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Abstract—The dynamical properties of cos-Gaussian beams in
strongly nonlocal nonlinear (SNN) media are theoretically investigated.
Based on the moments method, the analytical expression for the root-
mean-square (RMS) of the cos-Gaussian beam propagating in a SNN
medium is derived. The critical powers that keep the RMS beam
widths invariant during propagation in a SNN medium are discussed.
The RMS beam width tends to evolve periodically when the initial
power does not equal to the critical power. The analytical solution of
the cos-Gaussian beams in SNN media is obtained by the technique
of variable transformation. Despite the difference in beam profile
symmetries and initial powers, a cos-Gaussian beam always transforms
periodically into a cosh-Gaussian beam during propagation and the
transformation between the two beams revives after a propagation
distance.
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1. INTRODUCTION

The propagation properties of optical beams in nonlocal nonlinear
media have attracted considerable interest in recent years. Many
novel features of the nonlocal nonlinearity such as the suppression of
collapse [1] and the support of vortex solitons [2, 3] have been found. In
strongly nonlocal nonlinear (SNN) media, the characteristic length of
the material response function is much larger than the beam width. In
this case, the nonlocal nonlinear Schrödinger equation (NNLSE), which
governs the propagation of an optical beam in a nonlocal nonlinear
medium can be simplified to a linear equation, as suggested by A. W.
Snyder and D. J. Mitchell [4]. Various solitons and breather solutions
in the strongly nonlocal nonlinear media have been found [5–8]. Most
of these studies focus on the shapes of optical beams invariant during
propagation in linear and nonlinear media [6–13]. However, the study
of the evolution of beams with a change in shape during propagation is
rarely reported in literature. This is because the level of complexity can
be significantly higher than that of evolution of fixed-shaped beams.

Recently, there has been growing interest in the study of Hermite-
sinusoidal-Gaussian (HSG) beams as a result of the works of Casperson
and Tovar [14] and Chen et al. [15]. Propagation of HSG laser beams in
free space, in complex optical systems, in turbulence and in Kerr media
have been studied extensively [14–20]. These studies indicate that
the shape of HSG laser beams changes during propagation. However,
the propagation properties of HSG laser beams in SNN media remain
unexploited. As a special case of the HSG beams, the cos-Gaussian
beams have many interesting applications such as optimizing the
efficiency of laser amplifiers. This is because of its unique profile as a
Gaussian beam that modulates with a cos function [14–17].

In the present paper, we investigate the evolution of cos-Gaussian
beams in SNN media. The moments method [21–26] provides a
convenient and rigorous approach to obtain the evolution of relevant
parameters of beam without any assumption for the solution [27],
although the beam propagates with a change in shape. Based on
the method, an exact analytical description of the variation of the
RMS beam width is obtained. The critical powers as a function of
beam parameters require to maintain the RMS beam width invariant
during propagation with a uniform wavefront are obtained. When
the initial power does not equal to the critical power, the RMS beam
width of the cos-Gaussian beam tends to evolve periodically during
propagation in SNN media, regardless of the difference in beam profile
symmetry. Using the technique of variable transformation [28], the
analytical solution of cos-Gaussian beams in SNN media is derived.
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An interesting intensity redistribution of beams is observed during
propagation in SNN media, though the RMS beam width remains
constant throughout the propagation. Despite the difference in both
the beam profile symmetrical ratios and the initial powers, the cos-
Gaussian beam always transforms into a cosh-Gaussian beam during
propagation and the transformation between the two beams revives
after a propagation distance.

2. THE MOMENTS METHOD ANALYSIS

The propagation of an optical beam in a nonlocal nonlinear medium
in the paraxial approximation is described by NNLSE [3]:
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where u(x, y, z) is the complex amplitude of the optical field, k the
linear wave number, n0 the linear refraction index of the medium,
n2 the nonlinear index coefficient, R the normalized symmetrical real
spatial response function of the medium, and ~r and ~ra are the two-
dimensional transverse coordinate vectors. x and y are the transverse
coordinates, whereas z is the longitudinal coordinate.

In SNN media, the NNLSE can be deduced to a linear model [4]
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where γ is a material constant associated with the response function R,
and P0 =

∫∫ |E|2dxdy is the input power. In this section, the moments
method is employed to obtain the dynamics information about the cos-
Gaussian beam in a SNN medium by analyzing the evolution of several
integral quantities. A definition of these quantities is
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where ξ = x or y. These quantities are associated with the beam power,
I1, beamwidth, I2, momentum, I3, and Hamiltonian, I4; and satisfy a
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closed set of coupled ordinary differential equations (ODEs). Thus, we
have dI1(z)/dz = 0; dI2,ξ(z)/dz = I3,ξ(z); dI 3,ξ(z)/dz = 4I4,ξ(z) −
2γ2P0I2,ξ(z); dI4,ξ(z)/dz = −γ2P0I3,ξ(z)/2. With the important
invariant under the beam evolution, Q = 2I4,ξI2,ξ − I2

3,ξ/4, we obtain
an Ermakov-Pinney (EP) equation [26] describing the dynamics of the
scaled beamwidth:

d2I
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+ γ2P0I
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3/2
2,ξ (z)

. (4)

For cos-Gaussian beams, the initial field is of the form [9, 10]

u (x, y, z = 0) = A0 exp
(
−x2 + y2

w2
0

)
cos(βxx) cos(βyy), (5)

where A0 is the amplitude, w0 is the beam width associated with the
Gaussian part, βx and βy are the parameters associated with the cos
part. Then, the invariant is given by
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The solution of Eq. (4) for cos-Gaussian beams as the initial field is [21]

I2,ξ(z) = I2,ξ(z = 0) cos2(z/zp) + I1S3,ξz
2
p sin2(z/zp)/

(
k2S1,ξ

)
, (8)

where zp = (γ2P0)−1/2. Equation (8) describes the variation of the
scaled beamwidth in any transversal direction (e.g., x or y) in a SNN
medium. Since the RMS beam width is W 2

ξ = I2,ξ/I1, we can obtain
the evolution dynamics of the RMS beam width in any transversal
direction by rewriting Eq. (8) as:
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If d2I
1/2
2,ξ (z)/dz2 = 0, the critical power for an invariant RMS beam

width in any transversal direction during propagation, Pc,ξ, can be
obtained from Eq. (5):

Pc,ξ = S3,ξ/
(
γ2k2S2,ξ

)
. (9b)

In the above discussion, we consider only the variation of transversal
direction of beams in one-dimensional (1D) case. In order to study
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the evolution of cos-Gaussian beams in two-dimensional (2D) case, we
need to obtain the 2D total RMS beam width evolution and the 2D
critical power for invariant total RMS beam width as follows
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Note here that if βx = βy = 0, Eq. (10) reduces to a Gaussian beam
WG(z), which can be expressed as
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Figure 1 illustrates the critical powers of cos-Gaussian beams that is
normalized with respect to the critical power of a Gaussian beam. It
is seen that Pcr/PG

cr increases with increasing the beam parameters
βx/w0 and βy/w0, as expected.
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Figure 1. The critical powers of cos-Gaussian beam for different
parameters βx and βy.

In Figure 2, we show the evolution of the RMS beam widths
of a cos-Gaussian beam with the beam parameters βx = 4/w0 and
βy = 5/w0 for different initial powers. The relations between the 2D
critical power and any 1D critical power of the beam can be obtained
from Eqs. (9b) and (10b) as Pc,x = 0.83Pcr; Pc,y = 1.3Pcr. Figure 2(a)
illustrates the evolution of the total (solid line), x-component (dashed
line), y-component (dotted line) cos-Gaussian RMS beam width for
a particular case with the initial power equals to the 2D critical
power, i.e., Pin = Pcr. It is interesting to see that each transversal
direction of the RMS beam width of the beam propagates in a periodic
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(a) (b)

(c) (d)

Figure 2. Evolution of the total (solid line), x direction (dashed
line), y direction (dotted line) cos-Gaussian RMS beam width with
the beam parameters βx = 4/w0 and βy = 5/w0 for different initial
powers: (a) Pin = Pcr; (b) Pin = Pc,x; (c) Pin = Pc,y; (d) Pin = 1.6Pcr

manner, whereas the total RMS beam width retains a constant value
during propagation. Figures 2(b) and 2(c) show the evolution of
beam widths with the initial powers equal to the critical powers for
x-direction and y-direction, respectively. The evolution of the beam
widths with the initial powers equal to 1.6 times the 2D critical power,
Pin = 1.6Pcr is depicted in Figure 2(d). From Figure 2, it is clear
that the corresponding RMS beam width of the cos-Gaussian beam
remains invariant during propagation, if the initial power equals to the
corresponding critical power. If the initial power is smaller than the
critical power, the beam width inclines to oscillate periodically and the
beam width always larger than the initial beam width, and vice versa.
If Pin < Pcr, the RMS beam width at z/zp = 0 increases. On the other
hand, the RMS beam width at z/zp = 0 decreases if Pin > Pcr.

The Eq. (2) that is reduced from the nonlinear Schrodinger
equation for a SNN medium is analogous to the linear harmonic
oscillator or the propagation of light in a parabolic refractive index
medium. But it still describes the high nonlinear optics phenomenon.
Firstly, although the evolution of an optical field in a SNN medium
can be described by the linear Schrodinger equation, the evolution
of the beam profiles and the corresponding RMS beam widths of
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the beam are dependent on the input powers. The sizes of beam
profiles and the corresponding RMS beam width of the beam are
different during propagation with different input powers as shown
in Figure 2. Secondly, the underlying physics of SNN medium is
different from linear optics, such as the nonlocality in laser-induced
thermal nonlinearities is thermal diffusion, and the nonlocal response in
photorefractive materials is induced by the photogeneration of carriers.
If take a Gaussian distribution as an initial field, the beam preserves
its Gaussian shape but its RMS beam width “breathes” sinusoidally
as it travels in a straight path. When the initial power equals the
critical power Pin = Pcr, beam diffraction is balanced by beam-induced
refraction and then form a soliton [4].

3. ANALYTICAL SOLUTIONS OF COS-GAUSSIAN
BEAMS IN STRONGLY NONLOCAL NONLINEAR
MEDIA

By the technique of variable transformation, the Eq. (2) can be deduced
to the paraxial diffraction equation. The beams propagate in SNNM
can be transferred to their counterparts in free space. The relationship
between the solution in free space and its counterpart in a SNN medium
has been given by D. Lu et al. [28] as
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where a = {α− arctan [tan (α)]} /π and α = z/zp, zp =
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)−1/2.
E(x, y, z) is the solution in free space. The propagation of a cos-
Gaussian beam in free space can be expressed in terms of the Huygens-
Fresnel diffraction integral as
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Substituting Eq. (5) into Eq. (13), we obtain the analytical solution in
free space as
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Using Eq. (14), the analytical solution of the cos-Gaussian beam in a
SNN medium becomes
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where Nw = w2
0/λzp tanα. In order to further illustrate how the cos-

Gaussian beam evolves in a SNN medium, we examine the intensity
distribution of a cos-Gaussian beam with initial power Pin = Pcr and
Pin = 1.6Pcr at different propagation distances, as shown in Figure 3.
Numerical calculations are carried out by using the analytical formula
Eq. (15). It is interesting to see that an obvious redistribution of beam
intensity occurs during propagation, though the RMS beam width
remains constant that predicted by the moments method. Despite the
difference in symmetries and initial powers, the cos-Gaussian beam
transforms periodically into a cosh-Gaussian beam during propagation
in the SNN medium. In addition, the transformation between the two
beams revives after certain propagation distance, as expected from
Eq. (15). The beam profiles are qualitatively the same during the
evolution of the beams with initial powers Pin = Pcr and Pin = 1.6Pcr

as shown in Figures 3(a) and (b). However, the intensity distributions
of the beam for the case Pin = 1.6Pcr are more focused to the center of
the beam compared with that for the case Pin = Pcr except the same
initial profiles as shown in Figures 3(a) and (b), i.e., the corresponding
RMS beam width of the beam with Pin = 1.6Pcr are always less than
that for the case Pin = Pcr except the positions z/zp = nπ (n is an
integer). It can also be confirmed for the evolution of RMS beam width
of the beam with Pin = 1.6Pcr and Pin = Pcr in Figures 2(a) and 2(d).
In the other hand, although the beam transforms periodically into
a cosh-Gaussian beam during propagation, the corresponding RMS
beam width of the beam remains constant when Pin = Pcr as shown in
Figure 3(a). It should also be noted that although the beam profiles
evolve periodically during propagation, the RMS beam widths (e.g.,
W , Wx, Wy) remain constant or oscillate periodically, as predicted by
the moments method.
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(a)

(b)

Figure 3. The intensity distribution of cos-Gaussian beams with
the beam parameters βx = 4/w0 and βy = 5/w0 at several different
propagation distances for initial powers: (a) Pin = Pcr and (b) Pin =
1.6Pcr.

4. CONCLUSION

In this work, we have studied the propagation of cos-Gaussian beams
into a SNN medium. Based on the moments method, the evolution
of a cos-Gaussian RMS beam width is analytically derived. The
critical powers require to maintain the RMS beam widths constant
for different βx and βy are obtained. The RMS beam width varies
periodically during propagation when the input power does not equal
to the critical power. The analytical solution of the cos-Gaussian
beam in a SNN medium is obtained by the technique of variable



412 Guan et al.

transformation. Interesting redistribution of intensity is found when
the beam propagates into a SNN medium, though the RMS beam width
remains a constant value. The cos-Gaussian beam transforms into a
cosh-Gaussian beam when the beam propagates into a SNN medium,
regardless the differences both the beam profile symmetries and initial
powers. Moreover, the transformation between the cos-Gaussian beam
and the cosh-Gaussian beam revives after certain propagation distance.
Our analytical results agree reasonable well with the prediction of the
moments method.
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