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Abstract—At the ultra-high frequencies (UHF) common to portable
radios, the mine tunnel acts as a dielectric waveguide, directing and
absorbing energy as a radio signal propagates. Understanding radio
propagation behavior in a dielectric waveguide is critical for designing
reliable, optimized communication systems in an underground mine.
One of the major parameters used to predict the power attenuation
in lossy waveguides is the attenuation constant. In this paper, we
theoretically and experimentally investigate the attenuation constants
for a rectangular waveguide with dielectric walls. We provide a
new derivation of the attenuation constant based on the classic
Fresnel reflection coefficients. The new derivation takes advantage
of ray representation of plane waves and provides more insight into
understanding radio attenuation in tunnels. We also investigate the
impact of different parameters on the attenuation constant, including
the tunnel transverse dimensions, permittivity, conductivity, frequency,
and polarization, with an aim to find their theoretical optimal values
that result in the minimum power loss. Additionally, measurements of
the attenuation constants of the dominant mode at different frequencies
(455, 915, 2450, and 5800MHz) for a straight concrete tunnel are
presented and compared to theoretical predictions. It is shown that
the analytical results match the measured results very well at all four
frequencies.
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1. INTRODUCTION

Radio propagation in tunnel-like environments, such as street
canyons [1], indoor hallways [2, 3], road/subway tunnels [4–6], and
underground coal mines [7, 8] has been widely investigated. Interest
in tunnel communications can be traced back to the 1940s [9],
with a dramatic spike in the 1970s [10, 11] driven by the need
for communication among workers in underground mine tunnels.
This interest was recently reinforced by the passage of the Mine
Improvement and New Emergency Response Act (MINER Act) [12],
legislation enacted by the U.S. Congress as a reaction to a series of mine
tragedies occurring in 2006. The MINER Act requires that wireless
communication systems be installed in all U.S. underground coal
mines. The performance of these wireless systems is highly dependent
on the radio propagation behavior in the confined environment of
tunnels. Extensive measurements were taken by researchers at the
National Institute for Occupational Safety and Health (NIOSH) to
investigate the RF propagation mechanism [13, 14] in tunnels.

A tunnel is often modeled as a hollow waveguide surrounded by
dielectric media. Rectangular and circular tunnels are perhaps the
two most common tunnel types and have been well-investigated. It is
shown in [15] that circular waveguides allow for a rigorous derivation
of the analytical expression of the propagating modes. Determining
the exact analytical solution of a rectangular waveguide, however, is
not possible due to the difficulty in matching boundary conditions.
Instead, approximate solutions were investigated with an analytical
result obtained in [16] where boundary conditions were only matched
along the four sides of the hollow regions. For the derivation in
both [15] and [16], the wavelengths of interest were assumed to be
small compared to the tunnel dimensions. In many practical tunnels,
the ceiling is often arch-shaped while the floor is flat. Since this hybrid
shape cannot be easily described by a canonical coordinate system, no
analytical formulation of the field distribution is available. As a result,
an arched tunnel is often approximated by either a circular tunnel [17]
or a rectangular tunnel [13]. Efforts have been made to tackle the
arched tunnel directly without an approximation, for example by a ray-
density normalization technique proposed in [18], but the computation
complexity is relatively high and its accuracy remains to be validated
by more measurements.

Compared to a waveguide with perfect electric conductor (PEC)
walls which reflect all waves back to the waveguide, it is found that
modes in waveguides with dielectric walls are all “lossy modes”;
any wave that impinges on a tunnel wall is partially transmitted
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into the surrounding dielectric media and partially reflected back
to the tunnel. The energy loss of each mode in the waveguide is
characterized by the attenuation constant associated with that mode.
The analytical expression for the attenuation constant of a hollow
dielectric rectangular tunnel was first derived in [10]. The same result
was also later obtained in [16] and [19], although in a slightly different
expression. So far, all the derivations of the attenuation constant
have been based on wave theories involved in directly solving Maxwell
equations.

In this paper, we revisit the attenuation constant of a dielectric
rectangular tunnel and show that it can be derived based on the
well-known Fresnel reflection coefficients. The new derivation based
on Fresnel reflection coefficients is more intuitive and provides more
insight as compared to published results which were based on directly
solving Maxwell equations. The derivation presented in this paper
clearly shows that the path loss associated with tunnel propagation is
solely caused by the energy loss when rays are reflected from the four
dielectric walls of the tunnel. As a result, the propagation loss is highly
dependent on the reflection coefficient when rays are reflected from
dielectric walls. The reflection coefficient is known to be dependent on
the electrical properties of the walls, polarization and frequency, and
tunnel dimensions. We analyze the impact of these parameters on the
attenuation constant. Our analysis differs from other published work
(e.g., [20]) in the sense that we aim to find the theoretical optimal value
of each parameter for minimum power losses, and thus gain insight into
the factors controlling RF signal path loss.

In addition to the analytical form derived, the attenuation
constant of the dominant mode can also be evaluated based on
simulated or measured power distributions along the tunnel, provided
that the separation distance is sufficiently long such that all the higher
modes are significantly attenuated as compared to the dominant mode
which has the lowest attenuation constant [13]. For a sufficiently long
distance, the power decays linearly with the distance and the slope
of the decay is the attenuation constant of the dominant mode. In
this paper, we compare the attenuation constant computed based on
three different methods: the modal method, ray tracing method, and
measurement. We show that all three methods compare well with each
other.

Geometrical ray tracing method is employed to obtain the
simulated power distributions in tunnels. The ray tracing method
was originally proposed by Mahmoud and Wait in 1974 for modeling
electromagnetic wave propagation in rectangular mine tunnels [11].
Since then the method has been widely used by researchers for different
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purposes. For example, it was used for predicting delay spread in [21]
and evaluating tunnel field distribution in [22]. Recently, Sun and
Akyildiz adopted it for modeling the propagation in underground mines
and road tunnels [23]. In this paper, we will use the ray tracing method
to obtain the simulated power distribution in the target rectangular
tunnel, from which the average attenuation constant can be estimated.

Measurements were taken to determine the propagation attenua-
tion constant in a straight concrete tunnel. Power distributions along
the center of the tunnel were measured at four different frequencies
(455, 915, 2450, and 5800MHz) that are widely used in current com-
mercial communication systems. At each frequency, both the horizon-
tal and vertical polarization cases were measured.

2. ATTENUATION CONSTANT FOR AN EMPTY
DIELECTRIC RECTANGULAR WAVEGUIDE

Consider a straight hollow waveguide with rectangular cross-sectional
dimensions (2b and 2a as depicted in Fig. 1).

2b

2a

z

y x

dz

y

Figure 1. Geometry of the rectangular dielectric waveguide.

Figure 2. Cross section of the waveguide with four dielectric walls.
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Let ε0 denote the permittivity of air, and εa,b the complex
permittivity of the vertical and horizontal walls surrounding the
waveguide, respectively. The coordinate system is oriented in the
center of the waveguide cross section, with x horizontal, y vertical,
and z down the waveguide. The cross section of the waveguide is
illustrated in Fig. 2. The permeability of all media is assumed to be
the same and equal to that of the free space µ0.

2.1. Electric Field Polarized Predominantly in the
Horizontal Direction (x Direction)

For a horizontally polarized signal source, the main component of the
E field at an arbitrary observation point R(x, y, z) within the tunnel
can be expressed as [16]

Ex =
{

sin (kxx + ϕx) + sin
[

jε̄a

ka
√

ε̄a − 1
kxx

]
cos (kxx + ϕx)

}

×
{
cos(kyy+ϕy)−sin

[
j

kb
√

ε̄b − 1
kyy

]
sin(kyy+ϕy)

}
e−jk̃zz (1)

where kx = mπ
2a , ky = nπ

2b , and k̃z = βm,n − jαm,n are the wave
vector components along the x, y, and z axis, respectively. Here,
βm,n is the phase constant and αm,n is the attenuation constant which
characterizes the signal attenuation along the tunnel axial distance
(z axis). Note that αm,n is sometimes also referred to as the modal
attenuation factor (MAF) [17, 24]. Additionally, ε̄a,b are relative
dielectric constants defined by ε̄a,b = εa,b/ε0, and k = 2π/λ is the
wave number in free space, with λ denoting the wavelength. It should
be noted that the time-dependence factor e−jωt has been dropped in
(1) for simplicity. The two axillary angles ϕx,y are defined by

ϕx =
{

0 m is even
π/2 m is odd

ϕy =
{

0 n is odd
π/2 n is even

(2)

For electrical small tunnels where ka À 1 and kb À 1, (1) can be
reduced to

Ex ≈ sin
(
k̃xx + ϕx

)
cos

(
k̃yy + ϕy

)
e−jk̃zz (3)

where the complex wave vector components k̃x,y are defined as

k̃x = kx +
jε̄a

ka
√

ε̄a − 1
kx

k̃y = ky +
j

kb
√

ε̄b − 1
ky

(4)
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It is found that the wave vector components k̃x,y for a dielectric
waveguide are the same as the wave vector components kx,y for a metal
waveguide, except for a small imaginary part. It is this imaginary part
that contributes to the power loss in a dielectric waveguide. It is also
observed that the expressions of the imaginary part, ε̄a/

√
ε̄a − 1 and

1/
√

ε̄b − 1, are similar to the forms of the Fresnel reflection coefficients
corresponding to the horizontal and vertical polarizations, with the
electrical field being normal to one boundary and parallel to the other.
It is this observation that motivates us to re-derive the attenuation
constant based on Fresnel reflection coefficients.

We ignore the small imaginary part in k̃x,y for now and later we
will introduce a reflection coefficient to compensate for the power loss
of the rays as they are reflected from a dielectric wall. As a result, (3)
can be simplified as

Ex ≈ sin(kxx + ϕx) cos(kyy + ϕy)e−jkzz (5)

For the dominant EH1,1 mode, Ex can be expressed as

Ex = cos(kxx) cos(kyy)e−jkzz (6)

Note that (6) is consistent with Eq. (1) in [10], except that a constant
E0 is included in [10] to characterize the transmitted power. Unless
stated else, the electric field in this paper represents a normalized
field relative to the transmitted field. Additionally, the location of
the transmitter is characterized by a coupling factor in [25] where the
insertion loss of a half-wave dipole antenna is considered. A more
general form of Eq. (5) including both the locations of the transmitter
and receiver can be found in [23, 26, 27].

It is worth noting that, unlike a metal waveguide, a rectangular
waveguide with dielectric walls supports neither TM nor TE modes.
In other words, a longitudinal component Ez, in additional to the
transverse components, is always required in order to satisfy the
boundary conditions. The longitudinal component Ez, however, is
usually small compared to Ex. Ez can be expressed as [16]

Ez = −j

(
mλ

4a

)
cos (kxx + ϕx) cos (kyy + ϕy) e−jkzz (7)

As a special case when m = 1 and n = 1, Ez of the dominant EH1,1

mode can be calculated as

Ez = j

(
λ

4a

)
sin(kxx) cos(kyy)e−jkzz

≈ j

(
kx

kz

)
sin(kxx) cos(kyy)e−jkzz (8)



Progress In Electromagnetics Research, Vol. 142, 2013 81

Note that (8) is consistent with Eq. (A3) in [10].
Recall that cosine and sine functions can be expressed as weighted

sums of the exponential function according to Euler-formula,

cos kxx =
ejkxx + e−jkxx

2

sin kxx =
ejkxx − e−jkxx

2j

(9)

Applying the identity of (9) into (5) leads to

Ex =
j

4
e−j|ϕx−ϕy |

[
ej(kxx+kyy−kzz)+(−1)n+1ej(kxx−kyy−kzz)

+ (−1)m+1ej(−kxx+kyy−kzz)+(−1)m−nej(−kxx−kyy−kzz)

]
(10)

Note that Ex in (10) can be viewed as a mix of the four plane waves
(rays) with each described by an exponential function. Two examples
of the rays, e−j(kzz−kxx−kyy) and e−j(kzz−kxx+kyy), are illustrated in
Fig. 1 as red dashed and solid lines, respectively. Each ray impinges
on the roof and floor of the tunnel with the same angle:

θy = arcsin(ky/k) (11)

The four rays also undergo reflections from the two side walls with an
incident angle of

θx = arcsin(kx/k) (12)

Since both kx and ky are small compared to k, we can approximate θy

as

θy ≈ ky

k
=

nλ

4b
(13)

Similarly, the incidence angle of the four rays on the two side walls can
be approximated as

θx ≈ mλ

4a
(14)

Note that the same assumption of grazing incidence has been made
in both (13) and (14). The grazing incidence assumption is valid if
the wavelength of interest is small compared to the tunnel transverse
dimensions.

Between two successive reflections on the roof/floor, the ray travels
an axial distance of dz which can be calculated as

dz =
4b cos(θx)
tan(θy)

≈ 16b2

nλ
(15)
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The number of reflections on roof/floor that the four rays undergo
before they reach the receivers can be computed by

Ny =
z

dz
≈ nλz

16b2
(16)

Similarly, the number of reflections on the two side walls is

Nx ≈ mλz

16a2
(17)

Note that within the distance z, the ray undergoes Ny reflections on
both the side walls and thus 2Ny reflections totally in the vertical
dimension. Similarly, the number of reflections in the horizontal
dimension is 2Nx. The attenuation of the E field caused by all the
reflections can be expressed as

EL =
∣∣∣ρ2Nx

// · ρ2Ny

⊥
∣∣∣ (18)

where | · | denotes the magnitude of the argument, and the two
reflection coefficients corresponding to the perpendicular and parallel
polarizations under the grazing incidence can be expressed as [11]

ρ⊥, // =
cos θ⊥, // −∆⊥, //

cos θ⊥, // + ∆⊥, //
(19)

where

∆// =

√
ε̄a − sin2 θ//

ε̄a

∆⊥ =
√

ε̄b − sin2 θ⊥

(20)

Here, ∆⊥, // is a quantity related with the effective surface impedance,
and θ⊥, // is the incidence angle corresponding to electric field being in
the plane of incidence (parallel) and normal to the plane of incidence
(perpendicular) polarizations, respectively. The angle θ⊥, // can be
expressed as:

θ⊥, // =
π

2
− θy,x (21)

Note that the reflection coefficients under the grazing incidence
condition in (19) are in a slightly different form than the general Fresnel
reflection coefficients given in text books such as [28]. Comparing
(19) with the reflection coefficients in [28] shows that the two are
identical for the horizontal polarization case but have a 180-degree
phase difference for the vertical polarization case. This difference is
due to the different definitions of the positive direction for the reflected
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waves. For a vertically polarized wave, the definition of the positive
electric field of the reflected wave is reversed compared with that of the
incident wave (under grazing incidences). Therefore, a negative sign is
manually introduced in the equation to compensate for the inversion
of the positive direction.

For grazing incidence (cos θ⊥, // ¿ ∆⊥, //), we can make the
following approximations:

ρ⊥, // = −
(

1− 2 cos θ⊥, //

cos θ⊥, // + ∆⊥, //

)

≈ − exp
( −2 cos θ⊥, //

cos θ⊥, // + ∆⊥, //

)

≈ − exp
(−2 cos θ⊥, //

∆⊥, //

)
(22)

∆// ≈
√

ε̄a − 1
ε̄a

(23)

∆⊥ ≈ √
ε̄b − 1 (24)

Substituting (16), (17), (19), (23), and (24) into (18) leads to

EL ≈
∣∣∣∣exp

{
−4

(
sin θxNx

∆//
+

sin θyNy

∆⊥

)}∣∣∣∣

≈
∣∣∣∣∣exp

{
−

[
1
a

(
mλ

4a

)2 1
∆//

+
1
b

(
nλ

4b

)2 1
∆⊥

]
z

}∣∣∣∣∣

= exp

{
−

[
1
a

(
mλ

4a

)2

Re
{

1
∆//

}
+

1
b

(
nλ

4b

)2

Re
{

1
∆⊥

}]
z

}

= exp

{
−z

a

(
mλ

4a

)2

Re
{

ε̄a√
ε̄a − 1

}
− z

b

(
nλ

4b

)2

Re
{

1√
ε̄b − 1

}}

= exp
{
−αH

m,n
z
}

(25)

where the attenuation constant αH
m,n

is written as

αH
m,n

=
1
a

(
mλ

4a

)2

Re
{

ε̄a√
ε̄a − 1

}
+

1
b

(
nλ

4b

)2

Re
{

1√
ε̄b − 1

}
(26)

Note that (26) is exactly the same as the attenuation constant derived
in [16].

So far we have only derived the attenuation constant for the x
component of the electrical field. To obtain the power attenuation
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rate, the attenuation constant of the composite electrical field, E =√
E2

x + E2
y + E2

z , must be calculated. Based on (6) and (7), it is
straightforward that Ez and Ex share the same exponent. To satisfy
the Maxwell equations, the electrical field along the Y axis (Ey) is
zero. Therefore, the attenuation constant of the composite electrical
field can be characterized by the same attenuation constant αm,n as
that of the Ex. For the dominant EH1,1 mode, the power attenuation
constant α̂1,1 in dB/m can be written as

α̂H
m,n = −20 log10 (EL)

z

= 20 log10 eαH
m,n

= 4.343λ2

[
m2

(2a)3
Re

{
ε̄a√

ε̄a − 1

}
+

n2

(2b)3
Re

{
1√

ε̄b − 1

}]
(27)

Eq. (27) is identical with the power attenuation constant derived
in [10].

2.2. Electric Field Polarized Predominantly in the Vertical
Direction (y Direction)

For a vertically polarized mode EHm,n, the attenuation constant of the
electrical field can be readily obtained by exchanging a and b, along
with m and n in the right side of (26):

αV
m,n

=
1
b

(
nλ

4b

)2

Re
{

ε̄b√
ε̄b − 1

}
+

1
a

(
mλ

4a

)2

Re
{

1√
ε̄a − 1

}
(28)

Similarly, the power attenuation constant in dB/m for the vertical
polarized signals can be expressed as:

α̂V
m,n = 4.343λ2

[
n2

(2b)3
Re

{
ε̄b√

ε̄b − 1

}
+

m2

(2a)3
Re

{
1√

ε̄a − 1

}]
(29)

3. DETERMINATION THE ATTENUATION CONSTANT
BASED ON GEOMETRICAL RAY TRACING

In addition to the analytical forms shown in (26) and (28) which are
usually referred to as the modal method, the geometrical ray tracing
method is often used to model the propagation in straight tunnels.
Based on geometrical ray tracing, the field at any point within a
tunnel can be obtained as a summation of the rays coming from
all possible paths from the transmitter to the receiver. Therefore,
finding those ray paths is critical for the ray tracing method. Two
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algorithms, the brute force ray tracing (sometime also referred to
as the Shooting and Bouncing Ray (SBR) algorithm) and the image
theory based algorithm, are generally used for this purpose. The SBR
algorithm [29, 30] is suitable for ray tracing in complex environments,
but the computation complexity is relatively high and the traced
results could be sensitive to some of the parameters chosen in the
simulation. The image-based ray tracing is a clever alternative for
environments with highly symmetrical geometries and will be used to
model the tunnel propagation in this paper.

3.1. Image Theory

According to image theory, all the reflected rays can be viewed as
rays directly launched from different images of the source, with their
field amplitudes modified by the proper reflection coefficients. Those
two-dimensional images are located within the same x-y plane as the
source, with their coordinates given by [13]:

xu = 2ua + (−1)ux0

yv = 2vb + (−1)vy0
(30)

where the integers u and v represent the number of reflections that the
ray undergoes relative to the vertical and horizontal walls, respectively.
The sign of u and v indicate whether the image is located on the
positive or negative side of the x and y axis, respectively. Note that
as a special case when u = v = 0, the image becomes the source itself
which is assumed to be located at S(x0, y0, 0).

3.2. Ray Tracing Based Electrical Field Representation

3.2.1. Horizontal Polarization

For a horizontally (x-direction) polarized source, the electric field at a
point R(x, y, z) in the far field can be obtained by summing the scalar
electric fields of the rays from all the images as

EH
r (x, y, z) =

+∞∑
u=−∞

+∞∑
v=−∞

e−jkru,v

ru,v
ρ
|u|
// ρ

|v|
⊥ (31)

where

ru,v =
√

(xu − x)2 + (yv − y)2 + z2 (32)

represents the distance between the observation point R and the
image Iu,v. ρ⊥, // are the reflection coefficients defined in (19). The
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incidence angle θ⊥, // and surface impedance factor ∆⊥, // in (19) for
a horizontally polarized source can be readily calculated as

θ⊥ = acos (|yv − y|/ru,v)
θ// = acos (|xu − x|/ru,v)

(33)

∆⊥ =
√

ε̄b − sin2 θ⊥

∆// =

√
ε̄a − sin2 θ//

ε̄a

(34)

3.2.2. Vertical Polarization

Following a similar procedure, the electrical field at R(x, y, z) for a
vertically polarized source can be expressed as

EV
r (x, y, z) =

+∞∑
u=−∞

+∞∑
v=−∞

e−jkru,v

ru,v
ρ
|u|
⊥ ρ

|v|
// (35)

Eq. (35) appears to be similar to (31); however, special care must be
taken to compute the reflection coefficients ρ⊥, // in (35). The same
equation of (19) can be used to compute the reflection coefficients
ρ⊥, // in (35), but the corresponding variables in (35), θ⊥, // and ∆⊥, //,
become

θ// = acos (|yv − y|/ru,v)
θ⊥ = acos (|xu − x|/ru,v)

(36)

∆// =

√
ε̄b − sin2 θ//

ε̄b

∆⊥ =
√

ε̄a − sin2 θ⊥

(37)

A close inspection of (35) and (31) shows that the electrical field
expressions corresponding to the vertical and horizontal polarizations
can be converted from one to the other by switching “x” to “y”, “u”
to “v”, and “ε̄a” to “ε̄b”, or vice versa. This can be explained by
the relative rotation principle: Usually switching the polarization from
one to the other is implemented by rotating the antenna in the tunnel,
which is equivalent to rotating the tunnel and coordinate system while
keeping the antenna unchanged.
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3.2.3. Ray Tracing Discussion

It is worthwhile to note that the geometric ray in Section 3 is different
from the ray presented in Section 2. The geometric rays in this section
are launched from a specific point source, either from the source or its
images, and are mathematically represented by a spherical wave. In
contrast, the rays in Section 2 are mathematically represented by a
plane wave, without any specific sources.

By considering the vector nature of the electric field, (31) and (35)
cannot give an accurate electrical field prediction when the receiver is
in the vicinity of the transmitter. When near the transmitter, the
vector sum of electric field components should be used instead of the
scalar summation shown in (31). Another important factor that has
been neglected in (31) under the far zone assumption, but has to be
taken into account when the receiver is near the transmitter, is the
antenna pattern function, as will be shown in the following analysis.

4. CONSIDERATION ANTENNA EFFECTS

In our previous discussion, the electric fields have been normalized. In
a practical communication system, the transmitted power usually is
known. The electric field corresponding to a fixed transmitted power
of Pt can be represented by

EV
u,v =

√
ηPt

2π
ft (θu,v, φu,v)

e−jkru,v

ru,v
ρ
|u|
⊥ ρ

|v|
// (38)

where ft(θu,v, φu,v) is the pattern function of the transmitting antenna.
θu,v and φu,v (in spherical coordinates) are the radiating angles of the
ray that is virtually from the image Im,n, and η is the wave impedance
of the free space. The effective antenna area for the receiving antenna
can be expressed as

Ae =
(

λ2

4π

)
fr

(
_

θu,v,
_

φu,v

)
(39)

where fr

(
_

θu,v,
_

φu,v

)
is the pattern function of the receiving antenna,

and the two receiving angles
_

θu,v and
_

φu,v, may or may not equate to
the radiating angles of the same ray, depending on the orientation of
the transmitting and receiving antennas.
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The received power can then be obtained as

Pr = Ae
|E|2
2η

= Pt

(
λ

4π

)2

(
+∞∑

u=−∞

+∞∑
v=−∞

e−jkru,v

ru,v
ρ
|u|
⊥ ρ

|v|
//fr

(
_

θm,n,
_

φm,n

)
ft (θm,n, φm,n)

)2

(40)

Again we assume that the receiver is sufficiently far from the
transmitter so that the variation of the radiating and receiving
angles are small such that the antenna gains for different rays can
be approximated by a constant. In other words, the following
approximation can be made:

ft (θm,n, φm,n) ≈ √
gt

fr

(
_

θm,n,
_

φm,n

)
≈ √

gr
(41)

where gt,r is the antenna gain for the transmitting and receiving
antennas, respectively. Under this assumption, the received power
P
⊥, //
r can be simplified as:(

P V
r

PH
r

)
= Ptgtgr

(
λ

4π

)2 (
EV

r

EH
r

)2

(42)

After the power distribution along the tunnel is obtained, the
attenuation constant of the dominant mode can be calculated based
on fitting algorithms such as the linear least squares fitting.

It should be noted that the same antenna effect should also
be considered in the modal method as discussed in Section 1, since
antennas are usually involved in the radiating of RF signals. With
the antenna effect, the power for the dominant mode in the far field
becomes: (

P V
1,1

PH
1.1

)
= Ptgtgr

(
λ

4π

)2
(

e−2zαV
1,1

e−2zαH
1,1

)
(43)

Substituting (26) and (28) into (42), the power attenuation constant
with the antenna effect included can be expressed as(

α̂V
1,1

α̂H
1,1

)
= −10 log10

[
P V

1,1(z)/
(
zP V

1,1(0)
)

PH
1,1(z)/

(
zPH

1,1(0)
)

]
= −8.686

(
αV

1,1

αH
1,1

)
(44)

Note that the power attenuation constants in (44) are exactly the
same as their expressions in (27) or (29) in which the antenna effect is
not included. This suggests that the frequency dependency caused by
antenna effect is only needed when calculating the absolute receiving
power but does not affect the calculation of the power attenuation
constant.
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5. SOME NUMERICAL RESULTS AND DISCUSSION

The closed form expression of the attenuation constant in (26) or
(28), although approximated, provides good insight into the analysis
of the power loss in a practical dielectric tunnel. It is shown that
the attenuation constant of a radio wave is mainly determined by the
following parameters: the polarization and frequency of the signal,
complex permittivity ε̄a,b, and dimensions of the tunnel. We will
investigate each of these parameters, with the goal of investigating
what can be learned from their optimum values for the minimum power
attenuation.

5.1. Impact of Polarization

Assuming ε̄a = ε̄b = ε̄ and subtracting (28) from (26), the difference of
the attenuation constants corresponding to the vertical and horizontal
polarizations can be written as:

∆α1,1 = αH
1,1 − αV

1,1 =
λ2Re

{√
ε̄− 1

}

16

(
1
a3
− 1

b3

)
(45)

It is apparent that in narrow and high tunnels where a < b,
vertically polarized signals attenuate less as compared to horizontally
polarized signals. The opposite is true for wide and low tunnels where
a > b.

Generally, to achieve the minimum loss in a rectangular tunnel,
the direction of the E field should coincide with the larger transverse
dimension of the tunnel.

5.2. Impact of Frequency

Based on (27), it is clear that the power loss (in dB/m) in a
straight tunnel is inversely proportional to the square of the frequency.
Theoretically, the attenuation can be made arbitrarily small by
choosing a sufficiently high frequency. In other words, there is no
“optimum frequency” for the minimum loss in a dielectric waveguide.
Instead, to achieve the minimum loss, the highest frequency allowable
should be used. It should be noted that this statement is true only
for an ideal waveguide with uniform cross section along the whole
tunnel. In reality, the existence of other factors such as long range
tilt of the tunnel [10] may introduce additional power attenuation that
is proportional to the frequency. As a result, optimum frequencies
may exist as a balance of different conflicting factors. Such optimum
frequencies, if they exist, would be highly dependent on the geometry
of the tunnel, and thus likely vary for different tunnels.



90 Zhou et al.

Additionally, a small angle approximation associated with grazing
incidence has been made during the derivation of (26). It is known that
the grazing incidence assumption is only valid when the wavelength is
small as compared to the tunnel dimensions. To calculate the error
caused by approximations made in the derivation of (26), the true value
of the attenuation constant with little or no approximations is required.
It is shown in [10, 19, 31] that the “exact solution” of the attenuation
constant can be obtained by numerically solving the equations imposed
by the boundary conditions. Specifically, the complex wave vector
component k̃x,y in (3) can be calculated by numerically solving the
following complex equations:

k̃x tan k̃xa = jk

√
(ε̄a − 1)

ε̄2
a

k̃y tan k̃yb = jk
√

(ε̄b − 1)

(46)

for a horizontal (x) polarized signal and

k̃x tan k̃xa = jk
√

(ε̄a − 1)

k̃y tan k̃yb = jk

√
(ε̄b − 1)

ε̄2
b

(47)

for a vertical (y) polarized signal. The attenuation constant then can
be obtained by taking the imagery part of the k̃z as:

αm,n = −Im
{√

k2 − k̃2
x − k̃2

y

}
(48)

Figure 3 shows how the exact and approximated attenuation
constants vary with the frequency. The exact result is obtained by
solving the boundary equations in (46) and (47) with Matlab using
Newton’s method, and the approximated result is computed directly
based on the analytical form in (26) and (28). It is shown that
the approximation error increases as the frequency decreases. The
large approximation error in the low frequency regime implies that
the analytical form is not accurate for estimating the propagation loss
when the frequency is low.

In this specific example where the width of tunnel is larger than
the height, the approximation error of a vertically polarized signal is
larger than that of a horizontally polarized signal. In general, the
approximation error is worse when the electric field is aligned with
the short dimension of the tunnel. Additionally, the approximation
error significantly increases for higher order modes as compared to the
dominant mode.
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Figure 3. The attenuation constants of the dominant mode for
vertically and horizontally polarized signals decrease as the frequency
increases. (a) shows a comparison between the approximated solution
(calculated based on the closed form expression given in (26) and (28))
and the exact solution (obtained by numerically solving (46) and (47)).
(b) gives the difference between the approximated value and the exact
value, expressed in a percentage of the exact value.

Table 1. parameters used in the numerical results.

a 10 feet ε̄a 5
b 5 feet ε̄b 5
σa 0 σa 0

5.3. Optimum Dimension Ratio

Equation (27) dictates that the tunnel cross-sectional dimensions are
the two most important parameters since the attenuation constant
varies inversely with the cube of the dimensions, as compared to square
of the frequency and approximately square root of the permittivity. A
small change in tunnel dimensions leads to a significant change in the
attenuation constant. Likewise, given a fixed system frequency and
tunnel wall material, tunnels with big cross-sectional area generally
lead to smaller attenuation constants. On the other hand, for a fixed
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cross-sectional area, the attenuation constant varies with the exact
shape of the cross section. One interesting question would be how
the attenuation constant varies with the ratio of the dimensions, given
a fixed rectangular area of the cross section. Specifically, one may
be interested to know if there is an optimum dimension ratio for the
minimum power loss.
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Figure 4. Attenuation constant of the dominant mode (EH1,1) varies
with the ratio of the transverse dimensions for a fixed rectangular cross-
sectional area.

Figure 4 shows how the attenuation constant of the dominant
EH1,1 mode changes with the ratio of the dimensions, while the area
of the rectangular cross section is kept constant at 200 ft2 (18.58m2).
The frequency selected is 915 MHz. The other parameters used in the
simulation are given in Table 1. It is evident from Fig. 4 that under the
same area assumption, both “ultra-wide” and “ultra-narrow” tunnels
cause high propagation loss and thus may not be suited for radio
communications at these frequencies.

It is found that an optimum dimension ratio exists for both
vertically and horizontally polarized signals. An inspection of
the optimized values shows that the minimum attention constants
(0.0061m−1) for the two polarizations cases are the same while the
dimension ratios for achieving the minimum loss are reciprocal.

In the following, we will derive the analytical form of the optimum
dimension ratio defined as

ζ =
dE

do
(49)

where dE is the dimension that the dominant E field coincides with
and do is the other transverse dimension of the tunnel. Specifically, we
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have

ζ =
{

b/a, for vertical polarization
a/b, for horizontal polarization (50)

For a given cross-sectional area S, (26) becomes

αH
m,n =

S−
3
2 ζ−

3
2 (mλ)2

2
Re

{
ε̄a√

ε̄a − 1

}

+
S−

3
2 ζ

3
2 (nλ)2

2
Re

{
1√

ε̄b − 1

}
(51)

By setting the partial derivative of the attenuation constant αH
m,n

relative to ζ as zero, the optimum dimension ratio can be obtained
as

ζH
opt = 3

√(m

n

)2
Re

{
ε̄a
√

ε̄b − 1√
ε̄a − 1

}
(52)

Considering a special case of ε̄b = ε̄a = ε̄, the optimum dimension
ratio for the dominant EH1,1 mode can be simplified as

ζH
opt = Re

{
ε̄

1
3

}
(53)

It is found that, although a special case of rectangles, a square
tunnel is unlikely to be the optimum tunnel since the relative dielectric
constant in (53) is always larger than one.

Similarly, for the vertical polarization case, we have

ζV
opt = Re

{
ε̄

1
3

}
(54)

which has the exactly same form as the horizontal polarization case.
As a cross check, substituting ε̄ = 5 into (53) and (54) leads to
the same optimum ratio (ζH

opt = 0.585) for both the horizontal and
vertical polarizations. Considering the different definitions of ζ for the
two polarizations, the results computed with the analytical forms are
consistent with the numerical results shown in Fig. 4.

It should be noted that most of the materials in our daily life have
a relative permittivity ranging from 2 to 20 which corresponds to an
optimum dimension ratio of ζV

opt spanning from 1.4 to 2.7.
In summary, to achieve the minimum attenuation, the ratio of

the larger transverse dimension to the smaller transverse dimension
should be designed as 3

√
ε̄, and the dominant electric field should

always coincide with the larger dimension. This optimum dimension
ratio holds independent of the frequency, as long as the tunnel
dimensions are much larger than the wavelength of interest such that
the attenuation constants in (26) and (28) give accurate prediction of
propagation loss.
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5.4. Optimum Dielectric Constant for Given Dimensions

The impact of the tunnel permittivity on the attenuation constant
is relatively small compared to the frequency and tunnel dimensions.
With the same parameters described in Table 1, Fig. 5 shows how the
attenuation constant of the dominant mode varies with the relative
dielectric constant. Given fixed tunnel dimensions, it is shown that an
“optimum” relative dielectric constant exists for both polarizations. It
is also found that the attenuation constant of the horizontal polarized
signals is relatively insensitive to the variation the dielectric constant
when the dielectric constant is sufficiently large (larger than 5 in this
specific example). Again, by assuming ε̄b = ε̄a = ε̄, the optimum
relative dielectric constant ε̄opt for the dominant mode can be readily
obtained by calculating the stationary point of (26) and (28) relative
to ε̄ as

ε̄opt = 2 + ζ3 (55)

It is observed from (55) that the minimum ε̄opt can be a very large
number, depending on the ratio of the tunnel dimensions, but has an
minimum value of 2. As a cross check, substituting a = 10 ft and
b = 5 ft into the analytical form in (55) gives ε̄opt = 10 for horizontally
polarized signals and ε̄opt = 2.1 for vertically polarized signals. Those
optimum values are consistent with the numerical results shown in
Fig. 5.
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5.5. Impact of Conductivity

The impact of the conductivity can be treated as part of the
permittivity impact since the conductivity contributes to the imaginary
part of the complex dielectric constant as:

ε̄a,b = εa,b − j
σa,b

2πfε0
(56)

If the frequencies of interest are sufficiently high, the imaginary
part of ε̄a,b approaches zero. Therefore, the impact of the conductivity
is often ignored in the high frequency regime. In the following we will
investigate the impact of the conductivity on the attenuation constant
when the frequency is relatively low. Again, we will first consider the
horizontal polarization case and the results obtained can be readily
generalized to the vertical polarization case by exchanging “m” with
“n” and “a” with “b” in the final analytical form obtained. For the low
frequency regime shown in Fig. 3, the classic form of the attenuation
constant given in (26) is not an accurate representation of the true
value due to high approximation errors. A more accurate form will be
sought at these frequencies. An inspection of boundary equation (46)
shows that an approximated analytical solution can be obtained by
making the following approximations [19]:

k̃xa ≈ mπ

2
+ δx

k̃yb ≈ nπ

2
+ δy

(57)

where δx,y are two small complex terms to be determined. Substituting
(57) into (46) and solving for δx,y yields:

δx ≈ jε̄a

ka
√

ε̄a − 1
kx

δy ≈ j

kb
√

ε̄b − 1
ky

(58)

Substituting (58) back into (57) leads to:

k̃x ≈ mπ

2a
+

jmλε̄a

4a2
√

ε̄a − 1

k̃y ≈ nπ

2b
+

jnλ

4b2
√

ε̄b − 1

(59)

Note that (59) here is identical to the results in (4) which are simplified
based on the analytical expressions from [16].
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Assuming that k̃x,y are small compared to k and substituting (59)
into (48) gives:

αm,n = −Im
{√

k2 − k̃2
x − k̃2

y

}

≈ −Im

{
k

(
1− k̃2

x + k̃2
y

2k2

)}

= Im

{
k̃2

x + k̃2
y

2k

}

=
2π

λ

[
Re

{
k̃x

}
Im

{
k̃x

}
+ Re

{
k̃y

}
Im

{
k̃y

}]
(60)

Substituting (59) into (60) and after some mathematical manipula-
tions, we have:

αH
m,n

=
1
a

(
mλ

4a

)2

Re
{

ε̄a√
ε̄a − 1

}
[1− δa]

+
1
b

(
nλ

4b

)2

Re
{

1√
ε̄b − 1

}
[1− δb] (61)

where

δa =
1
ka

Im
{

ε̄a√
ε̄a − 1

}

δb =
1
kb

Im
{

1√
ε̄b − 1

} (62)

A comparison of (61) with its classic but approximated form in (27)
shows that the two forms are identical except for the two small
correction terms δa,b in (61) which are introduced to compensate for the
impact of the conductivity. As a special case where the conductivity
of the tunnel walls is zero, (61) reduces to its classic form in (27).
Additionally, it is shown in (61) and (62) that the contribution of δa,b

can be neglected if the tunnel transverse dimensions are electrically
large such that ka À 1 and kb À 1.

Figure 6 illustrates the impact of the conductivity on the
attenuation constant of the dominant mode. The Y axis in Fig. 6
represents the error in the attenuation constant caused by neglecting
the conductivity of the wall materials. The error is given as a
percentage of the true attenuation constant which is calculated by
including the conductivity. Again, the parameters in Table 1 are used
for calculating the values of errors in Fig. 6. It is shown that the
impact of the conductivity increases with the value of the conductivity
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Figure 6. Impact of conductivity on the attenuation constant.

but decreases as the frequency increases. For frequencies above 1GHz,
the error caused by ignoring the conductivity is less than 5%, even
when the conductivity is as high as 0.1 S/m. This observation suggests
that the impact of conductivity can be neglected when the frequency
of interest is above 1 GHz.

6. ATTENUATION CONSTANT MEASUREMENT

RF power measurements were made along a straight concrete tunnel
with its geometric dimensions shown in Fig. 7. The four walls of
the tunnel are relatively smooth so the impact of wall roughness
on the attenuation constant can be neglected. Measurements were
made at four different frequencies (455, 915, 2450, 5800 MHz) for both
vertical and horizontal polarizations. Except for the first frequency of
455MHz which is often used in underground UHF leaky feeder systems,
the other three test frequencies are commonly used in commercially
available underground coal mine communication systems. The length
of tunnel is about 610 m.

A block diagram of the measurement setup is shown in Fig. 8(a),
and a picture of the equipment in Fig. 8(b). It is comprised of two
components: a stationary RF transmitter and a mobile RF receiver.
The transmitter consists of an RF signal source connected to one of
four linear polarized antennas (Laird FG4500, FG8960, FG24005, and
SuperPass SPDJ40) or an Agilent V3500A RF power meter. The
antennas at the transmitter and receiver were set to the same height of
1.2m and were located in the center between the two side walls during
measurements.
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Figure 8. Experimental setup.

The receiver consists of a Tektronix H600 data-logging RF
spectrum analyzer connected to either a 50Ω termination or matching
TX antenna through an RF A/B switch. The receiver is mounted on
a small wooden cart with plastic wheels shown in Fig. 8(b).

RF signal propagation was measured as follows: The RF signal
source was configured to produce a continuous wave (CW) signal with a
fixed output power (about 3 dBm) which was verified at the beginning
of each propagation measurement using the RF power meter. The
spectrum analyzer’s input was switched to the RX antenna and the
mobile receiver cart was pulled away from the transmitter. At pre-
surveyed intervals of distance — typically 30m — the mobile receiver
cart was halted and the spectrum analyzer’s input was momentarily
switched to the 50 Ω termination. This inserted a received power null
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in the measured data, serving as a distance indicator. The spectrum
analyzer’s input was then switched back to the RX antenna and travel
away from the transmitter was resumed. Post-processing of the logged
data was performed to correlate the power nulls in the data to the
pre-surveyed distances [14].

7. COMPARING SIMULATION TO MEASUREMENT

Figures 9 and 10 show a comparison between the measured and
simulated power decay along the tunnel axial distance for the vertical
and horizontal polarization cases, respectively. The blue solid line
represents the measured results and the red dotted line the simulated
results which are calculated based on (42), the ray tracing model
described in Section 3. It is generally observed [17, 32, 33] that
propagation can be divided into two regions: the near zone and far
zone. The signal power fluctuates widely with the distance in the
near zone [34] while it is relatively stable and thus more predictable
in the far zone. After a certain distance that is sufficiently far from
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Figure 9. A comparison between measured and simulated
power decay along the tunnel at four test frequencies (horizontal
polarization).
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the transmitter, the power (in a dB scale) decays linearly with the
distance. The point separating the near zone and far zone is the
breaking point [35], which moves closer to the transmitter as the
frequency decreases. As a result, a very small near zone distance is
observed at 455MHz. It should be noted that the linear attenuation
behavior is an indication of the single mode (the lowest attenuated
mode) dominance. Some pseudo-periodic behaviors can be found
before the linear attenuation region. From the modal theory, those
quasi-periodic behaviors are known to be caused by the interaction
of a few lowest modes. Additionally, because the power attenuates so
quickly at 455 MHz, it reaches the noise power level (about −120 dBm)
of the equipment after a short distance, causing it remain flat over the
distance, as shown in Fig. 9 and Fig. 10.

In the modeling results shown, the arched tunnel shown in Fig. 7
was approximated by a rectangular tunnel with the same width.
The height, along with the electrical parameters of the tunnel, was
optimized based on minimizing the difference between the theoretical
and measured attenuation constant of the dominant mode. The
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Figure 10. A comparison between measured and simulated power
decay along the tunnel at four test frequencies (vertical polarization).
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simulated power at the zero distance was adjusted to best match the
measured power distribution. The measured attenuation constant of
the dominant mode was estimated by applying linear least squares
fitting to the measured power decay at large distances (far zone). It
should be noted that, due to the limitation of the tunnel length, this
estimation is likely not accurate at the frequency of 5.8 GHz, because
the linear attenuation of the power decay does not appear even at the
end of the tunnel. The following data set is found to be the best
match of the theoretical results to the measured results: ε̄ = 8.9
and σ = 0.15 S/m, h = 2.35m. This same data set has been used
for predicting the power decay for both the vertical and horizontal
polarization cases. Additionally, the absolute values of both m and
n in (31) and (35) have been limited to 40 since rays undergoing a
large number of reflections within the interested distance range in this
paper essentially make little contribution to the overall power and thus
can be ignored. It is shown in both figures that the ray model results
match the measured results well in the far zone, at all the four tested
frequencies, and for both polarizations. The good agreement between
the measured and simulated curves suggests that the ray tracing model
is a good model for predicting the power attenuation in this tunnel
environment.

A comparison of the attenuation constant at different frequencies
and polarizations is shown in Fig. 11. The ray tracing based
attenuation constant is extracted from the simulated power decay by
employing the same linear fitting as used for estimating the attenuation
constant of the measurement results. In contrast to the measured
power decay which is limited by the physical length of the tunnel, the
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simulated power decay can be extended to a sufficiently long distance
such that the linear attenuation with the distance appears. The two
dash lines in Fig. 11 are calculated based on (44) which provides
the analytical form of the attenuation constant for the dominant
EH11 mode. The same electrical parameters are used for both the
simulated (ray tracing based) and analytical results. It is shown that
the simulated, measured, and analytical results agree well with each
other. Note a small discrepancy appears between the measured and
simulated attenuation values at 5.8 GHz. This is due to the fact that
significant nulls exist along the tunnel at these high frequencies, which
increases the uncertainty in the determination of the best linear fitting
to the measured data.

8. CONCLUSION

When a ray is incident on a dielectric tunnel wall, part of the energy
“leaks” into the wall and part is reflected back to the tunnel. Therefore
the energy loss associated with the RF propagation in a dielectric
tunnel should be highly dependent on the reflection coefficient of
the ray. In this paper, we have mathematically established this
connection between the power attenuation constant and the classic
Fresnel reflection coefficient, by showing that the attenuation constants
of different modes in an empty dielectric tunnel can be derived based
on the reflection coefficients associated with the characteristic rays of
the corresponding mode. The new derivation provides good insight
into understanding the controlling factors of the RF attenuation
in tunnels which have been discussed in detail. Measurements at
different frequencies that are commonly used in commercially available
underground coal mine communication systems validated the model.
The simulated power distributions match the measured ones at all four
tested frequencies and for both horizontal and vertical polarizations.
Furthermore, we compared the attenuation constants calculated from
the ray tracing and modal methods and showed they agree well with
each other. The simulated attenuation constants based on the two
methods are also shown to be consistent with the measured ones.

DISCLAIMER

The findings and conclusions in this paper are those of the authors
and do not necessarily represent the views of the National Institute for
Occupational Safety and Health (NIOSH). Mention of any company
name or product does not constitute endorsement by NIOSH.
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