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Abstract—Due to the fact that the imaging distance is similar to
the dimension of synthetic aperture antenna in near-field, the Fourier
imaging theory used in the traditional synthetic aperture imaging
radiometer (SAIR), which is based on the far-field approximation,
is invalid for near-field synthetic aperture imaging. This paper
is devoted to establishing an accurate imaging algorithm for near-
field millimeter wave SAIR. Firstly, the near-field synthetic aperture
imaging theory is deduced and its relationship to the far-field imaging
theory analyzed. Then, an accurate imaging algorithm based on
the near-field imaging theory is established. In this method, the
quadratic phase item and antenna pattern are taken into consideration,
and the image reconstruction is performed by minimizing the Total-
Variation norm of brightness temperature image, which reduces the
influence of the visibility observation error and improves imaging
precision. Finally, the effectiveness of the proposed imaging algorithm
has been tested by means of several simulation experiments, and the
superiority is also demonstrated by the comparison between it and the
existing Fourier transform methods. The results demonstrate that the
proposed method is an efficient, feasible imaging algorithm for near-
field millimeter wave SAIR.
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1. INTRODUCTION

Millimeter-wave imaging radiometers are powerful sensors for high-
resolution observations of personal security. Unlike microwave imaging,
millimeter-wave imaging has shorter wavelengths, which is significant
to obtaining the image with better spatial resolution. Compared to
optical and infrared radiation, it can “see through” obscuring materials
such as clothing, cardboard, plastics, and wood with comparatively
trifling loss. Different from familiar X-ray imaging, millimeter-wave
imaging is commonly regarded as harmless to humans [1–3]. However,
due to the tradeoff between antenna aperture and spatial resolution,
traditional millimeter-wave imaging system cannot achieve the desired
high spatial resolution.

Interferometric aperture synthesis imaging technology, initially
developed for radio astronomy in the 1980s [4, 5], can well solve the
contradiction between the antenna aperture and spatial resolution.
Its basic idea is to use a thin array composed of small aperture
antennas to achieve a large aperture antenna by performing correlation
operations in pairs. Each complex correlation is a sample of the
visibility function which, in the ideal case, is the spatial Fourier
transform of the brightness temperature distribution [6]. Then
the Millimeter-wave image can be reconstructed by some imaging
algorithm from the visibility function. Therefore, the interferometric
aperture synthesis imaging technology has attracted more and more
attention and obtained great progress in the past ten years. After
series of land-based and airborne synthesis aperture imaging systems
were built [7, 8], the satellite-based SAIR using aperture synthesis in
both directions (named SMOS/MIRAS) developed by the European
space agency (ESA) was also launched in 2009, and successfully passed
the track debugging and test operating phase [9–11]. It is an important
symbol for the SAIR to enter the stage of practical application as a
replacement of the traditional real aperture imaging radiometer.

On the other hand, high spatial resolution is also the most
desired requirement for near-field imaging applications, such as security
detection of concealed weapons or other contrabands, all weather
reconnaissance and surveillance, and ground penetrating imaging
for landmine detection or archeology. As a cost-effective technique
with high imaging resolution, aperture synthesis imaging would be
extensively used in near-field applications. However, due to the fact
that the traditional Fourier imaging theories are based on the far-
field approximation, they are not suitable for near-field synthetic
aperture imaging, and the near-field curvature effect must be taken
into account when the target is in the near-field of the antenna array.
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Now the imaging method for near-field SAIR is a problem to be solved,
and some solutions have been proposed in [12–15]. They can be
classified into two types. One is based on hardware transformation.
The antenna array is physically rearranged from planar distribution
to circular or spherical distribution. This curved array should fit
the curvature of the incident spherical wave, so that the relation
between the incident wave and measured visibility is still Fourier
transform [16, 17]. But this method is only suitable for the targets
within a tiny area and fixed on the focus point of the spherical
array, so it does not fit for practical application. The other one
is based on software modification. It still employs the traditional
planar array but theoretically modifies the measured visibility by
adding a correction phase term to get the equivalent far-field visibility,
which is also the modified Fourier method [18, 19]. Nevertheless,
this kind of method is directly to use Fourier inversion algorithm
for solving the approximate brightness temperature distribution, and
ignores the visibility observation error caused by the antenna position
errors, and partial coherence between the radiation sources and some
other factors. So the images reconstructed by this method still
have obvious blur and noise pollution in practical application. In
this paper, we first deduce the synthetic aperture imaging theory in
near-field case, and analyze the difference between it and the far-
field synthetic aperture imaging theory. Then, an accurate imaging
method based on this near-field synthetic aperture imaging theory
is proposed. In this method, the quadratic phase item and antenna
pattern are taken into consideration, and the image reconstruction
is performed by minimizing the Total-Variation norm of brightness
temperature image, which reduces the influence of partial coherence
and improves the imaging precision. The effectiveness of this proposed
imaging algorithm has been tested by means of several simulation
experiments, and the superiority is also demonstrated by comparing
with the existing Fourier transform methods. The simulation results
demonstrate that the proposed method is an efficient, feasible imaging
algorithm for near-field millimeter-wave SAIR.

2. THE NEAR-FIELD SYNTHETIC APERTURE
IMAGING THEORY

Due to the shorter imaging distance of the near-field imaging, the
far-field imaging method based on the far-field approximation is
not suitable for near-field SAIR. Here, a brief analysis of near-field
synthetic aperture imaging model based on “T” antenna array is
demonstrated. As shown in Fig. 1, an extended radiation source S is
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Figure 1. Geometry diagram of near-field synthetic aperture imaging.

located on plane oxy, with its radiation electromagnetic wave frequency
ω and wavelength λ, and the antenna array is located on plane OXY .

The radiation source S is dispersed into M small parts, the
distance between the radiation source Si and the two antennas is Rc

i

and Rl
i. According to [19], the visibility samples for any two antennas

labeled c and l, can be expressed as

Vc,l =
〈
Ec (Rc

i , t) · E∗
l

(
Rl

i, t
)〉

=
M∑

i=0

Ti(x, y)F c
i (x, y)F l

i (x, y)∗rc,l exp
[
−jk

(
Rc

i −Rl
i

)]
(1)

where, 〈·〉 denotes time integration operation, (x, y) the coordinate of
the radiation source Si, T (x, y) the normalized brightness temperature,
and rc,l the so called fringe-wash function [20], which accounts for
spatial decorrelation effects. In the limiting narrow-band imaging
system, the decorrelation effects are negligible and rc,l = 1,
exp[−jk(Rc

i − Rl
i)] denotes phase difference of two antenna, which is

the key factor for the synthetic aperture imaging. According to Fig. 1,
the distance Rc

i and Rl
i through the Taylor expansion approximation

can be expressed as

Rc
i =

√
(x−Xc)2 + y2 + R2 ≈ R +

(x−Xc)2 + y2

2R
(2)

Rl
i ≈ R +

x2 + (y − Yl)2

2R
(3)

Combined with the two equations (Eqs. (4), (5)), k∆R can be rewritten
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as

k∆R = k
(
Rc

i −Rl
i

)
= k (−xXc + yYl) /R + k

(
X2

c − Y 2
l

)
/2R (4)

Then define spatial frequency domain variable as: v = −kXc/R,
h = kYl/R, ϕ(v, h) = k(X2

c − Y 2
l )/2R. So

k∆R = k
(
Rc

i −Rl
i

)
= vx + hy + ϕ(v, h) (5)

Substituting Eq. (5) into Eq. (1), then rewriting it as the integral form,
we can get the near-field synthetic aperture imaging formula as follows

V(v,h)=e−ϕ(v,h)

∫∫

xoy

T (x,y)F c(x, y)F l(x,y)∗exp[−jk(vx+hy)]dxdy (6)

where ϕ(v, h) is the quadratic phase-modified item, V (v, h) the
visibility function measured by the imaging system in plane OXY ,
and T (x, y) the brightness temperature distribution.

Generally, the field of view (FOV) is concentrated in the center of
system beam, so the two antenna patterns can be ignored (T ◦(x, y) ≈
T (x, y)). And the imaging formula can be rewritten as

V (v, h) = e−ϕ(v,h)

∫∫

xoy

T ◦(x, y) exp[−jk(vx + hy)]dxdy (7)

As Eq. (7) shows, the visibility function (V ) of the antenna pairs is
equal to the product of the quadratic phase-modified item (e−ϕ(v,h))
and the inverse Fourier transformation of brightness temperature
distribution (T ). Introducing the 2-d Fourier transform symbols (IFT2

and FT2) to Eq. (7), it can be rewritten as

V (v, h) = exp(−jϕ)IFT2 [T ◦(x, y)] (8)

Therefore the solving equation of brightness temperature distribution
is expressed as:

T ◦(x, y) = FT2[exp(jϕ)V (v, h)] (9)

This is the modified Fourier imaging algorithm for near-field
millimeter SAIR. Compared with far-field direct Fourier imaging
theory, due to the effect of near-field spherical wave, near-field synthetic
aperture imaging has a phase-modified item (e−ϕ(v,h)), which is the
key for the near-field imaging. It can be seen as a convex lens with
the focal length R, which makes the near-field spherical wave became
plane wave. In far-field imaging case, the imaging distance R À DSA

and ϕ(v, h) ≈ 0, so the phase-modified item is ignored in direct
Fourier imaging theory. But it can’t be ignored for near-field imaging,
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otherwise the point spread function (PSF) of the near-field SAIR will
be widened, as a result the acquired image will also become fuzzy. The
closer the imaging distance is, the more indistinct the image is. The
influence of quadratic phase-modified item on the near field SAIR is
illustrated in Fig. 2. The main parameters of these four simulations are
as follows. The imaging distance is 10 m, the frequency is 37GHz, the
wavelength is about 8 mm, the antenna array is 100×100 and the array
size is 1 m× 1m. The detailed simulation model will be demonstrated
in Section 4.

Due to the fact that the phase-modified item is ignored in direct
Fourier imaging theory, in other word, an incorrect imaging distance

(a) (b)

(c) (d)

Figure 2. The influence of quadratic phase-modified item on near-
field SAIR (the imaging distance is 10m). (a) PSF of modified Fourier
method. (b) PSF of direct Fourier method. (c) Imaging result of
modified Fourier method. (d) Imaging result of direct Fourier method.
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Ric is used to replace the correct distance R in ϕ(v, h). The PSF
of the direct Fourier imaging algorithm is more widened than the
modified Fourier imaging algorithm with the correct imaging distance,
as shown in Figs. 2(a)–(b). And a simulation experiment of the
simple scene with two concentric circles is made here. Due to the
fact that the phase-modified item with correct distance R is used in
modified Fourier method, its imaging result (Fig. 2(c)) is clearer than
the result (Fig. 2(d)) of direct Fourier method with widened PSF.
But these two Fourier imaging methods are all devoted to solve the
approximate brightness temperature distribution (T ◦). They ignore
the influence of partial coherence between the targets and the visibility
observation error caused by the error of detection system, etc.. So their
imaging results have some errors, which reduce the visibility of the
reconstructed image. It is also demonstrated by the imaging results
shown in Fig. 2, there are some dim irregular brightness spots near the
two concentric circles.

3. DESCRIPTION OF THE PROPOSED ACCURATE
IMAGING ALGORITHM

According to the analysis in the second section, we conclude that
the imaging effect can be improved by the modified Fourier imaging
method with the quadratic phase item. But the partial coherence
between the radiation sources and the visibility observation error are
inevitable in actual imaging conditions, its improvement is obtained
obviously only when the object is simple to be identified (radiation
source distribution is regular and sparse), as shown in Fig. 2. However,
it is hard to get an accurate image in the actual detection conditions
when the radiation source distribution is irregular and not sparse.
These are verified by simulation results shown in Figs. 6–9, due to the
high radiation intensity of the upper wing, the partial coherence value
between it and other weak radiation source is too high, as a result there
has serious noise pollution near the upper wing. As shown in Figs. 6–
9(b), even the images are carried on the simple filtering operation
(Wiener filtering or median filtering), many low light noise pollution
still exist near the target, which bring the difficulties of determining
target outline and affect the visibility of image seriously. We know
that these influences can be reduced by increasing the integration time
of the received signal. But this will increase the imaging time, affect
the application of the SAIR in the real-time imaging seriously. This
paper devotes to establish an accurate imaging algorithm to reduce
these impacts. For more accurately describing the near field synthetic
aperture imaging, we rewrite the near field imaging formula as the
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below matrix equation

VC×L = D1C×MTM×ND2N×L + ∆VC×L (10)

where, V is the measured near-field visibilities matrix, T the brightness
temperature matrix, ∆V the visibility observation error, and D1
and D2 are the coefficient matrixes, which characterize the system
configuration and target spatial distribution, the elements of D1 and
D2 are

d1c,m = f c (xm −Xc) f l(xm) exp
[−jk

(
X2

c /2R− xmXc/R
)]

(11)

d2n,l = f c(yn)f l(yn − Yl) exp
[−jk

(
Y 2

l /2R− ynYl/R
)]

(12)

where, xm and yn are the coordinates of radiation source Si, and the
corresponding bright temperature value is T (m,n).

Xc and Yl are the ordinate and abscissa of the antennas,
respectively, the corresponding visibility value is V (c, l). For the “T”
antenna array, Yc = 0 and Xl = 0.

f#(·) is the 1-d antenna pattern. For convenient analysis, we
assume that all the antennas have the same antenna pattern in this
paper. Generally, the FOV of the imaging system is concentrated in the
center of system antenna beam. We use the one-dimensional antenna
pattern to approximately replace the two-dimensional antenna pattern
as

F#(x, y) = f#(x)f#(y) (13)

In actual millimeter wave SAIR, due to the limit of antenna array,
the dimension of the visibility function (V ) is significantly less than the
brightness temperature matrix (T ). So the matrix equation (Eq. (10))
is an underdetermined equation, and the visibility observation error
∆V exists in the imaging process. Under this circumstance, the
most effective method is to use the regularization method to solve
this problem. In regularization method, the characteristic information
about the real solutions is attached to the solution set and the
additional information is used to restrain the solving process. The
regularization solution model of Eq. (10) can be expressed as

minT J(T ) = ||D1× T ×D2− V ||2F + µΨ(T ) (14)

where, ||D1 × T × D2 − V ||2F is the fidelity term, which guarantees
the difference between actual visibility function and the observation
visibility function is small enough, Ψ(T ) the regularization item, also
named as the constraint condition item, and µ the regularization
parameter, which is used to balance the fidelity term and regularization
term. Usually, we choose µ to be small enough in order not to degrade
the spatial resolution significantly.
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The charm of regularization method lies in seeking an approximate
solution with the actual physical meaning, and ensuring that the
approximate solution has strong stability. In this method, the prior
information of the actual image is attached to the millimeter image
reconstruction as the regularization item, which not only makes the
ill-conditioned problem becoming a well-conditioned problem, but
also makes the recovery image more close to the real source image.
Therefore, the key of the regularization is how to use prior knowledge
to structure the regularization term. Some existing study shows that if
the total-variation (TV) function is chosen as the regularization term
the image reconstruction can obtain a satisfactory effect [21, 22]. It is
widely used in several applications such as image denoising, deblurring
and MRI image recovery, mainly due to its desirable properties such
as convexity, ability to preserve edges, as well as invariance to image
shifts and rotations. For an image of T , its discrete isotropic TV norm
is defined as

TV(T ) =
∑

i,j∈T

{|T (i + 1, j)− T (i, j)|
+|T (i, j + 1)− T (i, j)|

}
(15)

And Eq. (14) can be reformulated as

minT J(T ) = ||D1× T ×D2− V ||2F + µTV(T ) (16)

Now the reconstruction problem becomes a typical problem of
solving the convex function optimization. There are numerous state-
of-the-art optimization methods designed to solve it [23–26]. In this
paper, we use the fast proximal-gradient projection algorithm (FGP)
proposed in [26] to solve this convex function optimization problem. It
is a fast and robust method that solves minimum l1 problems and
a large number of extensions including TV minimization with the
accelerated convergence rate of O(k−2). The key of this accurate
imaging algorithm is calculating the coefficient matrixes D1 and D2,
which means to calculate every element in the matrix according to
Eqs. (11) and (12). In these formulae, the distance R can be modified.
It can be considered as a focusing operation in the imaging process.
Therefore, the clarity of the image can be improved by changing
distance R in the process of actual millimeter image reconstruction.

4. SIMULATION AND RESULTS

4.1. Simulation Model

The numerical simulation is helpful for evaluating the performance
of the proposed imaging algorithm. Here a simulation model with a
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 is the real antenna

 is the virtual antenna

Figure 3. Diagram of “T” antenna array.

40×40 “T” antenna array is established (see Fig. 3). In this simulation
model, the real antennas (solid round) are placed on the axis to
constitute a “T” type array, and the corresponding visibility values are
generated by the cross-correlation of these antennas with the original
antenna. In the relative, the visibility values conforming to the virtual
antennas are obtained by the cross-correlation of the real antennas
located at the corresponding X and Y . So the visibility function of
the upper plane can be calculated by this method. The remaining
visibility function is obtained by the symmetric conjugate of the
visibility function. The antenna elements are small horn antennas with
large beam pattern, which are especially suitable for millimeter wave
SAIR. And the distance between antennas is about 1.25λ (λ = 8mm).

In the process of simulation, for simulating the actual synthetic
aperture imaging accurately, we assume that each discrete target
has the ability of radiating millimeter wave. Its radiation intensity
is the corresponding brightness temperature, and its phase shift is
unique. The received signal of each antenna is obtained by the integral
operation of the radiation waves generated by the discrete sources, and
the visibility samples are calculated by the cross-correlated calculation
of each antenna pairs. Then the Fourier imaging methods and
the proposed accurate imaging method are used to reconstruct the
millimeter images. Parameter µ in Eq. (16) is set to be 0.2. For the
purpose of comparing the imaging effects of these imaging methods in
far-field and near-field case, simulation experiments under the far-field
and near-field condition are performed respectively in this paper. For
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the SAIR, the far-field condition is usually defined as [15]
{

Rf1 ≥ 2D2
SA/λ general far-field,

Rf2 ≥ 20D2
SA/λ absolute far-field,

(17)

where, DSA is the array size of SAIR. According to this criterion, the
general far-field of this simulation model is 40m, and the absolute far-
field is 400 m. The simulations are performed in four situations, as
shown in Table 1.

Table 1. Distance settings in imaging simulations.

Extreme

near-field

General

near-field

General

far-field

Absolute

far-field

Criterion R < 0.1Rf1 0.1Rf1 ≤ R < Rf2 Rf1 ≤ R < Rf2 R ≥ Rf2

Distance 1 m 10 m 60 m 400m

4.2. One-dimensional Simulation Experiments

Here, a series of simulation experiments with 1-d extended source
is performed to validate the effectiveness of the proposed method.
As Fig. 4 shows, the simulation target consists of three parts: the
right section is an ideal triangle wave, the middle section is the 1-d
truncation drawn from an actual gray image, and the left section is an
ideal rectangular wave. The Fourier methods are tested for comparison.
The simulation results are shown in Fig. 4, and the imaging distances
are set as Table 1.

In order to compare the results of these imaging methods
objectively, their root-mean square errors (RMSEs) are calculated as
the follow formula

RMSE(X ′, Xo) =
√∑

i

[X ′(i)−Xo(i)]2
/√∑

i

Xo(i)2 (18)

where, Xo is the original signal, and X ′ is the reconstructed signal.
The RMSEs of the three methods are demonstrated in Table 2.

From these results of the simulation and calculation, we can easily draw
the conclusions as follows. Firstly, direct Fourier method is unworkable
for the near-field SAIR. With the imaging distance decreasing, its
reconstruction effect is poorer. And its RMSE is the biggest one.
Secondly, the modified Fourier method with quadratic phase-modified
item has a better performance than the direct Fourier method, but
still maintains unacceptable errors especially in extreme near-field
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Figure 4. The simulation results of the 1-d extended source. The
imaging distance of (a)–(d) is 1m, 10m, 60m and 400 m respectively.

case. Thirdly, the accurate imaging method proposed in this paper is
quite competent for SAIR imaging no matter in near-field or far-field
case, and performs the best imaging effect among the three methods.
Finally, with the imaging distance increasing, the reconstructed results
of three methods are consistent with each other gradually.

Table 2. Comparison between FFTs and proposed imaging method.

Imaging

distance (m)
Direct FFT

RMSE

Modified FFT
Proposed method

1 0.3581 0.2133 0.1946

10 0.2473 0.2191 0.1892

60 0.2166 0.2052 0.1755

400 0.2129 0.2037 0.1735
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4.3. Two-dimensional Simulation Experiments

For further demonstrating the effectiveness of the proposed imaging
method, four groups of two-dimensional imaging simulation experi-
ments are performed here. The target scene radiation intensity (bright-
ness temperature) distribution is shown in Fig. 5, with its gray value
as the radiation intensity of the discrete radiation sources, and the
distance between the radiation sources is set as the system spatial res-
olution.

 

Figure 5. Brightness temperature distribution.

Due to the received signals obtained by integral in these
simulation experiments, the calculation amount is very large, and
its computational complexity is about O(MKN2), where M is the
antenna array size, K the sampling signal length, and N the target
scene size. For example, the size of target scene is a 100 × 100 gray
image, received signal length 4096, “T” antenna array still 40×40, and
the computing time of the visibility function on a personal computer
with two 2.1-GHz AMD processors is about 30 minutes. If the target
scene dimension enhances to 200×200, the computing time will increase
to an unacceptable level (about 8 hours). So, the target scene is
selected as 100 × 100 in this paper. It is worth noting that the
large computing time is not affiliated to the proposed algorithm itself.
Actually, the calculation of this proposed method only includes the
calculations of matrixes D1 and D2 and solution of Eq. (16), and
its algorithm complexity is O(N2). Due to the fact that the FGP is
a fast method with the accelerated convergence rate, the real image
reconstruction time takes only a few seconds.

The images are reconstructed by the direct Fourier method,
modified Fourier method with phase-modified item, and the proposed
imaging, respectively. The imaging distances are still set as in Table 1.
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(a) (b) (c)

Figure 6. The images reconstructed by (a) direct Fourier method,
(b) modified Fourier method, and (c) the proposed method. The
imaging distance is 1 m.

(a) (b) (c)

Figure 7. The images reconstructed by (a) direct Fourier method,
(b) modified Fourier method, and (c) the proposed method. The
imaging distance is 10 m.

The corresponding simulation results are shown in Figs. 6–9. It can be
seen from the above simulation results that the direct Fourier method
is only applicable to the far-field, that its reconstructed images are
very blur in near-field, and that there is serious noise pollution near
the target. The modified Fourier method with the phase-modified item
can overcome these deficiencies to some extent, but the noise pollution
near the target still exists. Clearly, the image reconstructed by the
proposed accurate method is more accurate than the results of the
Fourier methods. No matter in the near-field or far-field case, the low
light noise pollution is eliminated better than the Fourier results.

In order to evaluate the accuracies of the three methods
quantitatively, we define the structural similarity (SSIM) and the peak
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(a) (b) (c)

Figure 8. The images reconstructed by (a) direct Fourier method,
(b) modified Fourier method, and (c) the proposed method. The
imaging distance is 60 m.

  
(a) (b) (c)

Figure 9. The images reconstructed by (a) direct Fourier method,
(b) modified Fourier method, and (c) the proposed method. The
imaging distance is 400 m.

signal-to-noise ratio (PSNR) as follows

SSIM
(
T̃ , To

)
=

(
2µT̃ µTo + C1

) (
σT̃ To

+ C2

)
(
µ2

T̃
+ µ2

To
+ C1

)(
σ2

T̃
+ σ2

To
+ C2

) (19)

PSNR
(
T̃ , To

)
=10 log10

max(To)2
∑

0<i<M,0<j<N

[
T̃ (i, j)−To(i, j)

]2
/M×N

(20)

where, T̃ is the reconstructed image, and To is the original one. µT̃

and µTo are the mean of image T̃ and To separately. σT̃ and σTo are



532 Chen et al.

Table 3. Comparison of objective data between FFTs and proposed
method.

Imaging

distance

(m)

SSIM PSNRs (dB)

Direct

FFT

Modified

FFT

Proposed

method

Direct

FFT

Modified

FFT

Proposed

method

1 0.5311 0.9194 0.9352 7.3859 15.7763 16.2033

10 0.8645 0.9271 0.9462 13.5708 16.1998 17.2529

60 0.9120 0.9171 0.9413 15.2268 15.5021 16.9121

400 0.9141 0.9243 0.9422 15.4031 16.0884 16.8785

the standard deviation of image T̃ and To, respectively. σT̃ To
is the

covariance of image T̃ and To. C1 and C2 are the smallest positive
constants. max(To) denotes the max value of the original image To.

The SSIM and PSNRs of the aforementioned three methods are
calculated as shown in Table 3. Clearly, the SSIM and PSNRs of
the proposed accurate imaging method are both much better than the
Fourier methods especially in the near-field case. And the differences
between the proposed method and Fourier methods decrease with the
imaging distance increasing as expected.

5. CONCLUSION

Because the Fourier imaging methods based on far-field approximation
are invalid for the near-field SAIR, the near-field imaging method
is an urgent problem to be solved. In this paper, we establish an
accurate imaging algorithm based on the synthetic aperture imaging
theory for near-field SAIR. For more accurately reconstructing the
millimeter wave images, the quadratic phase item and antenna
pattern are added to this imaging method, and the regularization
is adopted to reconstruct the images. Finally, for verifying the
validity of the proposed algorithm, the simulation experiments of
one- and two-dimensional synthetic aperture imaging are performed
respectively. The simulation results show that a more accurate
brightness temperature image than the images obtained by traditional
methods can be reconstructed by the proposed imaging algorithm.
Besides, the proposed algorithm not only can be used for near-field
imaging, but also is suitable for far-field imaging. We will further
improve the coefficient matrixes (D1 and D2) to improve the efficiency
and expand the application of this accurate imaging method.
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