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Abstract—A self calibration algorithm for direction finding in the
presence of arbitrary shape 3D scatterers of resonating size is presented.
This algorithm removes the effects of mutual coupling and 3D
scatterers on direction of arrival estimation. The scatterers and wire
type antenna array are excited by incident plane waves of arbitrary
direction. The 3D scatterers shape is approximated as a sphere, thus
spherical harmonics are assumed to be originated in response to the
plane wave excitation. The algorithm requires the location of the
scatterers with reference to antenna elements. However, knowledge
of exact shape of scatterers is not required. Moreover, scatterers
may be located in near or far fields. The work is supported by
numerical examples for different scenarios of multiple incident waves
and scatterers.

1. INTRODUCTION

Wireless devices with the capability of direction-of-arrival estimation
(DOA) have many applications such as command and control, security
and safety and MIMO communication. Several techniques have been
developed and presented in the literature to estimate DOA [1]. More
recently, a DOA estimation technique which does not require subspace
decomposition is also presented [2]. In general these methods assume
that the antenna elements are ideal and operate in free space. The real-
world problem is totally different where antenna elements share energy
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with themselves, known as mutual coupling. Moreover the presence of
scatterers in the vicinity of antenna results in distortion of the signal
and causes DOA estimation error [3].

A number of researchers proposed methods to compensate for the
effects of mutual coupling for real antenna elements [4–10]. These
techniques proved effective in significant reduction of errors in DOA
estimation for an array operating in an environment similar to free
space. Thus the presence of any near zone scatterer is ignored or
not considered in the signal model. These methods also assume that
sources are in the far field and therefore incident waves are plane waves.
However any scatterer in the near zone produces spherical waves, when
illuminated by far field sources [11]. The plane waves from the far field
are desired signals, and spherical waves due to near-zone scattering are
the interfering signals.

In the last decade some authors addressed the joint problem of
mutual coupling and near-zone scatterers, by techniques whose essence
is offline calibration [3, 12, 13]. Fewer antenna elements are required
by transforming the non-uniform array to a virtual uniform array to
find DOA in an environment for which steering vectors are previously
measured/computed [3]. Non-conventional least square optimization is
used to exploit the large data set of pre-calibrated steering vectors for
DOA estimation with near zone scatterers [12]. The square calibration
matrix of [6] is proposed as non-square to address the scattering from a
known scatterer or platform structure [13]. These methods are suitable
for fixed antenna where the environment remain stationary. However
when either antenna is portable or environment is not stationary,
these methods will yield errors and require re-calibration, which is
not convenient for many applications.

One way to address the issue of portable antenna where pre-
calibration cannot last long is self- or auto-calibration. The
auto-calibration techniques exploit the signals from the sources of
opportunity to sufficiently remove errors in the DOA estimate, while
estimating the DOA simultaneously. Thus no additional source is
required to calibrate the array. A self-calibration technique for
DOA estimation using MUSIC algorithm where an uncoupled near-
field scatterer is present is in the literature [11]. This method does
not remove the effects of mutual coupling and works only for 2D
scatterers. A self calibration algorithm that removes the effects of
mutual coupling and near zone scatterer is also in the literature [14].
This algorithm approximates a scatterer as a cylinder, and therefore
assumes cylindrical harmonic expansion origination in response to
a plane wave incidence. The algorithm is iterative and does not
guarantee the achievement of the true DOA but rather convergence.
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It also works only for 2D scatterers and requires a large number of
antenna elements.

In a real-world 3D environment, a finite-size scatterer is more
accurately modeled as a sphere, and as stated by [11] produces
spherical harmonics in response to plane wave excitation. This paper
extends the iterative algorithm approach presented in [14] to a 3D case
where scatterers are modeled as a sphere and the algorithm utilizes
spherical harmonic expansion. Although as its predecessor, a solution
is not guaranteed but convergence is achieved with far less number of
antenna elements. It is highly likely that the presence of near-zone
scatterers results in spurious peaks in the DOA spectrum, which cause
errors in the initial estimate of the number of sources [12, Figure 14].
This issue of spurious number of sources was not explicitly described
in [14]. Our algorithm suppresses the spurious peaks and corrects
the detection of number of sources, in addition to the removal of
DOA estimation errors. Classical DOA estimation methods [15, 16]
are incorporated in this algorithm. The algorithm estimates elevation
θl of incident sources present in the far field.

Section 2 will describe the method and explain the algorithm.
Numerical examples showing capability of the method for a variety of
complexities are presented in Section 3. Section 4 concludes the paper.
An Appendix provides symbol definitions and nomenclature.

2. METHOD DESCRIPTION

2.1. Problem Statement

To illustrate the problem, consider TMx plane waves incident on an
antenna array of x -directed thin wires. All currents and fields in
antenna elements are also x -directed. Figure 1 shows the problem
setup, where a field is incident on an antenna array of M elements,
the location of mth element is rm = (xm, ym, zm). The scatterers
location rs = (xs, ys, zs) is known, but geometry is unknown. It is
also assumed that the antenna and environment is stationary during
DOA estimation.

The total field at the mth antenna element is given as the sum of
incident and scattered field (from spherical scatterer)

Et = Einc + Esct (1)

The x-directed incident field at the mth antenna element due to
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Figure 1. Incident plane wave on M element array with spherical
scatterer.

L incident waves is given as

Einc
m (x) =

L∑

l=1

ElE
PW
m (θl, φl)

=
L∑

l=1

Ele
jβ(xm sin θl cos φl+ym sin θl sin φl+zm cos θl)

∣∣Einc
m (x)

∣∣ (2)

When a sphere is excited by a TMx plane wave, the corresponding
spherical harmonic expansion is in [17]. Letting the magnitude
|Einc

m (x)| = Eo, the scattered field along x -axis at mth antenna element
due to S spherical scatterers at known location in near zone is given
as

Esct
m (x) =

S∑
s=1

[
(sin θsm cos φsm)
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∞∑
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]

P 1
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]
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∞∑
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sq (βrsm)

sin θsmP
′1
sq (cos θsm)− csqĤ

(2)
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sq(cos θsm)
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[
Eo

βrsm
sin φsm

∞∑
q=1

[
jbsqĤ

(2)′
sq (βrsm)

P 1
sq(cos θsm)

sin θsm

−csqĤ
(2)
sq (βrsm) sin θsmP

′1
sq (cos θsm)

]]]
. (3)

To make the equation concise, the following constants can be
introduced for a fixed geometrical location

Usm = −j sin θsm cos2 φsm (4)

Vsm =
cos θsm cos2 φsm

βrsm
(5)

Wsm =
− sin2 φsm

βrsm
. (6)

The individual estimation of source amplitude Eo that excited the
scatterers is not our concern so we merged it with unknown amplitudes
of the harmonics to form two new unknown amplitudes as following

Bsq = Eobsq (7)
Csq = Eocsq (8)

The five harmonic forms (indexed in superscript) can be written
as

G1
sqm =

[
Ĥ(2)′′

sq (βrsm) + Ĥ(2)
sq (βrsm)

]
P 1

sq(cos θsm) (9)

G2
sqm = jĤ(2)′

sq (βrsm) sin θsmP
′1
sq(cos θsm) (10)

G3
sqm = Ĥ(2)

sq (βrsm)
P 1

sq(cos θsm)
sin θsm

(11)

G4
sqm = jĤ(2)′

sq (βrsm)
P 1

sq(cos θsm)
sin θsm

(12)

G5
sqm = Ĥ(2)

sq (βrsm) sin θsmP
′1
sq(cos θsm) (13)

Therefore Equation (3) can be simplified in the form of known
harmonics and their unknown amplitudes as following:

Esct
m (x) =

S∑

s=1

[
Usm

Q∑

q=1

BsqG
1
sqm + Vsm

Q∑

q=1

[
BsqG

2
sqm − CsqG

3
sqm

]

+Wsm

Q∑

q=1

[
BsqG

4
sqm − CsqG

5
sqm

]
]
. (14)
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Note that we are not determining the current density on the
scatterer as it is not needed for our method. Suppose our receiver
is capable of measuring total voltage at mth antenna terminal V t

m.
The total voltage received at an antenna terminal can be expressed as
following:

V t
m = V inc

m + V sct
m (15)

where at the mth antenna terminal V inc
m is the voltage due to the

incident filed Einc
m (x) alone and V sct

m is the voltage due to scattered
field arising from near-zone scatterers Esct

m (x).

2.2. Solution

As mentioned earlier, the total voltage at the antenna terminal is
measured or known. The iterative technique to determine DOA
by finding V inc and V sct from the knowledge of V t is described
here. The algorithm removes the effects of mutual coupling in an
implicit way by forcing V inc as coupling free voltage vector, while
putting all the perturbations in V sct vector. In the absence of any
scatterer, the environment can be considered as free space and V t

m
suffers perturbation due to mutual coupling between elements only.
In this special case (S = 0) any of the available methods [4–8, 10]
can be embedded along this proposed iterative algorithm. The index
of iteration k = 0, 1, 2, . . . , K is used in superscript of unknown
parameters described in previous section. At convergence the iteration
index is noted as K. The following steps describe the algorithm:

(i) Given the V t is known and initially assumed as the desired
V inc voltage, and classical DOA estimation techniques are also
available [16, 18]. At k = 0 the iteration estimates number of
sources L(k) and their elevation θ = [θ(k)

1 , θ
(k)
2 , . . . , θ

(k)
L ]). It is

to be noted that the incorrect assumption of letting V t = V inc

not only causes errors in DOA estimate but may also gives rise to
spurious peaks in DOA spectrum [12]. Thus the initial estimate
of number of sources may be higher than actual.

(ii) Having number of sources and DOA estimates from step 1, for an
array of M elements (15) can be written as set of M simultaneous
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linear equations.



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E
(k)
l

B
(k)
sq

C
(k)
sq




(16)

We are assuming that scatterers are exterior to the array elements
and each scatterer is approximated as a sphere whose radius is ρs.
The number of harmonics required to sufficiently represent the
scattered field from a near zone scatterer can be approximately
given as Q = βrs. Equal number of harmonics for each scatterer
is also assumed for simplicity. Here the unknowns are E

(k)
l ,

B
(k)
sq and C

(k)
sq where l = 1, 2, . . . , L(k), s = 1, 2, . . . , S and

q = 1, 2, . . . , Q. Thus the total number of unknowns in above
equation is given as N = L(k) + SQ + SQ = L(k) + 2SQ. As its
predecessor [14], we solve Equation (16) by least square method
with condition that N < M .

(iii) The incident voltage in each iteration is evaluated as

V inc = V t − V sct (17)
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where V sct is found through Equation (14) for each antenna
by using current values of B & C, the spherical harmonic’s
amplitudes.

(iv) The incident voltage from above step is used to find elevation of
incident sources and iteration index is incremented and algorithm
is repeated until convergence of DOA estimate is achieved.

Although there is no surety of achieving the true value or exact
DOA but rather convergence is guaranteed. In next section the
capability of the method is demonstrated by numerical examples.

3. RESULTS AND DISCUSSION

The examples presented in this section test the algorithm for variety of
situations. All examples use horizontal (x-directed) half wave dipoles
of wire radius ρa = 0.001λ as elements of a uniform linear array. The
array principal axis is along z direction and its first element center
is (0, 0, 0). Examples 1 & 2 have element spacing d = 0.5λ and
examples 3 & 4 have closely spaced elements with spacing d = 0.25λ.
These examples take into account the more practical radius of antenna
element as compared to [14], where it was ρa = 0.00001λ. For example
at f = 3 GHz, our antenna radius will be 1 mm, where further reduction
makes it impractical. The simulation experiment is carried out by using
COMSOL multiphysics environment [19]. The classical method [15] is
used for DOA estimation. In all of these examples, a source at a
particular DOA is detected when the amplitude at that angle equals
or exceeds 30% of the maximum amplitude in the spectrum. It is
anticipated that Q = 2 to 3 harmonics will be sufficient to represent
field due to scatterer and for convergence of solution because all our
scatterers have radius ρs ≈ 0.5λ from their geometric center. It should
be noted that having Q harmonics in Equation (16), will result in 2Q
unknowns for each scatterer.

Example 1: The setup of this example is shown in Figure 2(a).
Here S = 1 Scatterer, L = 1 incident plane wave and M = 10 Elements.
The elevation of the incident wave is θ1 = 60◦ and scatterer (cube
of side length = λ) geometric center is located at (0.2, −0.6, 2.5)λ.
Figure 3(a) shows that the uncorrected DOA spectrum at k = 0
detects incident wave DOA θ

(0)
1 = 59.4◦ and two spurious DOAs 78◦

and 120.3◦. Thus initially the algorithm has to assume three incident
waves. The corrected spectrum shows error reduction for desired DOA
and suppression of the spurious peaks, to the value below the 30% of
the maximum value, thereby reducing the number of sources to the
correct value of one. The convergence of θ

(k)
1 to θ

(K)
1 = 60.3◦ using
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Q = 3 spherical harmonics is shown in Figure 3(b).
Example 2: This example has the same geometrical setup of

example 1, but has two incident plane waves L = 2. The elevation
of the incident waves is θ1 = 60◦ and θ2 = 105.0◦. The algorithm
initially estimates two incident waves θ

(0)
1 = 58.8◦ and θ

(0)
2 = 105.8◦.

Two spurious DOAs 78.8◦ and 86.7◦ are also detected at k = 0 as
shown in Figure 4. Thus initially the algorithm has to assume four
incident waves. Spurious peaks in DOA spectrum are successfully
reduced and DOA estimation of desired waves if reasonably achieved.
The convergence of θ

(k)
1 to θ

(K)
1 = 60.3◦ and θ

(k)
2 to θ

(K)
2 = 105.2◦ using

Q = 3 is shown in Figure 5.
Example 3: This example is more complex by not only having

S = 2 scatterer but also closely spaced antenna elements d = 0.25λ,
which causes increase in mutual coupling. The geometry is shown
in Figure 2(b). The number of unknowns will increase as number of
scatterers increase, so in this example more antenna elements M = 18
are used to provide adequate degree of freedom to the algorithm. The
elevation of the incident wave L = 1 is θ1 = 105.0◦. One scatterer in
the form of cube of side length = 0.9λ is located at (−0.2, −0.6, 3.5)λ
and the other as sphere of radius ρs = 0.5λ, geometric center at
(−0.2, −0.7, 0.45)λ. Figure 6(a) shows that the uncorrected DOA
spectrum at k = 0, where incident wave DOA is detected as θ

(0)
1 =

103.0◦ and one spurious DOA at 129.2◦. The corrected spectrum
shows improved DOA estimation and snubbing of the spurious peak,

(a) (b)

Figure 2. Geometric setup for examples 1, 2, 3 & 4. (a) Antenna
array and near zone scatterer for example 1 & 2. (b) Antenna array
and nnear zone scatterers for example 3 & 4.
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Figure 3. Results for example 1. (a) DOA spectrum for example 1.
(b) Convergence of θ

(k)
1 for example 1.
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Figure 4. DOA spectrum for example 2.

thereby reducing the number of sources to the correct value of one. The
convergence of θ

(k)
1 to θ

(K)
1 = 104.6◦ using Q = 2 spherical harmonics

is shown in Figure 6(b).
Example 4: The geometrical setup of this case is same as of

example 3, but has two incident plane waves L = 2. The elevation
of the incident waves is θ1 = 60◦ and θ2 = 105.0◦. The algorithm
initially estimates three incident waves θ

(0)
1 = 61.0◦ and θ

(0)
2 = 102.8◦.

One spurious DOA 46.4◦ is also detected as shown in Figure 7. This
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Figure 6. Results for example 3. (a) DOA spectrum for example 3.
(b) Convergence of θ

(k)
1 for example 3.

case shows the trouble an ordinary DOA estimator (un-calibrated) can
face, where the spurious signal peak has almost the same value as
of desired signal. Thus the spurious signal can not be rejected by
setting a threshold value as this will also reject the desired signal.
Oure algorithm take into account three incident waves initially. After
convergence of the algorithm the unwanted signal peak is almost
eradicated and DOA estimation accuracy is also improved. The
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convergence of θ
(k)
1 to θ

(K)
1 = 59.4◦ and θ

(k)
2 to θ

(K)
2 = 105.4◦ using

Q = 2 is shown in Figure 8. This example also shows the slower
and erratic convergence of the solution due to the complexity of the
situation. This iterative nature of the solution is a drawback of this
method. From this, it is worth to mention that an approximately
similar geometric situation was handled by M = 45 antenna elements
using cylindrical harmonics [14].

The examples above demonstrated superiority of the proposed
method over the one presented in [14]. First, we support our argument
by having used 3D environment as against theirs 2D. Secondly, in
our examples the antenna size is practical as compared to impractical
very thin size proposed in the predecessor. Thirdly, we resolved DOA
estimation problem with fairly lesser number of antenna elements as
against them, as spherical harmonics provide better realization of
scattering field. Large number of antenna elements increases hardware
and cost. Another, technique presented in [11] does use spherical
coordinates in resolving DOA problem in 2D, for a single near field
scatterer with two incident plane waves. However as mentioned
earlier, we supersede them as well by having 3D environment, multiple
scatterers, and multiple incident waves. Thus, our method shows
practicality and cost effectiveness. A summary of number of iterations
required and convergence time using Intel R©coreTMi5-2500 processor
is given in Table 1. The number of iterations and convergence time
increase as the complexity increase. However with faster processing it
can be further reduced.
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Figure 7. DOA spectrum for example 4.
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Table 1. Number of iterations and convergence time for examples
1–4.

Examples # Iterations K # Convergence time Seconds
1 10 0.33
2 10 0.33
3 12 0.392
4 78 2.23

4. CONCLUSION

The autocalibration method described here extends the state of
art available in DOA estimation in the presence of near zone 3D
scatterers. The work is supported by numerical examples for a
variety of complex situations, in terms of multiple incident waves and
scatterers. Use of spherical harmonics provides better realization of
scattering field with less number of harmonics and therefore reduce
the number of antenna elements required in comparison of using
cylindrical harmonics. Although this approach is demonstrated to be
more practical in terms of using 3D scatterers and real size antenna
elements, it still carries the same two drawbacks: due to iterative
method, it has limited application where time delay is acceptable and
secondly as the electrical size or number of scatterers increases, the
number of unknown increases, which requires more antenna elements.
However, the method motivates the state of art present towards more
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a realistic situation. Finding a guaranteed solution with this method
is one of the open problems. Scenarios when multiple scatterers come
close to each other and also to antenna elements, result in mutual
coupling between scatterer-scatterer and scatterer to antenna and are
yet to be addressed, to the best of our knowledge. The authors wish
to continue this work for finding DOA in situations where noise is also
present and the antenna and scatterer share energy.
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APPENDIX A. NOMENCLATURE

Bsq, Csq Spherical harmonic’s amplitudes

d Element spacing in wavelength λ

El Amplitudes of lth incident plane wave

Et Total electric field

Einc Incident electric field

Esct Scattered electric field from scatterer

f Frequency of incident signal

G1
sqm, . . . , G5

sqm Spherical harmonics

Ĥ(2) Spherical Hankel function of second kind

Ĥ(2)′ First derivative of spherical Hankel function of second kind

Ĥ(2)′′ Second derivative of spherical Hankel function of second kind

L Number of incident plane waves

l Incident plane wave index

M Number of antenna elements

m Antenna element index

N Number of unknowns in the set of simultaneous linear equations

P 1 Associated Legendre function of first kind

P
′1 First derivative of associated Legendre function of first kind

PW Plane wave

Q Number of spherical harmonics used

q Index of spherical harmonic

r Radial distance in spherical coordinates

rsm Radial distance from sth scatterer to mth element
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S Number of Scatterers

s Scatterer index

U, V, W Constants for fixed element and scatterer location

(xm, ym, zm) Location of mth antenna element in cartesian coordinates

(xs, ys, zs) Location of sth scatterer in cartesian coordinates

β Free space wave number

θ Elevation angle in spherical coordinates

θsm Elevation angle of mth element from sth scatterer

(θl, φl) Incidence direction of lth plane wave

ρa Radius of antenna wire

ρs Radius of scatterer

φ Azimuth angle in spherical coordinates

φsm Azimuth angle of mth element from sth scatterer
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