that the proposed BOCCS scheme successfully incorporates the spatial
diversity gains.
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Figure 9. (a) Cooperative diversity gain showed (a) ROCs with 3
sensing nodes at m/N = 0.5 and different received SNRs, (b) ROC of
BOCCS with maximal-ratio or equal-gain combining in case of non-
ideal reporting channels.

In the previous results, an ideal reporting channel between the
spectrum sensing nodes and the FC (base-station) was assumed. The
cooperative combining gain of the proposed BOCCS algorithm is
analyzed in case of a non-ideal reporting channel. The SNR of each
reporting channel can be an indication of the distance between the
spectrum sensing node and the FC. In case of equal gain combining,
the measurement vectors are not scaled at the FC. The proposed
cooperative CS algorithms are modified, to incorporate maximum ratio
combining (MRC), where each measurement vector yj is scaled by its
reporting channel SNR γj , such that augmented measurement matrix
at the FC is given by Y = {γ1y1, γ2y2, . . . , γJyJ}.

A scenario of J = 10 spectrum sensing nodes with reporting SNRs
from sensing terminals to the fusion center of [1,−1, 3,−3, 5,−5, 7,
−7, 10,−10] dB is assumed. The performance of the proposed BOCCS
with MRC is compared to that of BOCCS with conventional equal
gain combining (EGC) when the measurements are received at the
FC from all spectrum sensing nodes (J = 10) or from only the first
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two spectrum sensing nodes (J = 2). From Figure 9(b), the ROC
curves show that the proposed MRC method significantly improves
the detection performance, and the gains are more significant with a
smaller number of cooperating nodes. In Figure 10, the performance of
the proposed BOCCS, and GOCCS is compared to CS-WP, when MRC
of the reported measurements is deployed. The gains of BOCCS are in
agreement with the above results in case of ideal reporting channels.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
ROC at SNR =[-10 -5 0 5] dB and m/N = 0.5

Probability of False Alarm

P
ro

b
a

b
ili

ty
 o

f 
 D

e
te

c
ti
o

n

GOCCS =10

BOCCS =10

CS -WP  =10

GOCCS =2

BOCCS =2

CS -WP  =2

Figure 10. ROC comparisons of BOCCS, GOCCS, and CS-WP
when deploying MRC over non-ideal reporting channels from sensing
terminals to the fusion center.

6. SECURE COOPERATIVE COMPRESSED
SPECTRUM SENSING

In this section, we consider the performance of a CCSS system when
it is under attack from malicious users. Data falsification attackers
may send random data as measurements to the FC, in order to
corrupt the CR system and degrade the throughput performance of
the PU. Alternatively, greedy attackers may deliberately send wrong
measurement data to force the secondary system to refrain from
utilizing the white spectrum spaces. Hence, improving the security
of cooperative spectrum sensing systems is crucial to their success.

6.1. Proposed Secure BOCCS

To mitigate security attacks against CCSS systems, we propose an
authentication mechanism that does not require extra overhead or
complex computations, as in encryption-based methods, but is rather
inherent to the compressed sensing system. Moreover, the proposed
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secure CCCS scheme, does not significantly add extra complexity to the
low-power low-cost CSS nodes. A block diagram of the proposed secure
BOCCS (SBOCCS) algorithm is shown in Figure 3 and is described as
follows:
Algorithm 4 Secure Blindly Optimized Cooperative Compressed
Sensing

i. Each FC center shares its m×N sensing matrix Φ, or the random
seed used to generate it, periodically, with its spectrum sensing
nodes over a secure channel. Alternatively, proprietary algorithms,
known only to the FC and the spectrum sensing nodes, can be used
to generate and periodically change the sensing matrix Φ.

ii. For the sensing matrix Φ determined in step i, the FC calculates
a decision threshold by

ζa = a

∥∥ΦT Φ1N

∥∥
‖Φ1N‖ ,

where 1N is the 1×N all-one vector normalized to unit energy, 0 <
a ≤ 1 is a damping factor, and for any vector x = [x1, x2, . . . , xN ],

‖x‖ =
√∑N

i=1 x2 is the l2 norm of x.

iii. Following CCSS, each sensing node transmits its measurement
vector yj to the FC. On the contrary, malicious nodes will
send random measurements, or alternatively measurements using
another random sensing matrix Φ̃, to the FC.

iv. The FC correlates each received measurement vector yj with the
predetermined measurement matrix Φ to calculate the correlation
coefficient

ρj =

∥∥ΦTyj

∥∥
‖yj‖ .

v. The FC constructs the authenticated set of measurement vectors
A, where each received vector yj is authenticated by

yj ∈ A, if ρj ≥ ζa

yj /∈ A, if ρj < ζa.

vi. The authenticated measurement matrix Ya is constructed by
augmenting all authenticated measurement vectors in A.

vii. The BOCCS algorithm, as explained by Algorithm 3, is operated
on the authenticated measurement matrix Ya such that the first
estimate of the PU signal using the FWP transform is calculated
as X̂W = SOMP(Ya, Φ,W ), and used to optimize Ψ?. Hence,
the measured PU signal is estimated by the reconstruction x̂O =
mean(SOMP(Ya, Φ, Ψ?)).
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The correlation coefficient of step iv is normalized by the norm
of the received signal to factor out different measured signal energies,
and thus be a characteristic of the measurement matrix Φ only. The
correlation threshold of step ii is calculated once off-line, and thus
does not add to the running complexity. This threshold is derived by
observing that yj = Φrj , then the correlation coefficient for the jth
sensing node can be written as

ρj =

∥∥ΦT Φrj

∥∥
‖Φrj‖ . (13)

Hence, the correlation threshold is calculated by assuming a flat
received signal rj = 1N . The damping factor a is a tunable parameter,
where a larger a is more conservative and provides more security, at the
expense of discarding measurements from trustful nodes, and a smaller
a is more aggressive and is more likely to incorporate measurements
from malicious users.

The proposed authentication procedure does not require any extra
complexity (as encryption) from the spectrum sensing nodes, and does
not require any extra communication overhead. SBOCCS only requires
an extra correlation step at the FC. However, the gains from this simple
authentication scheme can be significant, as shown in the following
sub-section.

6.2. Performance Analysis of SBOCCS

A test scenario with 10 trustful secondary user sensing terminals and
10 malicious users is considered. The sensing terminals transmit their
measurements of the PU signal, using the predetermined measurement
matrix, to the FC. On the other hand, the malicious users transmit
measurements of a wrong signal using a different random measurement
matrix. While SBOCCS attempts to reconstruct the measured PU
signal using the authenticated measurements only, BOCCS attempts
to reconstruct the PU signal with all J = 20 received measurements.

To verify the proposed correlation threshold, the histogram
of the correlation coefficients ρj with all (trustful and malicious)
measurements is calculated over 2000 different statistics. The
histogram in Figure 11 shows two different peaks, for the malicious
user (MU) and trustful SU nodes. The expected threshold E{ζa} over
the different statistics is also shown for different values of the damping
factor a. The suggested correlation threshold with a = 0.91 satisfies
the authentication criterion

ρMU < ζa ≤ ρtrustful SU. (14)
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It is also verified that a = 0.99 is more conservative and a = 0.8 results
in accepting measurements from malicious users.

The effectiveness of the proposed authentication scheme is tested
by comparing the ROC curves of BOCCS with those of SBOCCS. The
remaining simulation parameters are similar to those used in Figure 7.
The results of Figure 12 show that SBOCCS, with a = 0.91 achieves the
near optimal performance with no malicious users (BOCCS, 0 MUs,
J = 10). The effect of incorporating the malicious measurements
(BOCCS, 10 MUs, J = 20) is shown through the decreased PD
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Figure 12. ROC performance of proposed SBOCCS algorithms in
presence of malicious users.
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at the same PF , or alternatively the higher PF at the same PD.
The results also imply that deploying a more conservative threshold
(a = 0.99), which results in discarding some trustful spectrum
sensing measurements, yields better performance than deploying a
more aggressive threshold (a = 0.8), which results in utilizing false
measurements in the reconstruction process.

7. CONCLUDING REMARKS

In this work, novel compressed spectrum sensing algorithms are
proposed for enhanced incumbent user protection in cognitive radio
systems, and improved security against malicious attacks. Different
from conventional algorithms that used fixed sparsifying bases for
sensing, this work optimizes the sparsifying bases to the sensed signal.
This optimization is done blindly and does not require any knowledge
about the characteristics of the sensed signal, which are not known
in practical cognitive radio systems. The optimized compressed
sensing algorithms were proposed for both single-terminal sensing and
centralized cooperative sensing. Furthermore, optimal combining of
compressed measurements from different sensing terminals is shown to
provide spatial diversity gains. A simple, yet effective, authentication
algorithm is proposed to improve the security of cooperative
compressed sensing algorithms against malicious data-falsification
attacks. The results show that the proposed spectrum sensing
algorithms have improved incumbent user detection, require sensing
terminals with lower hardware complexity and power consumption,
require less communication overhead for cooperative sensing, and have
improved protection against adversary attacks.

ACKNOWLEDGMENT

This work is partially supported by the Missions Department of the
Egyptian Ministry of Higher Education (MOHE).

REFERENCES

1. Federal Communications Commission, et al., “Unlicensed opera-
tion in the TV broadcast bands,” ET Docket, No. 04-186, 2004.

2. Federal Communications Commission, “Notice of proposed rule
making and order: Facilitating opportunities for flexible, efficient,
and reliable spectrum use employing cognitive radio technologies,”
ET Docket, No. 03-108, 73, 2005.



Progress In Electromagnetics Research B, Vol. 53, 2013 69

3. IEEE, “IEEE Std. 802.22-2011, IEEE standard for wireless
regional area networks part 22: Cognitive wireless RAN medium
access control (MAC) and physical layer (PHY) specifications:
Policies and procedures for operation in the TV bands,” 2011.

4. Yucek, T. and H. Arslan, “A survey of spectrum sensing algo-
rithms for cognitive radio applications,” IEEE Communications
Surveys & Tutorials, Vol. 11, No. 1, 116–130, 2009.

5. Haykin, S., “Cognitive radio: Brain-empowered wireless commu-
nications,” IEEE Journal on Selected Areas in Communications,
Vol. 23, No. 2, 201–220, 2005.

6. Urkowitz, H., “Energy detection of unknown deterministic
signals,” Proceedings of the IEEE, Vol. 55, No. 4, 523–531, 1967.

7. Sahai, A. and D. Cabric, “Spectrum sensing: Fundamental
limits and practical challenges,” Proc. IEEE International
Symposium on New Frontiers in Dynamic Spectrum Access
Networks (DySPAN), 2005.

8. Donoho, D., “Compressed sensing,” IEEE Transactions on
Information Theory, Vol. 52, No. 4, 1289–1306, Apr. 2006.

9. Candès, E. and M. Wakin, “An introduction to compressive
sampling,” IEEE Signal Processing Magazine, Vol. 25, No. 2, 21–
30, 2008.

10. La, C. and M. Do, “Signal reconstruction using sparse tree
representation,” Proc. Wavelets XI at SPIE Optics and Photonics,
San Diego, 2005.
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