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Abstract—For the chirp rate and its change rate estimation of
cubic phase signal (CPS), conventional algorithms cannot achieve a
trade-off between low computational cost and high performance. In
this paper, by utilizing the numerical computational method (NCM),
effects of Doppler frequency shift are quantified, and the relationships
of the optimal signal length with the chirp rate and change rate of
chirp rate are obtained. Then a fast parameter estimation algorithm
(DMNUFFT), based on dechirp method (DM) and nonuniform fast
Fourier transform (NUFFT), is proposed. Compared with existing
algorithms, DMNUFFT can achieve high performance with relatively
low computational cost. The performance analyses and an application
to inverse synthetic aperture radar (ISAR) imaging are shown to
validate the effectiveness of DMNUFFT.

1. INTRODUCTION

The chirp rate and its change rate are two important physical
quantities of the cubic phase signal (CPS), and their estimations
have a wide range of applications in radar, sonar, communication and
acoustic [1–10]. The discrete-time noisy CPS can take the form below

sz (n) = s (n) + z (n) = A0e
[j2π(a1(nT )+

a2
2

(nT )2+
a3
6

(nT )3)] + z (n) (1)

for −(N − 1)/2 ≤n ≤ (N − 1)/2, where s(n) is the noise-free signal, A0

is the constant amplitude, N an odd integer representing the number
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of samples, T the sampling interval, z(n) the additive complex white
Gaussian noise with a variance of δ2, and a1, a2 and a3 denote the
centroid frequency, chirp rate and its change rate, respectively. The
input signal-to-noise ratio (SNR) can be obtained as

SNRinput = 10 log10

A2
0

δ2
(2)

In order to estimate these two parameters, many algorithms have
been proposed, and they generally fall into two categories: correlation
algorithms and non-correlation algorithms. The correlation algorithms
include the higher-order ambiguity function (HAF) [1], cubic phase
(CP) function [2, 3], higher-order ambiguity function-integrated cubic
phase function (HAF-ICPF) [4], product generalized cubic phase
function (PGCPF) [5], and parameters estimation algorithm based
on non-uniformly spaced signal sample method [6]. The maximum
likelihood (ML) method [7], and modified discrete chirp Fourier
transform (DCFT) algorithm for CPS [8] belong to non-correlation
algorithms. Correlation algorithms have lower computational cost
(O(N log2 N) or O(N2 log2 N), where N is the effective signal length),
but suffer from poor performance in the low SNRs. Compared
with correlation algorithms, non-correlation algorithms are just the
opposite, with higher performance, but higher computational load
(O(N3 log2 N)). It is worthwhile noting that all these algorithms above
cannot achieve a trade-off between computational cost and anti-noise
performance.

In this paper, a non-correlation algorithm, DMNUFFT, which
is based on quantifying effects of Doppler frequency shift with the
numerical computational method (NCM) [11, 12], is proposed. It
utilizes dechirp method (DM) [13] and nonuniform fast Fourier
transform (NUFFT) [14], and can be classed as an extension of
the optimal ML algorithm. Given the advantage of NUFFT in
computational cost, we also apply it to CPF and HAF-ICPF. With
analyses of performance and computational cost, DMNUFFT is proved
to be a more efficient algorithm, which can acquire high anti-noise
performance with low computational cost.

2. THE EFFECT OF DOPPLER FREQUENCY SHIFT DUE
TO CHIRP RATE AND CHANGE RATE OF CHIRP RATE

In this section, the NCM is utilized to quantify effects of Doppler
frequency shift due to chirp rate and its change rate, and the
relationships of the optimal signal length with the chirp rate and
change rate of chirp rate will be obtained. The result, after using
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the Fourier transform (FT) to s(n), can be represented as

S (f) =

N−1
2∑

n=−N−1
2

A0e
[j2π(a1(nT )+

a2
2

(nT )2+
a3
6

(nT )3)]e−j2πfnT (3)

If effects of the chirp rate and change rate of chirp rate are
compensated, the maximum of |S(f)| is

|S (f)|max = NA0 (4)

So the corresponding output SNR is

SNRout,max = 10 log10

NA2
0

δ2
(5)

The SNRout,max with respect to SNRpulse gives the SNR gain

GSNR,max = SNRout,max − SNRpulse = 10 log10 N (6)

From (3), we know that the actual result of energy accumulation is
affected by frequency Doppler shift due to the chirp rate and change
rate of chirp rate. In the following, we will quantify effects of these
two parameters.

2.1. Effect of the Chirp Rate Only

Assume the change rate of chirp rate is compensated. The noise-free
signals s(n) can be rewritten as

s1 (n) = A0e
[j2π(a1(nT )+

a2
2

(nT )2)] (7)

In (3), substitute s(n) with s1(n)

S1 (f) =

N−1
2∑

n=−N−1
2

A0e
[j2π((a1−f)(nT )+

a2
2

(nT )2)] (8)

The frequency of s1(n) can be described as

f =
d

[
a1 (nT ) + a2

2 (nT )2
]

d (nT )
= a1 + a2 (nT ) ,

f ∈
[
a1 − a2

(
N − 1

2
T

)
, a1 + a2

(
N − 1

2
T

)]
(9)

The frequency of s1(n) is around the midpoint fmid = a1 and
obeys the uniform distribution. So the energy distribution of S1(f) is
symmetric. According to [11, 12], we know that there is a threshold
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value N1 for N . When N < N1, the unique maximum of |S1(f)| is
attained at f = a1. Thus

max |S1 (f)| = |S1 (a1)| =

∣∣∣∣∣∣∣

N−1
2∑

n=−N−1
2

A0e
[j2π(a2

2
(nT )2)]

∣∣∣∣∣∣∣
(10)

Figure 1(a) shows the max |S1(f)| with different signal lengths
when a2 = 60 Hz/s and T = 1/600 s. In Figure 1(b), we select several
representative signal lengths from Figure 1(a) to plot the |S1(f)|.

In Figure 1, when a2 = 60Hz/s and T = 1/600 s, the threshold
value N1 is 169 and the optimal value N1,opt is 133. For a given
chirp rate a2, the maximum output SNR can be obtained when the
signal length is equal to its corresponding optimal value N1,opt, which
benefits the target detection and parameter estimation. Thus, with (6)
and (10), the output SNR, optimal SNR gain and loss of SNR gain with
respect to optimal signal length can be represented as

SNRout,1,opt=10 log10

A2
0

N1,optδ2

∣∣∣∣∣∣∣

N1,opt−1

2∑

n=−N1,opt−1

2

A0e
[j2π(a2

2
(nT )2)]

∣∣∣∣∣∣∣

2

(11)

(a) (b)

Figure 1. Simulation results when a2 = 60 Hz/s, T = 1/600 s.
(a) max |S1(f)| with different signal lengths. (b) |S1(f)| with the signal
lengths marked in (a).
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GSNR,1,opt=10 log10

1
N1,opt

∣∣∣∣∣∣∣

N1,opt−1

2∑

n=−N1,opt−1

2

A0e
[j2π(a2

2
(nT )2)]

∣∣∣∣∣∣∣

2

(12)

∆GSNR,1,opt=GSNR,max −GSNR,1,opt

=10 log10 N1,opt−10 log10
1

N1,opt

∣∣∣∣∣∣∣

N1,opt−1
2∑

n=−N1,opt−1
2

A0e
[j2π( a2

2 (nT )2)]

∣∣∣∣∣∣∣

2

(13)

However, it is difficult to obtain the analytical relationship of
the optimal value with the chirp rate. Therefore, NCM is utilized
to obtain the approximation relationships. For a given a2, we
calculate N1,opt and GSNR,1,opt by (10) and (12). We plot points
(10 log10 N1,opt, 10 log10 a2) in Figure 2(a) and points (GSNR,1,opt,
10 log10 a2) in Figure 2(b). With the linear least squares (LLS) fit [12],
the relationships of N1,opt and GSNR,1,opt with a2 can be obtained as

10 log10 N1,opt = −10 log10 a2

2
+ 30.1 (14)

GSNR,1,opt = −10 log10 a2

2
+ 28 (15)

In Figure 2(b), the results of matched filter are also plotted with
the same signal lengths and the loss of SNR gain is

∆GSNR,1,opt = 2.1 (dB) (16)

(a) (b)

Figure 2. The relationships of the optimal value and SNR gain with
the chirp rate when T = 1/600 s. (a) The relationships of the optimal
signal length with the chirp rate. (b) The relationships of the optimal
SNR gain with the chirp rate.
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For the results above, if the sampling interval is altered but the
optimal value is the same, we still can obtain the corresponding chirp
rate based on the result of T = 1/600 s. For example, if the sampling
interval of another CPS is Tano, its corresponding chirp rate a2,ano

should be a2T/Tano. Based on the analyses of Subsections 2.2 and 2.3
below, we also find that same relationships are also tenable.

2.2. Effect of the Change Rate of Chirp Rate Only

Assume the chirp rate is compensated. The noise-free signal s(n) can
be rewritten as

s2 (n) = A0e
[j2π(a1(nT )+

a3
6

(nT )3)] (17)

In (3), substitute s(n) with s2(n)

S2 (f) =

N−1
2∑

n=−N−1
2

A0e
[j2π((a1−f)(nT )+

a3
6

(nT )3)] (18)

The frequency of s2(n) can be described as

f =
d

[
a1 (nT ) + a3

6 (nT )3
]

d (nT )
= a1 +

a3

2
(nT )2 ,

f ∈
[
a1, a1 +

a3

2

(
N − 1

2
T

)2
]

(19)

The frequency of s2(n) does not obey the uniform distribution
and the energy of S2(f) spreads only in one direction due to the mono-
direction of the Doppler frequency shift. This is similar to the effect
of acceleration in the radar signal processing. So according to the
principle of radar signal processing [15, 16], we know that there is a
threshold value N2 for N . When N < N2, the unique maximum of
|S2(f)| is attained at f = a1. Thus, when N < N2, we obtain

max |S2 (f)| = |S2 (a1)| =
N−1

2∑

n=−N−1
2

A0e
[j2π(a3

6
(nT )3)] (20)

Figure 3(a) shows the max |S2(f)| with different signal lengths
when a3 = 120 Hz/s and T = 1/600 s. In Figure 3(b), we select several
representative signal lengths from Figure 3(a) to plot the |S2(f)|.

In Figure 3, the threshold value N2 and optimal value N2,opt are
337 and 279, respectively. Due to the non-uniform distribution of
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(a) (b)

Figure 3. Simulation results when a3 = 120Hz/s, T = 1/600 s.
(a) max |S2(f)| with different signal lengths. (b) |S2(f)| with the signal
lengths marked in (a).

frequency and the mono-direction of the Doppler frequency shift, a
better result appears when N = 407. However this result appears
when f 6= a1, which is not expected and not suitable for DM [13].
With (6) and (20), the output SNR, SNR gain and loss of SNR gain
with respect to optimal signal length can be represented as

SNRout,2,opt=10 log10

A2
0

N2,optδ2

∣∣∣∣∣∣∣

N2,opt−1

2∑

n=−N2,opt−1

2

e[j2π(a3
6

(nT )3)]

∣∣∣∣∣∣∣

2

(21)

GSNR,2,opt=10 log10

1
N2,opt

∣∣∣∣∣∣∣

N2,opt−1

2∑

n=−N2,opt−1

2

e[j2π(a3
6

(nT )3)]

∣∣∣∣∣∣∣

2

(22)

∆GSNR,2,opt=GSNR,max −GSNR,2,opt

=10log10N2,opt−10 log10

1

N2,opt

∣∣∣∣∣∣∣

N2,opt−1
2∑

n=−N2,opt−1
2

e[j2π( a3
6 (nT )3)]

∣∣∣∣∣∣∣

2

(23)

NCM is also utilized to obtain approximation relationships of the
optimum signal length with a3. For a given a3, we can calculate the
corresponding N2,opt and GSNR,2,opt. We plot points (10 log10 N2,opt,
10 log10 a3) in Figure 4(a) and points (GSNR,2,opt, 10 log10 a3) in
Figure 4(b). With the LLS fit, the relationships of N1,opt and GSNR,1,opt
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(a) (b)

Figure 4. The relationships of the optimal value and SNR gain with
the change rate of chirp rate when T = 1/600 s. (a) The relationships
of the optimal signal length with the change rate of chirp rate. (b) The
relationships of the optimal SNR gain with the change rate of chirp
rate.

with a2 can be obtained as

10 log10 N2,opt = −10 log10 a3

3
+ 31.4 (24)

GSNR,2,opt = −10 log10 a3

3
+ 30 (25)

In Figure 4(b), the results of the matched filter are plotted. We
can see that when the signal length N equals N2,opt, the loss of SNR
gain is

∆GSNR,2 = 1.4 (dB) (26)

2.3. Effects of Both the Chirp Rate and Change Rate of
Chirp Rate

Assume both the parameters are not compensated. Rewrite (3) as

S3 (f) =

N−1
2∑

n=−N−1
2

A0e
[j2π((a1−f)(nT )+

a2
2

(nT )2+
a3
6

(nT )3)] (27)

The frequency of s(n) can be described as

f =
d

[
a1 (nT )+ a2

2 (nT )2+ a3
6 (nT )3

]

d (nT )
=a1+a2 (nT )+

a3

2
(nT )2 (28)
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The frequency in (28) inherits the characteristics of (9) and (19)
and the optimal value Nopt for N also exist. When N = Nopt, the
corresponding maximum of |S3(f)| is

max |S3 (f)| =
Nopt−1

2∑

n=−Nopt−1

2

A0e
[j2π(a2

2
(nT )2+

a3
6

(nT )3)] (29)

Then the NCM is utilized to obtain the relationships of the
optimum signal length Nopt with the given chirp rate and change rate
of chirp rate. The relationships are shown in Figure 5.

Through the results of NCM in Figure 5, we find that four
ridges appear. The optimal signal length will be increased when
the parameters get close to the ridges, parallelly or vertically. The
appearance of four ridges promotes us to consider how to set the
search step lengths of chirp rate and its change rate, if the DM is
used. For example, we set the step length 6 Hz/s for a2 and 40 Hz/s2

for a3, respectively, when the signal length is 687. After DM, the
rest parameters after compensation are assumed to be 0 Hz/s for a2

and 40 Hz/s2 for a3, respectively. According to the analyses in the
Subsection 2.1, the unique maximum of |S3(f)| will not be attained
when f = a1. Based on the results of Figure 5, we know that the
minimum optimal value of a search range happens on the coordinate.
Considering this, the search step length should be set according to

(a) (b)

Figure 5. The relationships of the optimum signal length with
the chirp rate and change rate of chirp rate when T = 1/600 s.
(a) Stereogram of the relationships. (b) Contour of the relationships.
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the signal length N . So the corresponding search step length can be
obtained based on (14) and (24).

a2,N = 10(6.02−2 log10 N), a3,N = 10(9.42−3 log10 N) (30)

With (30), the output SNR, SNR gain and loss of SNR gain with
respect to signal length N can be represented as

SNRout=10 log10

A2
0

Nδ2

∣∣∣∣∣∣∣

N−1
2∑

n=−N−1
2

e

[
j2π

(
a2,N

2
(nT )2+

a3,N
6

(nT )3
)]

∣∣∣∣∣∣∣

2

(31)

GSNR=10 log10

1
N

∣∣∣∣∣∣∣

N−1
2∑

n=−N−1
2

e

[
j2π

(
a2,N

2
(nT )2+

a3,N
6

(nT )3
)]

∣∣∣∣∣∣∣

2

(32)

∆GSNR=GSNR,max −GSNR

=10log10N−10 log10

1
N

∣∣∣∣∣∣∣

N−1
2∑

n=−N−1
2

e

[
j2π

(
a2,N

2
(nT )2+

a3,N
6

(nT )3
)]
∣∣∣∣∣∣∣

2

(33)

Points (GSNR, 10 log10 N) are plotted in Figure 6 and also formed
into a straight line. Using the LLS method, we get

GSNR = 10 log10 N − 2.7 (34)

Figure 6. The relationships of the signal length with SNR gain when
T = 1/600 s.
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In Figure 6, the results of the matched filter are also plotted. The
corresponding SNR gain loss is

∆GSNR = 2.7 (dB) (35)

3. DMNUFFT ALGORITHM

In Section 2, the relationships of the optimal signal length with the
chirp rate and its change rate are obtained. For any given signals,
based on the obtained relationships, we can determine the search step
lengths for chirp rate and change rate of chirp rate in the application
of DM. So the DMNUFFT algorithm is proposed with the DM and
NUFFT. The process of the DMNUFFT algorithm can be summarized
as follows.

Step 1. According to the signal length N , sampling interval T
and (30), the search step lengths for the chirp rate and its change rate
can be calculated as a2,step and a3,step respectively.

a2,step =
1

300T
10(6−2 log10 N), a3,step =

1
300T

10(9.42−3 log10 N) (36)

Step 2. Initiate the chirp rate and its change rate as a2,init and
a3,init respectively. Construct a dechirp function

D (γ, k) = e

[
−j2π

(
a2,init+γa2,step

2
(nT )2+

a3,init+ka3,step
6

(nT )3
)]

(37)
for −K ≤ k ≤ K, −R ≤ γ ≤ R, 2K and 2R are the number of chirp
rate and its change rate search needed respectively.

Step 3. Multiply (37) with sz(n)
sz,com (n, γ, k)

= A0e

[
j2π

(
a1(nT )+

(
a2
2 −

a2,init+γa2,step
2

)
(nT )2+

(
a3
6 −

a3,init+ka3,step
6

)
(nT )3

)]

+z1(n) (38)
where z1(n) is the noise after multiplied with (37).

Step 4. Create a cost function to estimate the parameters

(a1,fine, γopt, kopt)=arg max
γi

{
arg max

kh

|FFT [sz,com (n, γi, kh)]|
}

(39)

where a1,fine is the accurate estimation of centroid frequency. Thus, we
acquire the coarse estimation of a2,coar and a3,coar

a2,coar = a2,init + γopta2,step, a3,coar = a3,init + kopta3,step (40)
Step 5. Based on the estimated a1,fine, a2,coar and fine step length

a2,step,fine to construct another dechirp function

Dcoar (g) = e

[
−j2π

(
a1,fine(nT )+

a2,coar+ga2,step,fine
2

(nT )2
)]

(41)
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multiply (41) with sz (n)

sz,com,1 (n, g)

≈A0e

[
j2π

((
a2
2
−a2,coar+ga2,step,fine

2

)
(nT )2+

a3
6

(nT )3
)]

+ z3 (n) (42)

for −G ≤ g ≤ G, where 2G is the number of chirp rate search needed,
z3(n) is the noise after multiplied with (41).

Step 6. Considering the computational cost [14] and result of
energy accumulation [17], we perform NUFFT corresponding to a3.
Then combined with (42), the cost function can be constructed as
follows

(gopt, a3,fine) = arg max
gj

∣∣∣NUFFT(nT )3 [sz,com,1 (n, gj)]
∣∣∣ (43)

where NUFFT(nT )3(·) denotes NUFFT operator with respect to (nT )3.
So the accurate estimation of the chirp rate can be represented as

a2,fine = a2,coar + gopta2,step,fine (44)

Above is the DMNUFFT algorithm based on the analyses in Sec-
tion 2. The computational cost is reduced a lot compared with ML
method and MDCFT due to the obtained search step length and
NUFFT. We use the number of complex multiplication to analyze the
computational complexity. According to the analyses above, the com-
putational cost of the DMNUFFT is about O[(4KR + 2G)N log2 N ].
For example, when the signal length N is 401 and sampling fre-
quency fs is 600 Hz, the number of complex multiplication is about
O(N2 log N). In Section 2, compared with matched filter, the biggest
SNR gain loss of DMNUFFT is about 2.7 dB. Thus, DMNUFFT is
more suitable for the real world application due to low computational
cost and high performance.

4. ANALYSES OF MEAN SQUARE ERROR AND
INPUT-OUTPUT SNR

We consider one CPS denoted by Au. The sampling frequency Fs

is 600 Hz, and the effective signal length N is equal to 401. Signal
parameters are set as follows: A0 = 1, a1 = 240, a2 = 150, a3 = 78 for
Au.

Based on (36) and sampling frequency, the search range of
DM can be set as [−405,−390, . . . ,−15, 0, 15, . . . , 390, 405]Hz/s for
a2, [−1200,−1120, . . . ,−80, 0, 80, . . . , 1120, 1200]Hz/s2 for a3. For the
nonuniformly spaced signal, NUFFT is better in computation cost,
resolution and performance than dechirp method and discrete Fourier
transform (DFT), so we apply NUFFT to CPF and HAF-ICPF. Then
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CPF based on NUFFT and HAF-ICPF based on NUFFT are chosen
to compare performance with NUFFT. We utilize mean square error
(MSE) and input-output SNR to evaluate the DMNUFFT algorithm.
The input SNRs tested in Figure 7 are SNRin = [−15 : 1 : 0] and for
each input SNR, 500 trials are performed.

DMNUFFT belongs to non-correlation algorithm, while CPF
based on NUFFT and HAF-ICPF based on NUFFT belong to
correlation algorithm. Thus, in Figure 7, the threshold SNR is −11 dB
for DMNUFFT, and −3 dB for CPF based on NUFFT and HAF-ICPF
based on NUFFT. Even in high SNRs, DMNUFFT obtains better
results than the other two algorithms due to the reduced noise influence

(b)

(c) (d)

(a)

Figure 7. Performance comparison with Au1. (a) MSE of the chirp
rate estimation. (b) MSE of the change rate of chirp rate estimation.
(c) Performance of input-output SNR. (d) Zoomed-in plot of the area
in (c).
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and no error propagation. The result of HAF-ICPF based on NUFFT
is no better than that of the CPF based on NUFFT, but the HAF-
ICPF based on NUFFT is more suitable for multi-components CPS.

5. ISAR IMAGING WITH DMNUFFT

ISAR imaging is one of the important high-resolution radar
applications for moving targets. The radial acceleration, acceleration
rate, angular acceleration, and angular acceleration rate of targets will
lead the echo signal to be a CPS along the azimuth bin, which degrades
the imaging quality. After the migration compensation, initial distance
compensation and range compression [18–22], the complex range profile
can be represented as

S (t, tm)

= B sin c

[
B

(
t− 2xp

c

)]
ej2π(a1tm+

a2
2

t2m+
a3
6

t3m)rect
(

tm
Tob

)
+z (t, tm) (45)

where a1 = (2fc/c)(vr + ypw1), a2 = (2fc/c)(ar + ypw2), a3 =
(2fc/c)(γr + ypw3), t is the fast time, tm is the slow time, (xp, yp)
is the initial coordinate, fc represents the carrier frequency, B is
the transmitted signal bandwidth, c is the speed of light, Tob is the
observation time, vr, ar, and γr are the radial velocity (without velocity
ambiguity), acceleration, and acceleration rate, w1, w2, and w3 are the
initial angular velocity, angular acceleration, and angular acceleration
rate, z(t, tm) is additive complex white Gaussian noise with a variance
of δ2.

In order to improve the image quality, we should estimate a2

and a3, and utilize them to compensate the Doppler frequency shift.
Below we utilize the DMNUFFT to obtain the ISAR image. The
target is a simulated aircraft shown in Figure 8(a). The parameters

 
(a) (b) (c)

Figure 8. ISAR Imag for maneuvering target. (a) Target model.
(b) ISAR image based on the RD algorithm. (c) ISAR image based on
the DMNUFFT algorithm.
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of radar and moving targets are listed in Table 1. Figure 8(b) is the
results of conventional range-Doppler (RD) method and the results of
DMNUFFT is shown in Figure 8(c).

Table 1. Radar parameters and moving parameters of target.

Carrier frequency fc 5GHz Radial velocity v 162m/s

Bandwidth B 150MHz Acceleration ar 6m/s2

Sample frequency fs 150MHz Acceleration rate γr 3m/s3

Pulse number 401 Angular velocity w1 0.09 rad/s

SNR after pulse

compression
−6 dB Angular acceleration w2 0.03 rad/s2

Pulse Repetition

frequency
1000Hz Angular acceleration rate w3 0.015 rad/s3

In Figure 8(b), the energy is spread in azimuth cell due to the chirp
rate and its change rate, so the imaging quality is degraded. With the
DMNUFFT, the chirp rate and its change rate can be estimated, and
then Doppler frequency shift can be compensated. Figure 8(c) shows
the validity of the DMNUFFT.

Below we use the real radar data of a ship to demonstrate
the effectiveness of DMNUFFT. For the real radar data, the carrier
frequency is 15.4GHz, Bandwidth is 80 MHz, Pulse number is 211,
and Pulse Repetition frequency is 500Hz. Figure 9(a) is the processing
result of RD algorithm and the processing results of DMNUFFT are

(a) (b)

Figure 9. Processing results of the real radar data. (a) ISAR image
based on the RD algorithm. (b) ISAR image based on DMNUFFT.
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shown in Figure 9(b).
Compared with the results of RD algorithm in Figure 9(a), the

quality of ISAR image in Figure 9(b) is improved a lot, and it’s easy
to discern the mast, bow, stern, etc. in ship. This is because, with the
proposed algorithm, Doppler frequency shift due to the chirp rate and
its change rate is compensated in the lower SNR.

6. CONCLUSION

Based on the results of quantifying effects of Doppler frequency
shift, DMNUFFT is proposed. This algorithm can be classed as an
extension of the optimal ML algorithm due to three-dimensional (3D)
maximization, while performance analyses and ISAR imaging results
prove that DMNUFFT achieves a trade-off between computational cost
and anti-noise performance, and is more suitable for real world.
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