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Abstract—The inverse synthetic aperture radar (ISAR) image can be
very effective in target recognition because it provides 2-D image that
uses frequency data measured at various observation angles. However,
the jet engine modulation (JEM) that can occur in the received signal
due to the rotation of the blade in the engine may result in image
blurring in cross-range direction. In this paper, we propose an efficient
method of removing JEM signals by using the existing chirplet basis
function and an efficient method to estimate the initial values of the
four parameters of the chirplet. Simulations using the measured data
provided clear ISAR image of a real Boeing747 aircraft.

1. INTRODUCTION

The inverse synthetic aperture radar (ISAR) image [1–3], which is an
inverse mode of the synthetic aperture radar (SAR) [4], is a technique
to derive the two dimensional (2D) radar cross section [5, 6] distribution
of a target. The ISAR image is derived by synthesizing the reflected
signals of the target at several aspect angles, generally measured by
a fixed radar. Because this image can be utilized regardless of the
conditions of weather, day and night, it is widely used by many military
units for reconnaissance and recognition purposes along with the SAR,
the range profile and the micro-Doppler [7, 8].
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For the purpose of applying the ISAR image to the Korean
military system, we recently conducted an intensive research on
imaging and classification methods based on the range-Doppler
algorithm (RDA) [9, 10]. Then, based on the principles derived,
measurement was successfully conducted on a real Boeing747 aircraft
by using the Korea miniature synthetic aperture radar (KOMSAR)
with the support of Korean Agency for Defense Development. The
measured data was processed using the RDA composed of range
compression, range alignment, phase adjustment and cross-range
compression, and a high resolution ISAR image was obtained which
clearly represented the 2D scattering mechanism of the aircraft.
However, the rotation of the blades in the engine caused inter-pulse
phase difference called jet engine modulation (JEM). As a result,
serious noise-like blurring occurred in the cross-range direction. This
cross-range blurring can degrade the classification performance of
the ISAR image. Therefore, it must be removed for successful
classification. A recently proposed method removes JEM by using
the adaptive chirplet representation [11]. This method derived the
mathematical expansion of the cross-range signal for each range bin
by using chirplet basis functions, removing the JEM signals whose
frequency center and chirp rate are larger than those of the rigid body.

Although JEM signals can be removed successfully using the
difference of parameters, it requires enormous computation time to
estimate the four parameters of time window, time center, frequency
center and chirp rate if the evolution-based algorithms such as genetic
algorithms (GA) and particle swarm optimization (PSO) algorithms
were used [9]. Recently, a fast refinement method (FRM) based on
the gradient descent rule has been introduced [12]. However, this
method assumes that a set of good initial parameters was guaranteed.
Convergence of the chirplet expansion by this method often fails
depending on the initial values of the parameters. Thus, for fast
convergence, a new method is required that accurately estimates the
initial parameters.

In this paper, we propose a method of accurately estimating
the initial parameters for fast expansion of the signal into a sum of
chirplet basis functions. The proposed method is capable of removing
JEM signals efficiently. The proposed method utilizes the fast
zooming algorithm (ZA) [13] for adaptive Gaussian representation and
dynamically adjusts parameters if the expansion does not converge.

The results of our simulations on Boeing747 demonstrate that
JEM signals are successfully removed, and clear ISAR images are
derived in a relatively short computation time.
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2. PRINCIPLES

2.1. Range-Doppler Algorithm

In this paper, we utilized the range-Doppler algorithm (RDA) which
is a widely used method of ISAR imaging (Fig. 1) [1]. RDA makes
use of the difference of Doppler frequency in the cross-range direction
caused by the rotational component of a target. RDA is composed
of three steps; range compression, translational motion compensation
(TMC) composed of range alignment and phase adjustment, and cross-
range compression [7, 8]. Range compression is the procedure to derive
range profiles (RPs) that represent one dimensional (1D) distributions
of scatterers by compressing the received radar signal using a matched-
filter. TMC compensations for the inter-pulse translational movement
of the target and the cross-range compression position each scatterer
in the cross-range direction using the difference of Doppler frequency.

Figure 1. Procedure of RDA.

TMC is the most important procedure in ISAR imaging because
the target is engaged in unnecessary translation motion in addition to
the preferred rotational motion. Therefore, the observation points of
each scatterer are different on the inter-pulse basis, and this obstructs
the formation of focused ISAR images. TMC is composed of range
alignment, and phase adjustment compensates for the translational
motion and provides focused ISAR images. Range alignment is the
procedure to align RPs to place each scatter at identical observation
points using relative shift τ that minimizes 1D entropy function defined
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by [2]

HGm,Gm+1 = −
N−1∑

0

Ḡ(τ, n) ln Ḡ(τ, n), (1)

where

Ḡ(τ, n) =
|Gm(n)|+ |Gm+1(n− τ)|∑N−1

0 (|Gm(n)|+ |Gm+1(n− τ)|) , (2)

Gm(n) and Gm+1(n) are range profiles m and m + 1, and N is the
total number of range bins. Phase adjustment removes residual phase
errors caused by the range alignment, and 2D entropy function is used
as a function defined as follows [2]:

Ent =
M∑

i=1

N∑

j=1

|I(i, j)|2 ln |I(i, j)|2 (3)

where I(i, j) is the I(i, j)th pixel value of the ISAR image and M is
the number of RPs.

2.2. Signal Expansion Using the Chirplet Basis Function

The chirplet basis function is widely used in radar signal systems,
seismic signal analysis and signal processing areas [13, 14]. The chirplet
basis function is defined by

hk(t)=
√

π

αk
exp

(−αk(t−tk)2
)
exp

(−j2πfk(t−tk)−jπβk(t−tk)2
)
, (4)

where αk, tk, fk, and βk are the inverse of the time window, time
center, frequency center, and chirp rage, respectively. A signal can
be represented by a sum of M chirplet basis functions with different
parameters as follows [13, 14]:

s(t) =
M∑

k=1

Akhk(t), (5)

where Ak is a constant derived by the inner product between sk(t) and
hk(t). With k = 0 and s0(t) = s(t), which is the original signal, sk(t)
is defined by

sk+1(t) = sk(t)−Akhk(t), (6)
and (αk, tk, fk, βk) are the parameters that maximize the inner product
defined as follows:

(αk, tk, fk, βk) = arg max
∣∣∣∣
∫ ∞

−∞
sk(t)hk(t)dt

∣∣∣∣ , (7)
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(6) and (7) are repeated until the total energy of sk+1(t) is less than a
predetermined limit. It was proven that (6) converges to 0 as k goes
to infinity [13, 14].

2.3. Time-frequency Characteristics of a Rotating Scatterer

This paper utilizes the conclusion reached in [15] based on the signal
modeling for ISAR imaging that includes the JEM signal. Assuming
that a target is composed of the rigid body rotating with an angular
velocity ωB and the blade with ωR (ωR À ωB) and that TMC has been
successfully conducted, fk and βk of a scatterer m of the rigid body
located at (xm, ym) and those of a scatter n of a blade at (xn, yn) can
be represented by two groups of ellipsoids as follows [15]:

f2
k

(lnωR)2
+

β2
k

(lnωR)2
=

(
2fc

c

)2

, (8)

where lm =
√

x2
m + y2

m, ln =
√

x2
n + y2

n, fc is the center frequency of
the radar. Because ωR is much larger than ωB in (8), the rigid body is
located near the origin and the blade is far from it in (fk, βk) domain.
Therefore, for each range bin, JEM signals caused by the blade can
successfully be removed if the cross-range radar signal is represented
by (5), components near and far from the origin are properly clustered
and the chirplet functions in each cluster are summed up again (Fig. 2).

Figure 2. Separation of the body and the JEM signal [11].

2.4. Efficient Estimation of Chirplet Parameters

As mentioned above, JEM signals can be successfully removed by
removing the chirplet functions having large (fk, βk) values when the
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cross-range signal is expressed by a sum of chirplet functions. However,
finding chirplet parameters in (4) is very difficult because (7) is a
four dimensional (4D) optimization. Although the population-based
algorithms such as GA and PSO may provide an optimized solution,
enormous computation time can be consumed to find every (αk, tk, fk,
βk).

In this paper, we apply the FRM for adaptive chirplet
representation proposed in [12]. This method derives the parameters
by curve-fitting in the 4D search space, and the convergence of (5) is
very fast if a set of good initial parameters are supplied; the short time
Fourier transform with a coarse time-frequency sampling grid is utilized
in [12] for the estimation of the initial parameters. However, if the
initial parameters are not proper, Ak provided by (αk, tk, fk, βk) can be
a local minimum, and as a result, (6) can fail to converge. In addition,
when the spectrum is distributed in a narrow time-frequency region,
deriving the parameters for every grid can be ineffective and consume
much computation time because (6) can converge using a small number
of iterations conducted near the large spectrum values. Therefore, a
good initial point is the prerequisite for the fast convergence of this
method.

The method proposed in this paper to estimate the initial
parameter is based on the ZA which is a stage-by-stage approach
algorithm to estimate the Gaussian basis function given as follows [13]:

gk(t) =
√

π

αk
exp

(−αk(t− tk)2
)
exp (−j2πfk (t− tk)), (9)

Note that gk(t) is hk(t) with βk = 0. Starting from the center of the
entire time span, this method sequentially divides the variance 1

αk
of

gk(t) and the time increment ∆tk. Then, among tk and tk ±∆tk, the
time and fk that maximize the absolute value of the Fourier transform
of the product between gk(t) and sk(t) are sought. This procedure is

Figure 3. Principle of zooming algorithm.
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repeated until the maximum absolute value no longer increases and
αk, tk and fk are selected (Fig. 3).

However, ZA does not always provide initial parameters that
make (6) convergent. For example, in a test using a frequency-
hopping signal having three frequencies, (6) was convergent by the
Gauss functions given in Fig. 4(a), whereas those in Fig. 4(b) did not
converge (6). Because Figs. 4(a) and (b) were formed by different αk

and tk, it is required to dynamically adjust these two values if (6) does
not converge. In this paper, if Ek+1, which is the energy of sk+1(t),

(a) (b)

Figure 4. Convergent and non-convergent Gauss functions.
(a) Convergent. (b) Non-convergent.

Figure 5. Proposed method for chirplet decomposition.
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is larger than the energy Ek of sk(t) for p iterations, i.e., sk+1(t) does
not converge for p iterations, and Ek+1 is larger than η times the total
energy E of s(t), a new chirplet decomposition starts with αk replaced
by αk

(1+q) , where q is the number of failures in convergence. tk is replaced
by αk

2(1+q) . If Ek+1 < Ek, p is set to 0 and the iteration continues, and
this procedure is repeated until Ek+1 < ηE (see Fig. 5).

3. SIMULATION RESULTS

The raw ISAR data of a real Boeing747 was measured in the Gimhae
International Airport (http://www.airport.co.kr/doc/gimhae/) using
the KOMSAR equipment whose parameters are summarized in Table 1.
Two ISAR images were constructed using RDA for the demonstration
of the proposed method, and each image was derived using 274 pulses;
300∼573th pulses and 2500∼2773th pulses for images 1 and 2 (Fig. 6).

Table 1. Radar parameters used for measurement.

Radar parameter Value

Pulse repetition frequency 2 kHz

Pulse width 5 µs

Carrier frequency X-band

Bandwidth 100MHz

Resolution 1.5m

Sampling frequency 150MHz

(a) (b)

Figure 6. Two ISAR image of Boeing 747. (a) Image 1 (300∼573th
pulses). (b) Image 2 (2500∼2773th pulses).
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In estimating chirplet parameters, p = 3 and η = 0.05 were used,
which means αk and tk are divided by 2 and the βk is found again by
using FRM if the energy of sk(t) did not increase as much as previous
three iterations. In addition, iteration was stopped when Ek+1 was
smaller than 5% of E. The initial values applied to ZA using the
cross-range signal for all range bins are αk = 137, which is a half of the
number of pulses, tk = 137 and ∆tk = 137/2 = 67.5. In the simulation
that used the cross-range signal in the 60th range bin, failures on the
convergence of (5) occurred 4 times due to the poor initial values found
by ZA (see Fig. 7).

By using the threshold values 0 ≤ ω ≤ 0.4π and |β| ≤ 0.002, JEM
signals of the two ISAR images in Fig. 6 were successfully removed

Figure 7. Convergence curve of Fig. 6(a).

(a) (b)

Figure 8. JEM-removed ISAR images. (a) Image 1 (300∼573th
pulses). (b) Image 2 (2500∼2773th pulses).
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by the proposed method (Fig. 8). The simulation was conducted
using the Intel i7 processor, and the two ISAR images in Fig. 8
were derived within 10 s; those in Fig. 8(a) within 8.52 s and those
in Fig. 8(b) within 6.39 s. The computation time may be further
reduced if parallel processing technic is used with several processors
which are generally installed in modern multifunctional radars. This
demonstrates that the proposed method can be applied to the real-time
target recognition. Some residual JEM signals remain near the nose of
the aircraft as shown in Fig. 8(b) due to the threshold value, and they
can be removed by readjusting the threshold values. However, because
readjusting the threshold value can be another computational burden,
the optimum threshold value should be predetermined. Therefore,
determining the optimum threshold that can be used regardless of
ISAR images is another topic for successful removal of JEM signals
using chirplet basis functions. Comparison of the ISAR images in
Fig. 6 and Fig. 8 in terms of the 2D entropy also demonstrates that
the proposed method improves the quality of the ISAR images after
JEM removal; 2D entropy of Fig. 6(a) improved from 7.1452 to 6.1659
and that of Fig. 6(b) from 7.116 to 6.39 (Table 2).

Table 2. Comparison of 2D entropy.

ISAR image

(before JEM removal)

2D

entropy

ISAR image

(after JEM removal)

2D

entropy

Fig. 6(a) 7.1452 Fig. 8(a) 6.1659

Fig. 6(b) 7.116 Fig. 8(b) 6.39

4. CONCLUSION

In this paper, we proposed an efficient method to remove JEM signals
of Boeing747 aircraft measured by the KOMSAR equipment using the
chirplet basis function. To resolve the difficult task of finding the
initial four parameters for FRM which make the chirplet decomposition
converge, the proposed method found four parameters using the ZA
with an iterative adjustment of αk and tk; αk and tk were iterative
changed when the signal energy did not decrease for p iterations. In
simulations where the two ISAR images derived from the measured
signal of Boeing747 are used, JEM signals were successfully removed
and the 2D entropy that shows the image focus was considerably
improved. In addition, the processing time of less than 10 s proved that
the proposed method is capable of carrying out real-time automatic
target recognition.
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