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Abstract—This paper proposes a Synthetic Aperture Radar (SAR)
vehicle target detection algorithm based on contextual knowledge.
The proposed algorithm firstly obtains the general classification of
SAR image with a Markov Random Field (MRF)-based segmentation
algorithm; then modifies the prior target presence probability utilizing
terrain types, distances to boundary and target aggregation degree;
finally gains the detection results using improved Cell Averaging-
Constant False Alarm Rate (CA-CFAR). Detections with real
SAR image data show that the proposed algorithm can effectively
improve target detection rate and reduce false alarms compared with
conventional CA-CFAR.

1. INTRODUCTION

SAR is a coherent imaging radar working in microwave band, which
has excellent properties and powerful application potential. Countries
all over the world have placed great importance on the research of
SAR sensors. Rapid development of SAR in recent years has provided
higher resolution and fully polarization data. Meanwhile, it makes
the fast image interpretation harder [1–3]. A possible solution to this
dilemma is describing the characteristics of objects in a reasonable way
and combining them with the prior knowledge of targets, which can
make full use of information superiority to reduce the uncertainties in
detection, and improve the efficiency and reliability of target detection.

Targets of interest in this paper are military vehicles, which may
be more likely to be located in fields close to hedges and woodland edges
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to provide cover and will often travel in groups. As high resolution SAR
provides a wealth of target information and a surveillance capability,
vehicles detection with SAR is becoming a hot pot [4, 5].

CFAR (Constant False Alarm Rate) detection has been widely
used in target detection of SAR images [6–9]. Literature [10] reviewed
the applications of CFAR algorithm with the clutter model of negative
exponential, Gamma and K distribution. However many ground
clutters may exhibit complicated behaviors, CFAR needs block-by-
block estimation of clutter models. It has long been acknowledged
that visual context plays an important role in visual perception of
object [11, 12]. Consequently, there has been increasing interest in
recent years in developing computational models to improve object
detection in images by exploiting contextual knowledge [13–22].
Blacknell et al. [23, 24] proposed a contextual knowledge-based target
detection algorithm which takes the influence of context to the prior
probabilities for the occurrence of targets or clutter into account and
validates the algorithm using simulation image. For the simulation
image, Blacknell assumed that its edge information was known, but
for a real SAR image, it is difficult to get the exact terrain types and
edge information.

We propose a SAR image target detection algorithm based on
contextual information to solve above problems. Firstly, take a
unsupervised classification of real SAR images based on MRF model to
get relatively accurate information about the terrain types and edge,
which provides the foundation of real SAR images target detection;
then we adopt terrain types, distance to boundary and target
aggregation degree as impact factors of target presence probability,
improve the mathematical model of distance to boundary and target
aggregation degree and calculate values of these impact factors; finally
obtain the detection results using MAP criterion and CA-CFAR.

2. IMAGE SEGMENTATION BASED ON MRF MODEL

MRF is the most widely used statistical model which has a lot of
applications in the fields of image edge detection, segmentation, veins
analysis and image recovery [25]. MRF increases the constraints
of image process with prior knowledge, combining with Gaussian
conditional distribution, MRF provides a convenient method to
describe the space-related features of every image pixel in probability.
This paper achieves segmentation results utilizing ICM algorithm.
Traditional potential function does not work well in SAR image
segmentation, so this paper considers the gray value of neighboring
pixels, redefines the potential function, and achieves good segmentation
results.
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2.1. MRF Image Model

An image is composed of finite set S corresponding to the pixels.
Therefore, S is essentially a finite discrete system, which is a subset
of Zd, where d is space dimension. Each point of S corresponds to a
description operator representing the state of point, the state can be
gray, or a marker, or more complex information, it values in a mark-
space E.

An image can be treated as a two-dimensional grid point set
S = {(i, j)|1 ≤ i ≤ M , 1 ≤ j ≤ N}, where M and N are the
width and height of image. Mark field X = {X1, X2, . . . , Xm} is
a random field corresponding to the two-dimensional grid points set
S, X = x, where x = {x1, x2, . . . , xm} is a configuration of random
field X, corresponding to a reality of random field. Each element of
S represents the mutual association through a neighborhood system.
The neighborhood system of S is defined as follow:

N = {Ni| ∀ i ∈ S}
For a regular grid positions set S, neighborhood of position i is

defined as location set whose distance to i is less than
√

r:

Nj = {j ∈ S
[
dist

(
pixeli, pixelj

)]2 ≤ r, i 6= j}
where, dist (A, B) represents the Euclidean distance of A and B, and r
is an integer. It should be noted that neighboring pixels in the border
location or locations near the border would be less.

Random field X defined on the grid set S with a neighborhood
system N becomes a Markov random field when meeting the following
two constraints:

(1) Positive definiteness: P (x) > 0, ∀x ∈ Ω;
(2) Markov property: P (xi|xS/i) = P (xi|xNi).

where, S/i indicates all positions in grid set S except i, and xNi

represents a set of all neighborhood positions of i. Markov property
descries the local characteristics of random field X, direct interactions
only exist between the adjacent markers in MRF.

The concept of neighborhood indicates effect distance between
pixels, a second-order neighborhood system used in this paper is shown
in Figure 1(a). We introduce the concept of group to express effect
distance between pixels. Group is a collection of positions, which either
contains only an element, or any one in the group is the neighbor of
the others. Second-order neighborhood system of single pixel and dual
pixel groups is shown in Figure 1(b).
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Figure 1. MRF image model. (a) Second-order neighborhood.
(b) Single pixel and dual pixel groups.

A conventional potential function is defined as:

V (xi, xj) =
{

β xi = xj

0 xi 6= xj
(1)

Segmentation with above function is not ideal as it does not
consider the influence of gray value, in the proposed algorithm, we
introduced gray value into the potential function, taking full advantage
of contexts, the new potential function of gray value is defined as [25]:

V ′(xi, xj) =

{
β xi = xj

− σ2
i β

(σ2
i +k∗(yi−yj)2) xi 6= xj

(2)

where, σ2
i is the variance at position xi; yi and yj are the intensity of

observation field at position xi and xj ; k is the weight of contextual
energy (yi−yj)2. It can be drawn from formula (2) that the larger gray
difference two pixels have, the greater the energy is, and two pixels are
less likely classified as the same class.

If the random field configuration obeys Gibbs distribution, we can
call this random field GRF, and Gibbs distribution is expressed as:

p(x) = Z−1 × e−U(x) (3)
where, Z is a normalized constant,

Z =
∑

x∈Ω

e−U(x) (4)

U(x) is a mapping function describing relative intensity of veins, which
is the potential sum of all groups in group set C. For isotropic GRF,
U(x) can be calculated by the following formula:

U(x)=
∑

{i}∈C1

V1(x)+
∑

{i,j}∈C2

V2 (xi, xj)+
∑

{i,j,k}∈C3

V3(xi, xj , xk)+. . . (5)

Only second-order neighborhood systems are considered in this paper,
so formula (5) can be simplified:

U(x) =
∑

{i,j}∈C2

V2(xi, xj) (6)
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MRF is characterized by the local properties of random field,
while GRF is described by the entire nature of random field.
Harmmersley-Clifford theorem established the equivalence between
these two properties. Importance of this theorem is that it provides a
simple way to obtain the joint probability. It transforms the interaction
between pixels into a priori knowledge.

Process of image segmentation based MRF model is given as
follows:

(1) Preprocess the original image, including image smoothing,
downsampling, etc.;

(2) Set segmentation parameters (number of categories C, the
maximum number of iterations K, weight of context energy k
etc.);

(3) Use ICM algorithm for image segmentation: first initialize the
state of each pixel, then calculate the local energy per-pixel under
different classification marks; finally take the classification mark
with the minimum local energy as the current classification mark;

(4) Repeat step (3) K times, get the initial segmentation result;
(5) Use morphological opening and closing operation to remove small

dots in the result, then obtain the final segmentation result, take
the segmentation boundary as the terrain edge.

2.2. Segmentation Results

In this paper, we take C = 3, K = 3, k = 2.0, then we divide the
original SAR background image shown in Figure 2 into three types,
woods areas, grassland areas and shadow areas, as the white areas
shown in Figure 3. Woods class and shadows class can be treated as
a class in segmentation results because presence probability of targets
in these two classes is small, as the white areas shown in Figure 4. We
can see from Figure 4 that a part of the grassland areas are divided
into woods and shadow areas, reason of this is MRF model is sensitive
to veins information, so misclassified cases will appear in grass areas
where veins change obviously; grassland area is shown in Figure 5.
Image of edge shown in Figure 6 is obtained using results of Figure 4
and Figure 5.

Figures 2–6 show that shadow areas and woods areas can be
separated well with the MRF model. Further, we can get the edge
information utilizing these two types of classification. Then we can
take the contextual knowledge-based target detection utilizing terrain
types and edge information.
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Figure 2. Original SAR image. Figure 3. Result of MRF
segmentation.

Figure 4. Areas of woods and
shadows.

Figure 5. Areas of grassland.

Figure 6. Image of edge.

3. FLOW OF CONTEXTUAL KNOWLEDGE-BASED
TARGET DETECTION ALGORITHM

A flow chart of contextual knowledge-based target detection algorithm
is shown in Figure 7, and the detailed steps are as follows:
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(1) Obtain the general classification of SAR images with MRF-
based segmentation algorithm, set αclass according to classification
results;

(2) Calculate αedge according to edge information obtained in step (1);
(3) Compute total impact factor α without considering αtarget ,

calculate class decision threshold of each point with context
information, get initial detection results;

(4) Process results of step (3) in morphological method, eliminate the
interference portion based on characteristics of detected targets,
merge targets;

(5) Calculate αtarget based on the obtained target positions, update
impact factor α, take detection again;

(6) Repeat step (5) until target positions of adjacent results are
identical or the maximum number of cycles is reached, then
detection process is ended, save the ultimate results.

SAR
Image

Image
Segementation

Based MRF

Get
α class

Get
α edge

CA-CFAR
Detection

Get Target
Position

Information

Position
Identical?

Detection
Result

YES

Calculate
α target

NO

Get Terrain
Types

Get Edge
Information

Caculate
Impact

Factor α

Caculate
FA

Image Segementation Based MRF MAP Criterion

P'

Figure 7. Flow chart of contextual knowledge-based target detection
algorithm.

SAR image classification is difficult and can be achieved by
SAR image segmentation, but SAR image segmentation calculation
is complicated, and it is difficult to get accurate classification result.
High classification accuracy is not required in this paper. A wide
range of terrain type can meet the requirements of terrain information.
Utilizing contextual information of pixels, a MRF model based
segmentation algorithm is adopted to get the initial segmentation
result, then morphological opening operation and closing operation are
used to merge isolated points and smaller regions. This process reduces
the complexity and running time of classification algorithm effectively.
Meanwhile, dividing lines between terrain types can be used as edge
information directly.

After getting the impact factor α, we can get a new false alarm rate
P ′

FA according to Equation (13), then we can set protection zone and
clutter zone like CFAR detector, as classification of image is obtained.
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In the process of clutter area calculation, we can select only the clutter
points belonging to the same terrain type. This method can prevent the
clutter zone from containing different types of terrain, which will result
a large deviation. Target detection based on terrain information can
estimate model parameters more accurately and obtain more accurate
results. But there will be a lot of isolated points and clutter alarms
among the target test results because impact of noise and other objects,
morphological processing method can be used to get better result:
firstly, take morphological closing operation and remove isolated points
within the target regions; then filter detection results according to
target size to remove interference targets which are too small or too
big. The resulting targets are similar to targets to be detected in size.

4. SAR TARGET DETECTION BASED ON
CONTEXTUAL KNOWLEDGE

Presence probability of targets may be different in distinct areas of
actual SAR images. So we can transform prior knowledge such as
geography, surroundings and target characteristics into impact factors
of presence probability, which can improve detection rate and reduce
false alarms.

4.1. Influence of Presence Probability to Target Detection
Rate

MAP criterion is widely used in target detection. Suppose that x is an
observation and that P (t|x), P (b|x) are target and clutter posterior
probability, then according to of MAP criterion: when P (t|x) >
P (b|x), observation x is a target; conversely, x is a clutter.

P (t|x)
P (b|x)

=
p(x|t) · P (t)
p(x|b) · P (b)

= Λ(x) · P (t)
P (b)

(7)

where, p(x|t), p(x|b) are probability density functions; Λ(x) is
likelihood ratio.

In practice, P (t) ¿ 1, so Equation (7) can be approximated as:

Λ(x) >
P (b)
P (t)

=
1− P (t)

P (t)
≈ 1

P (t)
(8)

Suppose x = x0, equation Λ(x) = 1/P (t) holds, then x0 is the
detection threshold.

In practical applications, considering the influence of prior
knowledge, then the presence probability P (t) of target is not fixed.
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Assume that impact factor of prior knowledge is α, then the new
presence probability P ′(t) can be expressed as:

P ′(t) = ∂ · P (t) (9)

In reality, distribution of probability density function p(x|t) is
complex. p(x|t) can be regarded the same at x0 and x′, namely
p(x0|t) ≈ p(x′|t), then we can get:

Λ(x0)
Λ(x′)

=
p(x′|b)
p(x0|b) = ∂ (10)

As to SAR intensity image, clutter obeys negative exponential
distribution:

p(x|b) =
1
µ

exp
(
−x

µ

)
(11)

By Formulas (10), (11), we can obtain:

x′ = x0 − µ · ln ∂ (12)

P ′
FA =

∞∫

x′

p(x|b)dx = exp
(
−x′

µ

)
= ∂PFA (13)

Above derivations describe that decision threshold and false
alarm probabilities have changed because of the impact of contextual
knowledge. By formulas (12) and (13), we can get that detection
decision threshold reduces while false alarm probability increases in
areas with a large presence probability (impact factor α > 1), which
will improve the detection rate. On the contrary, detection decision
threshold increases while the probability of false alarm reduces in areas
with a small presence probability (α < 1), so number of false alarms
in results is smaller. Compared to CFAR, this process is more in line
with the process that human beings detect targets.

Taking the changes of target presence probability into account,
false alarm rate P ′

FA changes α times into the original in the affected
areas. Getting value of α and pre-determined false alarm rate PFA, we
can obtain a new decision threshold in a way similar to CFAR to get
the detection results.

4.2. Impact Factor α

In the process of detection, human will focus on different areas for
different interests under a particular scene. For example, areas like the
oceans, rivers, lakes, ports will be considered when detecting ships.
For the detection of aircrafts, human will focus on airport, or long
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straight roads where aircrafts can take off and land. The same with
military vehicles, military vehicles may be more likely to be located
in fields close to hedges and woodland edges to provide cover and will
often travel in groups. All these characteristics are acquired through
experience or prior knowledge, which determine the value of impact
factors in detection process. We can set the impact factor values
according to experience directly, set a greater impact factor in the
key areas. Moreover, we can simulate the changes of impact factors
with curve.

Against the military vehicles, presence probability of vehicle target
is mainly influenced by three factors: terrain type (impact factor
αclass), target distance to boundary (impact factor αedge) and target
aggregation degree (impact factor αtarget). Assuming that impact
factors are independent, the overall impact factor can be given by:

∂ = ∂class · ∂edge · ∂target (14)

In the following section, detailed discussion of terrain type, target
distance to boundary and target aggregation degree will be given.

4.2.1. Impact Factor of Terrain Type (αclass)

Military vehicles may be more likely located in roads and relatively
flat open land, and less likely located in dense woodland, steep
mountainous, shadows, etc. When considering the impact of terrain
type, we can set the values of impact factors directly according to a
prior knowledge.

4.2.2. Impact Factor of Target Distance to Boundary (αedge)

When military vehicles located near the edge of woods, presence
probability of target gains its maximum at a certain distance from
the boundary. Let the distance to boundary be d, then the following
formula can be used to simulate impact factor αedge :

∂edge = c ·
(

exp
{
−(d + ε)2

2σ2
1

}
− exp

{
−(d + ε)2

2σ2
2

})
(15)

Formula (15) shows that the value of impact factor αedge is
negative interrelated to distance d. How the αedge changes with
distance d is determined by the actual situation and a priori knowledge.
Formula (15) is modified based on formula (13) of [24]. The algorithm
in [24] used simulated images, where the boundaries were accurate
knowable, and targets would not appear at the boundary position;
while in reality, it is difficult to obtain accurate boundary information.
In this paper, we take broad categories and use morphological method
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in the post-process, leading to a certain error between the actual edge
and the edge we get, so the value of impact factor cannot be 0 when
d is 0. To solve this problem, we added an error correction factor ε,
which generally has a length of 1–2 units. In the simulation of αedge ,
take c = 3.0, σ1 = 5.0, σ2 = 1.5, ε = 0.5, then the simulation of αedge is
shown in Figure 8. As can be seen from Figure 8, when the distance is
0, αedge is 0.2, and αedge gains its maximum when d is 2.5. Moreover,
αedge decreases as the distance to boundary d increases.

4.2.3. Impact Factor of Target Aggregation Degree (αtarget)

Military vehicles generally move in groups, so if we find some military
vehicles in a particular region, it is possible that more targets exist
in this region. In addition, we can reduce computation by regarding
detected targets as point targets.

Assuming that a target is found at point A and that the distance
between B and A is r, according to the interaction between targets,
impact factor of point A to point B can be given by:

∂target = M + a · exp
{
−r2

l21

}
+ b · exp

{
−(r − d)2

l22

}
(16)

By formula (16), we know that when the target distance is small
(e.g., r < 2), impact factor αtarget is positively correlated to distance
r, but when the distance between targets increases (e.g., r > 2), αtarget

has a negative correlation with the distance r. The reason for this
phenomenon is that vehicles are less likely to be too close to each other.
There is usually a certain distance between two targets, so when the
distance is small, the smaller r is, the smaller αtarget is. Two parts of
a target may be regarded as two targets incorrectly in this condition;
because the targets usually move or dock in groups, the impact factor
αtarget will be smaller when r is bigger. Take M = 0.78, a = 0.75,

Figure 8. Simulation of αedge . Figure 9. Simulation of αtarget .
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b = 2, l1 = 5, l2 = 6, d = 3. The simulation of αtarget can be obtained
as shown in Figure 9, when the distance r is 0, αtarget is 0.2, and αtarget

gains maximum when d is 2. Moreover, αtarget decreases as the distance
to boundary d increases.

Suppose that N targets are detected and that the impacts between
these targets are independent, then impact factor of target aggregation
degree can be expressed as:

∂target = ∂target1 · ∂target2, . . . , ∂targetN (17)

In actual calculations, target locations are unknown, so αtarget

cannot be obtained directly, and we can get it through loop. Take the
target detection without αtarget , calculate αtarget based on the obtained
target positions, then redetect to get new target information. If
adjacent target information is inconsistent, repeat above process until
adjacent target information is consistent, then the detected targets can
be considered as true targets.

5. RESULTS AND ANALYSIS

Experimental image used in this paper is a real MSTAR amplitude
image with resolution 0.3 m and size 1784 ∗ 1478. The known MSTAR
public database was collected using the Sandia National Laboratories
Twin Otter SAR sensor payload operating at X band with the high
resolution of 0.3m, spotlight mode, HH single polarization. Our
interested targets are military vehicles, as shown in Figure 10, and
30 military vehicles are located close to the woods and roads.

Figure 10. Original image added targets.

In order to reduce the complexity of the count, we transform the
targets into point targets and divide the image into blocks. The size
of each block is 40 × 40 and impact factor α approximately constant
in the cell blocks.
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Taking terrain type into account, set αclass = 1.0 in grassland
areas, αclass = 0.01 in woods and shadow areas. The distribution of
αclass is shown in Figure 11(a). Taking c = 3.0, σ1 = 3.0, σ2 = 1.5,
ε = 3, distribution of αedge is shown in Figure 11(b). Taking M = 0.78,
a = 0.75, b = 2, l1 = 5, l2 = 6, d = 3, distribution of αtarget is shown
in Figure 11(c). Considering all context information, we can obtain
impact factor α with distribution shown in Figure 11(d). Pixel grey
level is shown in Figure 11, and the brighter area indicates higher
impact factor and greater presence probability. From the following
results we can see that the target presence probability is higher in the
woods surroundings, open land, and areas where exists targets. In
these regions, impact factor α is also significantly greater than others.

Contextual knowledge-based detection algorithm and CA-CFAR
detection algorithm are used in this paper. The detection results of
these two detection algorithms are shown in Figures 12–15 in condition
of PFA = 3.17 ∗ 10−5 and PFA = 2.87 ∗ 10−7, respectively.

It can be seen from the above figures that when PFA = 3.17∗10−5,
contextual knowledge-based algorithm detects all the 30 targets, only

(a) (b) (c) (d)

Figure 11. Distribution of impact factor.

Figure 12. Result of CA-CFAR,
when PFA = 3.17 ∗ 10−5.

Figure 13. Result of proposed
algorithm, when PFA = 3.17 ∗
10−5.
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Figure 14. Result of CA-CFAR,
when PFA = 2.87 ∗ 10−7.

Figure 15. Result of proposed
algorithm, when PFA = 2.87 ∗
10−7.

10 false alarms, while the CA-CFAR detects only 24 targets and 16 false
alarms; when PFA = 2.87∗10−7, contextual knowledge-based algorithm
and CA-CFAR detects 25 and 24 targets, respectively, but the false
alarms of CA-CFAR are 12 more than the contextual knowledge-
based algorithm. Therefore, it can be concluded that the contextual
knowledge-based algorithm can improve the detection rate effectively
and reduce false alarms significantly by taking advantage of a priori
knowledge.

To validate the generalization of the proposed algorithm, we
adopt images with different backgrounds, and simulation results also
illustrate its effectiveness. One of the detection examples is shown in
Figure 16.

In Figures 16, (a) is original image added targets; (b)–(c) are
results of MRF-based segmentation algorithm; white areas in (b) are
woods and shadow, while in (c) are grass, and (d) is the edge image;
(e) and (f) represent the detection results of the proposed algorithm
and CA-CFAR, respectively, when PFA = 2.87 ∗ 10−7. We can obtain
from these results that the proposed algorithm is applicable in different
conditions.

To analyze the influences of different contextual knowledge, we
compare CA-CFAR, contextual knowledge-based algorithm consider-
ing one type of context knowledge and the proposed algorithm under
different false alarm rates PFA. ROC curves are shown in Figure 17
and Figure 18.

It can be seen from the curves in Figure 17 and Figure 18 that
the proposed algorithm has higher detection rates than the other four
algorithms, while false alarms in detection results are significantly
less. As to detection rate, performance of algorithm only considering
distance to boundary is closest to the proposed algorithm, followed
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(a) (b) (c)

(d) (e) (f)

Figure 16. Results of each step.

Figure 17. ROC of detection
rate.

Figure 18. ROC of false alarms.

by algorithm only considering terrain, and both of these algorithms
are better than CA-CFAR, which indicates that the factor of distance
to boundary plays an important role in improving detection rate. As
to false alarms, performance of algorithm only considering terrain is
closest to the proposed algorithm, and the other two algorithms are
much worse, which demonstrates that the factor of terrain type can
significantly decrease false alarms in detection results. The algorithm
only considering target aggregation is the worst of all. The reason is
that the factor of target aggregation is heavily dependent on initial
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detection results, which will has an adverse influence without a good
initial detection result.

In the five detection algorithms, the proposed algorithm is
optimal, followed by algorithm only considering terrain type and
distance to boundary, respectively. CA-CFAR and algorithm only
considering target aggregation do not work well. So we can obtain
that the introduction of proper contextual knowledge can reduce the
number of false alarms and increase the detection rate.

6. CONCLUSION

Contextual knowledge-based target detection is not only an important
trend of artificial intelligence SAR image processing, but also an
effective method to reduce the target detection complexity and improve
the detection efficiency under complex background. This paper
proposes a contextual knowledge-based SAR image vehicle target
detection method using given vehicle context knowledge.

Firstly, we propose an unsupervised classification algorithm
based on MRF model, utilizing context information of each pixel,
then introduce a new potential function, which obtains satisfied
classification results and terrain boundaries.

Secondly, give different terrain types corresponding values, then
converse the target distance to boundary and the distance between
targets to impact factors of target presence probability with suitable
mathematical models. Experiments show that these conversion
processes can illustrate the influence of context well.

Finally, detect original SAR images according to the MAP
criterion. Results show that the proposed algorithm is effective to
improve detection efficiency and reduce false alarm and is proved to
be an effective vehicle targets detection algorithm in SAR images.
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