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Abstract—Due to their very high integration density, echelle grating
spectrometers based on silicon nanophotonic platforms have received
great attention for their applications in many areas, such as optical
sensors, optical communications, and optical interconnections. The
design of echelle gratings requires an effective modeling and simulation
technique. Though we have used a boundary integral method to
accurately analyze the polarization-dependent performance of the
echelle grating, it is complicated and time-consuming for the simulation
due to its large size and aperiodic structure. In the present paper,
we will present a faster simulation method for the grating with twice
total internal reflection facets based on a modified Kirchhoff-Huygens
principle with the influence of the Goos-Hänchen shift considered. On
the one hand, the presented simulation results agree well with our
previous results obtained by the boundary integral method when the
shift can accurately be calculated using a FDTD method. On the
other hand, the biggest advantage of the new method over the existing
methods is that it can also provide an insightful physical explanation
for many numerical results. Finally, we will effectively apply the
present method to design an on-chip spectrometer with very low noise
floor.

1. INTRODUCTION

Compared with other spectrum-dispersion devices, planar echelle
gratings are more compact and potentially have a higher spectral
finesse since they can accommodate a larger number of grating
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facets. Planar spectrometers based on echelle gratings have received
great attention for their applications in many areas, such as optical
communications [1], optical sensors [2], and optical interconnections [3].

Different technologies based on different materials have been
introduced to support planar optical devices. Due to the compatibility
of the fabrication technology with micro-electronics, silicon photonics
has attracted a lot of interests [4–6]. Planar echelle grating
spectrometers based on silicon nanophotonic platform have widely been
studied in the recent years [7, 8]. However, to maintain single mode
propagation along such a silicon nano-waveguide, the cross section of
the waveguide needs to be very small. Then, the size of grating facets
is close to the wavelength. The design of the super compact device
requires an effective modeling and simulation technique.

Although progress has been made in the vectorial analysis of
diffraction elements [9–13], it has been primarily limited to infinitely
periodic structures. Particularly, the rigorous coupled-wave analysis
(RCWA) [14] is an effective numerical method for simulating the
polarization-dependent diffraction property from a planar grating. Up
till now, most references to the rigorous analysis of diffraction devices
have implicitly assumed infinitely periodic elements [15–18], for which
the eigenfunctions are known and used in an eigenfunction expansion
of the diffracted fields. However, these methods can not be applied to
finite and aperiodic elements such as echelle grating spectrometers. To
overcome this limitation, we recently have applied a boundary integral
method (BIM) to the simulation of a diffractive element with finite size
and aperiodic structure [1]. Though the BIM can be used to accurately
analyze the polarization-dependent performance of the device, it is
complicated and time-consuming due to its large size and aperiodic
structure. Therefore, we will try to present a faster simulation method
for an echelle grating spectrometer with total internal reflection facets
based on the modified Kirchhoff–Huygens principle. The conventional
scalar method [21] was modified by taking into account the polarization
dependent Goos-Hänchen (GH) shift [19, 20] and limited groove size.
The fast simulation results agreed well with our previous BIM results.
Moreover, the biggest advantage of the method over the existing
methods is that it can also provide an insightful physical explanation
for the numerical results.

2. SIMULATION METHOD

A planar echelle grating spectrometer based on a Rowland mounting
is illustrated in Figure 1(a). The field propagating from an input
waveguide to the free propagation region (FPR) is diffracted by
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Figure 1. (a) Schematic diagram of a planar grating spectrometers
based on (b) silicon nanophotonic platform using a conventional echelle
grating coated with (c) a metal at the backside and (d) a TIR grating.

each grating facet. It is then refocused onto an imaging curve and
guided into the corresponding output waveguides according to the
wavelengths. The grating of a planar grating spectrometer is usually
coated with a metal (e.g., Au) at the backside in order to enhance the
reflection efficiency (see Figure 1(c)). In order to reduce the reflection
loss without the additional processing steps required for coating the
backside of the grating facets with a reflecting metal, a total internal
reflection (TIR) V-shaped facet was used at each grating tooth (see
Figure 1(d)). Now, we will give a faster simulation method for the
planar grating spectrometer with TIR facets.

For a TIR type planar spectrometer, the TIR occurs twice when
the incident light impinges on an illuminated facet (see Figure 1(d)).
Though intuitively no loss can be produced when a TIR occurs,
our numerical calculations have shown that the loss of a TIR type
spectrometer is larger than that of a metallic echelle type in many
cases. Now, we will give a fast simulation method for a TIR type device
based on a modified Kirchhoff-Huygens principle. The Kirchhoff-
Huygens principle has been effectively used in the conventional
scalar diffraction method for analyzing the crosstalk and passband
performance of a planar grating device. However, the conventional
scalar method cannot predict the polarization dependent loss of the
device. Here we use a modified scalar method which takes into account
the polarization dependent GH shift.

As shown in Figure 1(a), the output field distribution Eimage

on the surface along each output waveguide can be approximated by
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Kirchhoff-Huygens’ diffraction formula as,

Eimage(x′′, z′′)=
1
2

(neff

λ

)1
2

∫

grating

ER (P )√∣∣PPout

∣∣
(1+cos θd) e−jk|PPout |dl′ (1)

where k = 2πneff /λ (neff is the effective refractive index of the FPR),
θd is the diffraction angle with respect to the normal of the grating
facet, |PPout | the distance between a point P (x′, z′) on the grating
facet and a point Pout(x′′, z′′) on the image plane, and ER(P ) the
reflected field distribution on any point P (x′, z′) at the grating facets.

To obtain the image field distribution, we first derive ER(P ) based
on its different position on grating facets. Since the reflection occurs
twice on a TIR facet, the reflected field at a point P ′(x′, z′) on one
of the illuminated facets must result from another point P (x′, z′) on
the other facet of the same groove (see Figure 2). For each reflection,
the reflected field can be generated by multiplying the corresponding
incident field with Fresnel’s reflection coefficient,

rTM (θd) =
cos θd −

√
(1/neff )2 − sin2 θd

cos θd +
√

(1/neff )2 − sin2 θd

(2)

for a TM polarization, or

rTE (θd) =
(1/neff )2 cos θd −

√
(1/neff )2 − sin2 θd

(1/neff )2 cos θd +
√

(1/neff )2 − sin2 θd

(3)

for a TE polarization. When the incident angle θd is less than the
critical angle θc = sin−1(1/neff ) ≡ sin(n), the reflection coefficient
rTM (or rTE ) has a real value, which indicates that a part of the power
is transmitted (or lost) whereas no phase change occurs. However,
for a TIR type spectrometer based on silicon nanophotonic platform,
θd is usually much larger than the critical angle θc. In this case, the
reflection coefficient is a complex number. Its magnitude is always
one (no transmission loss) and its phase varies depending on the
polarization and the incident angle.

An important phenomenon related to the total internal reflection
is the GH shift. Physically the GH shift results from the phase change
of the electromagnetic field. Different incident angles and different
polarizations produce different values of GH shift d (see Figure 2),
which were firstly derived by Artmann with the following formulas [22],

dTE =
λ

π

sin θd√
sin2 θd − n2

(4)
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Figure 2. Main sources of the loss near a TIR facet.

dTM =
dTE

sin2 θd (1 + n2)− n2
(5)

Note that the grating period Λ also varies as the grating parameters
(e.g., the diffraction order and the incident angle) change. The loss
related to the GH shift depends directly on the ratio ε between the
GH shift d and the grating period Λ. Apparently, when Λ À d, the
GH shift has little effect on the loss of the spectrometer. For a straight
periodic blazed grating, the grating period can be expressed as,

Λ ≈ mλ/ (2neff sin θd) (6)

Then, the ratio ε can be approximately written as

εTE =
2 sin2 θd

mπn
√

sin2 θd − n2
(7)

for a TE polarization, or

εTM =
2 sin2 θd

mnπ
[
sin2 θd (1 + n2)− n2

]√
sin2 θd − n2

(8)

for a TM polarization. A larger ε gives a larger loss for a TIR grating
spectrometer.

It should be mentioned that the theories developed in [23–25] lead
to contradictory or incomplete results according to Eqs. (4) and (5).
Here, we only use the Eqs. (7) and (8) as a simple model to analyze
the numerical results. In the following simulations, we will give a
more accurate calculation of the GH shift dTE or dTM by using the
finite difference time domain (FDTD) method [26, 27] in terms of
different incidence angles. As shown in Figure 2(c), when an incident
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wavefront of the linearly polarized light makes a given angle θd with
the surface between silicon and air, we can simulate the total reflection
phenomenon by using the FDTD method. Then, we can obtain the
value of the GH shift by calculating the small lateral shift d. In the
following simulations, Region 1 stands for the silicon waveguide with
a 3.58 index, and Region 2 stands for free space. The x-y FDTD
space is 600× 500 cells with a ten-cell-layer PML absorbing boundary.
The cell sizes are ∆x = ∆y = λ0/40 = 0.038µm. The time step is
chosen as ∆t = 8.47× 10−17 s. Note that the process does not increase
extra computing amount of the simulation of the nanophotonic grating
spectrometer, since the value of the GH shift at the surface of the silicon
nano-waveguide is determined for a given incident angle. Therefore,
we can in advance calculate the GH shift at different incident angles
in terms of wavelengths and store the values as a data sheet.

Although there is no transmission loss intuitively when a TIR
occurs, there are two loss sources for a TIR type spectrometer (in
addition to the loss due to the light incident on a shaded facet): the
effect of the GH shift, and the finite size of the facets.

As an example, we analyze potential loss sources when the incident
angle αin (with respect to the grating plane) equals 45◦. First, for any
incident light impinging on the first facet of a TIR grating, it can not
be reflected by the second facet if the distance between its incident
point P and the trough point O is less than its corresponding GH shift
(i.e., |OP | ≤ d; see Figure 2(a)). Thus, this power can not be received
by the output waveguide in this situation. Secondly, when the incident
angle θd is less than 45◦, some power illuminating on the horizontal
facet can not be received by the vertical facet of the same groove due
to the finite size of the vertical facet (see Figure 2(b)). Similarly, when
the incident angle θd is larger than 45◦, some power incident on the
vertical facet can not be received by the horizontal facet due to the
finite size of the horizontal facet (it is re-reflected by the shaded facet
and does not contribute to the desired diffraction order).

Since the vertical and horizontal facets are symmetric for a TIR
facet, we only consider the incident light impinging on the horizontal
facet as an example in the following analysis. When the incident light
impinges at a point P on the horizontal facet, the reflected field will be
produced at another point P ′ (whose position can be obtained using the
simple ray tracing method) on the vertical facet with the same incident
angle (see Figure 2(a)). When the point P ′ is over the top point O2

of the vertical facet or |OP | ≤ d, no reflected field can be produced at
point P ′ due to the effect of the finite size of the vertical facet (shown
in Figure 2(b)) or the GH shift (shown in Figure 2(a)). Therefore,
we can calculate the reflected field at point P ′ on the horizontal facet
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using the following modified scalar formula,

ER

(
P ′

)
=





0;
when P2 is over point

O2 or
∣∣OP

∣∣ ≤ d
r (θd) r (90◦ − θd) exp (jϕ) Ein (P ) ; else

(9)

where ϕ = 2π[neff QQ′ + 2(GQ + G′Q′)]/λ, which is used to denote
the phase factor corresponding to the propagation from P to P ′ (see
Figure 2(a)).

Since the distance |PPin | between any point Pin(x, z) on the
cross-sectional line at the end of the input waveguide and any point
P (x′, z′) on the grating is much larger than the wavelength (i.e.,
|PPin | À λ/neff ), the field distribution Ein (P ) at point P (see Eq. (9))
on the grating facet can be approximated by the following Rayleigh-
Summerfield’s diffraction formula,

Ein (P )=
1
2

(neff

λ

)1
2
∫

Efundamental(x, z)√∣∣PPin

∣∣
(1+cos θ) e−jk|PPin |dx (10)

where θ is the angle between PPin and the normal of the end facet of
the input waveguide, and Efundamental(x, z) is the fundamental mode
field of the input waveguide.

3. SIMULATION AND DISCUSSION

The typical structure of a silicon nanowire waveguide based on a silicon
substrate is shown in Figure 1(b). The silica buffer layer should
be thick enough (∼5µm) to ensure a low leaky loss. For a typical
photonics application, the thickness h = 220 nm is fixed here, and the
width w = 500 nm is chosen, which lies in the single mode region.
The intensity profile of the propagating electric field is simulated for
the channel wire waveguides (see Figure 1(b)). As an example, a
planar grating spectrometer with TIR facets will be designed using the
following parameters: the central wavelength is 1550 nm; the refractive
indexes of silica buffer layer and α-Si : H core layer are 1.46 and 3.58,
respectively; the incident angle is 45 degrees; the diffraction order is
10; channel interval is 1 nm; and the internal of output waveguides is
1µm.

Figure 3 shows the comparison (for three different methods) of the
loss of a TIR type spectrometer as a function of the diffraction order m
using silicon nanophotonic platform at the central wavelength when the
incident angle αin is 45◦. One can see that the results obtained from all
three methods agree well for a larger diffraction order (e.g., m > 11).
This is because a large diffraction order corresponds to the case of a
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large facet period of the designed grating in which the scattering effect
from shaded facets and grating corners becomes insignificant on the
diffraction performance. For a lower diffraction order, the results by
using the modified scalar method with the GH shift calculated by the
FDTD are still very close to those obtained from the BIM. Therefore, as
indicated in Eq. (6), the GH shift and the finite size of the facets are two
dominating loss sources for a TIR type spectrometer. In addition, one
also sees that the GH shift calculated from Eqs. (4) and (5) is not very
accurate. However, these equations can give us an insightful physical
explanation for the numerical results. Since a larger ε gives a larger
loss for a TIR type spectrometer (see Eqs. (7) and (8)). Obviously, a
large m leads to a small ε and consequently a small loss, as shown in
Figure 3.

Figure 4 shows the loss of the grating spectrometer using the
three different methods as the incidence angle αin increases when the
diffraction order is fixed as 10. The figure indicates that the analytical
Eqs. (4) and (5) induce completely contradictory results on the effect
of the incident angle, particularly for a TM polarization. However,
when we calculate the GH shift using the FDTD method, the results
obtained from the modified scalar method agree very well with those
obtained from the BIM.
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Figure 3. The loss of the TIR-grating spectrometer as a function of
the diffraction order m for (a) TE and (b) TM polarizations. Circles
are for results obtained from the boundary integral method [1]. Squares
are for results obtained from the modified scalar method with the GH
shifts calculated by the FDTD. Triangles are for results obtained from
the modified scalar method with the GH shifts calculated by Eqs. (4)
and (5).
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Figure 4. The loss of the TIR-grating spectrometer as the incidence
angle αin increases for (a) TE and (b) TM polarizations. Circles are
for results obtained from the boundary integral method [1]. Squares
are for results obtained from the modified scalar method with the GH
shifts calculated by the FDTD. Triangles are for results obtained from
the modified scalar method with the GH shifts calculated by Eqs. (4)
and (5).

4. LOW NOISE SPECTROMETER DESIGN

A typical planar grating spectrometer can be considered as a linear
device, whose transfer function can be expressed as [28],

H =
N∑

l=1

Rlbl exp
[
−jk

(
rl
1
+ rl

2

)]
(11)

where Rl is the reflection coefficient near the lth grating facet, bl is
the ratio between the power in the lth facet and all power in the input
plane, and rl

1
(or rl

2
) is the distance from the central point on the cross-

sectional line at the end of the input (or output) waveguide and the
central point of the lth grating facet.

As shown in Eq. (9), the GH shift and the finite size of facets are
two main loss sources for a TIR-type grating spectrometer. Therefore,
we can easily adjust the reflection coefficient Rl by lightly changing the
size and structure of the lth grating facet. Thus, an improved transfer
function for some special applications can be obtained (see Eq. (11)).

For an aberration-free imaging, the image distribution should have
the same form as the fundamental mode profile of the input waveguide.
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However, due to the effect of the grating diffraction, the image field
distribution near each output waveguide will expend larger sidelobes
into the two adjacent waveguides, which results in a large noise floor
for the spectral response. Particularly, due to the small facets of
gratings using silicon nanophotonic platform, it is difficult to reduce
the noise floor to below 25 dB [7, 8]. However, for the application of
the integrated spectrometers, it is of necessity that suppressing noise
to less than 35 dB to contribute to enough measurement sensitivity [2].
From Eqs. (9) and (13), one can see that we can easily suppress the
image sidelobes to less than −60 dB in theory, to give an enough space
for some fabrication errors, using the present design by modulating the
transfer function into an appropriate distribution.

If the number of all grating facets equals N , we will try to find the
corresponding optimal reflection coefficient Rl for each facet to acquire
the best performance. We consider the simulated annealing algorithm
as a suitable tool for the present problem, and then define the objective
function as [29],

fobj =
1
2

(
C

−60 dB

)
+

1
2

(
2 dB
L

)
(12)

where C is the mean noise floor of the central channel (1550 nm) and L
the peak loss at the channel. For the sake of the low fabrication error,
we limit the lowest reflection coefficient that each facet can attain is
5%. Thus we can search the optimal reflection coefficient of each facet
in the range from 5% to 100%. We suppose that when the variety
of the objective function is lower than 0.1% after ∼50 iterations, the
searching process will be over.

A typical device using silicon nanowire technology has large
polarization dependence which makes that a device such as a
spectrometer can be only utilized for one polarization state without any
compensation. In the present paper, only TE polarization considered
as an example to clarify our low noise design. All parameters are the
same as those in Section 3. The final reflection coefficient at different
grating facets is shown in the upper-right corner in Figure 5 when the
searching process is over. The final performance parameters in Eq. (12)
are C = −61.2 dB and L = 2.28 dB, respectively.

Figure 5 shows the spectral response at the central channel using
the conventional and present design. From this figure, one can see
that the mean noise floor using the design by modulating the transfer
function can keep to less than −60 dB. In addition, the present design
also results in an extra loss for the operational spectrum. For the
central channel, the additional loss (compared with the conventional
design) using the low noise floor design is about 1.92 dB, which is
acceptable.
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Figure 5. Spectral responses at the central channel using the
conventional design (dash-dot line), and the present design (dash line).
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Figure 6. Measured spectral responses of a planar grating
spectrometer with 17 wavelength channels.

We also fabricated and characterized the planar spectrometer
using the above optimized design. Detailed design and fabrication
process of the planar grating spectrometers can be found in our
previous publication [1]. Figure 6 shows the spectral responses of
the fabricated spectrometer for the TE polarization. The structure
parameters are matched with the optimal design with low noise
floor. A bit larger insertion loss compared with the numerical results
(see Figure 5) is mainly due to the large scattering loss of the
rough grating sidewall [1]. From the figure, one can see that the
crosstalk of the fabricated device at the central wavelength is about
−41.114 dB, which is also higher than that of numerical calculations
(i.e., −58.92 dB) due to fabrication errors. However, the characteristic
is still much better than those using conventional designs (i.e., ∼
−20 dB crosstalk) [1, 7, 8].
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5. CONCLUSION

We have presented a fast and accurate simulation method for the
planar grating spectrometer with twice total internal reflection facets
based on a modified Kirchhoff-Huygens principle with the influence of
the GH shift considered. When the GH shifts were calculated using the
FDTD method, the proposed simulation method agreed well with the
BIM. Based on the method, we can easily reshape the transfer function
of the spectrometer to contribute to a low noise floor.
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