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Abstract—A novel Frequency Selective Surface (FSS) configuration
is proposed for the design of polarization-insensitive metamaterial
absorbers operating below 1 GHz, where the first resonances of small
commercial enclosures appear. The novel FSS shows a strong sub-
wavelength response, enhanced by the dielectric substrate, which
allows the design of compact planar absorbers with excellent angular
and polarization stability.

1. INTRODUCTION

In the electromagnetic (EM) shielding practice, metallic enclosures are
widely used to minimize unwanted emissions from noisy sources and
to improve the immunity of susceptible equipments against external
EM fields [1–4]. The shielding effectiveness (SE) [2, 5–7] of a cabinet is
usually quantified in the frequency domain according to the IEEE Std.
299: It is computed as the ratio between incident and shielded electric
(or magnetic) fields at a given position inside the enclosure. Recently,
alternative integral [8, 9] and time-domain definitions [10] have been
proposed too. The screening performance of a metallic enclosure can
be dramatically degraded in presence of cavity resonances, because
of the excitation of internal modes enhancing the EM field at given
positions. Consequently, in dealing with practical enclosures having
openings along their sides, the amount of EM field leaking into (or
exiting from) the enclosure can be greatly increased in the proximity
of such resonant frequencies [3, 5]. Therefore, it is a common practice
to line internal surfaces of cabinets with properly designed absorbers
in order to damp resonances [11–13].
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Frequency Selective Surfaces (FSSs) have been extensively studied
in a number of applications and frequency ranges [14, 15]: their
generally sharp frequency selective behaviour is well known and often
exploited as a positive characteristic, but in several circumstances
a large bandwidth is required and performance insensitive to angle
of incidence and polarization of the incident plane wave field are
pursued [16, 17]. Recently [18], the EM behaviour of FSSs has been
investigated against near-field sources.

In this work, a novel intertwined spiral-aperture FSS is proposed
as a possible candidate for the design of absorbers for damping
the first resonant modes inside commercial shielded enclosures (e.g.,
desktop computer cases), whose resonant frequencies are usually below
1GHz. The EM behaviour of the proposed FSS is characterized
in terms of the reflection coefficient against incident plane waves:
resonant frequencies, bandwidth (BW), fractional bandwidth (FBW),
and polarization stability in a broad range of incidence angles are
studied. Finally, an absorbing material based on the proposed FSS
is proposed and analysed in terms of its absorption capabilities.

In the Appendix, it is shown how the proposed FSS configuration
may be adapted to conform to apertures in actual enclosures
configurations.

2. DESCRIPTION OF THE PROBLEM

The EM problem under analysis is sketched in Fig. 1(a): a perfectly
conducting metallic enclosure with dimensions a × b × c, with an
aperture on one of its sides, is illuminated by an impinging external
field Einc = 1 V/m, which excite internal resonances deteriorating the
shielding performance of the cabinet. As an example, in Fig. 1(b) the
electric field SEE is reported for a common enclosure with dimensions
30 × 40 × 12 cm, with a rectangular 15 × 3 cm aperture on its front
side. The results are achieved by means of a Method of Moments
(MoM) formulation [18–20] in the frequency range between 100MHz
and 1 GHz. The aperture is illuminated with a normally-impinging
uniform plane wave with the electric field linearly polarized along the
shortest side of the aperture and the observation point is located at
the center of the enclosure.

It is evident that resonances and anti-resonances of the SEE

take place in the considered frequency range: they depend on the
position of the observation point inside the cavity and on the resonant
modes excited by the field source. Fig. 1(c) shows the maps of the
magnitude of the electric field in planes passing through the center
of the enclosure, at the first resonant frequency f = 615 MHz. It is
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Figure 1. (a) Shielding enclosure illuminated by an impinging plane
wave; (b) shielding effectiveness of the enclosure; (c) maps of the
magnitude of the electric field at the first resonant frequency f =
615MHz.

easy to note that the first resonant mode of the enclosure is excited,
which gives rise to a peak of electric field at the center of the enclosure
where the observation point is placed, and, consequently, causes the
antiresonance that is observable in the frequency trend of the SEE.

In order to improve the SEE, especially in the neighbourhood of
the resonant frequencies, the interior surfaces of the cabinet are lined
with an artificial absorbing material adequately designed.

3. INTERTWINED SPIRAL-APERTURE FSS

Recently, a new topology of planar FSSs composed of entwined
quadrifilar spirals has been proposed [21]: as shown in Fig. 2(a), it is
formed by the tessellation of a basic spiral with four arms protruding
from the reference unit cell into the gaps between the turns of four
spirals lying in the four adjacent unit cells. It should be noted that the
externally protruding arms are counter-wounded with respect to the
adjacent spiral arms. This type of element provides a very compact
unit-cell size, showing a strong sub-wavelength response at dimensions
smaller than 1/40 of wavelength, and has demonstrated a stable
response to both TE and TM waves incident at different angles [22].
The novel FSS here proposed is based on the dual structure represented
by an entwined quadrifilar spiral array (i.e., an intertwined spiral-
aperture array). In fact, the resulting structure shown in Fig. 2(a)
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Figure 2. (a) Doubly periodic array of entwined quadrifilar spirals
and (b) dual structure of entwined spiral apertures.

consists of an electrically continuous surface with a doubly periodic
array of entwined quadrifilar spiral apertures. The reflection coefficient
of this structure exhibits improved performance in terms of resonant
frequency and fractional bandwidth, providing compact unit cell sizes.
The geometrical parameters of the quadrifilar spiral-aperture surface
are the period p, the strip width w, the spacing g, and the number of
counter-wound spiral segments N , as shown in Fig. 2(b).

4. INTEGRAL EQUATION FORMULATION AND
SOLUTION

The considered EM problem can be described and efficiently solved by
means of a full-wave integral equation approach.

We consider an FSS represented by identical metallic objects of
arbitrary shape, periodically arranged in the xy-plane. Without loss of
generality, we assume that the periodic structure has skew axes x = 0
and y = x tanφ, with spatial periods py and ps, respectively. The
FSS is illuminated by a plane wave impinging with incidence angles φi

and θi measured according to a spherical reference coordinate system.
The structure, together with the geometrical and physical quantities,
is shown for clarity in Fig. 3. The electric field Einc of the incident
plane wave is

Einc = Einc [uθ cos (α) + uφ sin (α)] ej kinc·r (1)
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Figure 3. Sketch of a general 3-D problem with 2-D periodicity along
skewed axes. The particular case of two perpendicular axes can be
obtained setting the angle φ = 0.

where Einc is the plane-wave amplitude, α is the real polarization angle,
and the wave vector is

kinc = uxkinc
x + uyk

inc
y + uzk

inc
z , (2)

being

kinc
x = −k0 sin

(
θinc

)
cos

(
φinc

)

kinc
y = −k0 sin

(
θinc

)
sin

(
φinc

)

kinc
z = −k0 cos

(
θinc

)
,

(3)

where k0 = ω
√

µ0ε0 is the free-space wavenumber and r = uxx+uyy+
uzz defines the observation point.

Thanks to the two-dimensional (2-D) periodicity of the structure
and to the pseudo-periodic nature of the plane-wave excitation, based
on Floquet’s theorem [23], only one spatial period (unit cell) needs to
be considered. In particular, the current induced on the conductive
regions can be calculated by solving the relevant electric-field integral
equation (EFIE):

un ×
[
Einc + Es (J)

]
= 0 on S (4)

where Einc is the incident field of the incoming plane wave, Es (J) is
the scattered field due to the unknown induced electric current density
J on the PEC elements, and un is the unit vector normal to the surface
S of the elements within the unit cell. The EFIE in (4) can be solved
more efficiently in a mixed-potential (MPIE) form [24]: by introducing
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the magnetic vector potential A and the electric scalar potential V ,
the scattered electric field can be expressed as

Es =
∫

S

( − jωA − ∇V ) dS′

= −jω

∫

S

GA · JdS′ +
1
jω

∫

S

∇ (GV ∇ · J) dS′ (5)

where GA and GV are the potential periodic Green’s functions for a
2-D periodic array of electric dipoles and electric charges in free space,
respectively. The computation of all the dyadic and scalar periodic
Green’s functions can be accelerated through the Ewald summation
technique, as described in the next subsection.

4.1. Green’s Function Calculation

The solution of the integral Equation (5) requires the computation
of the Green’s functions GA and GV . For a periodic structure in
free space, the dyadic magnetic vector potential Green’s function
is diagonal, i.e., GA = µ0 (uxuxGp + uyuyGp + uzuzGp), while the
scalar electric potential Green’s function is GV = Gp/ε0. Thus, the
solution of the EM problem in the 2-D periodic structure under analysis
requires the efficient and accurate computation of the periodic Green’s
function Gp (r) only. However, the simple spatial representation of the
2-D free-space periodic Green’s function Gp has the form of the very
slowly converging double series [25, 26]

Gp

(
r, r′

)
=

1
4π

n=+∞∑
n=−∞

m=+∞∑
m=−∞

e−jk0Rmn

Rmn
e−jβinc

t ·ρmn (6)

where k0 = 2π/λ0 is the free-space wavenumber and

βinc
t = βinc

x ux + βinc
y uy (7a)

ρmn = npx cosφux + [mps + npx sinφ] uy (7b)
Rmn = |r− rmn|

=
√

(u− npx cosφ)2 + (v −mps − npx sinφ)2 + w2 (7c)

In (7), βinc
x and βinc

y are the x and y (transverse) components of
the phase vector βinc of the incident plane wave, whereas u = x − x′,
v = y − y′ and w = z − z′ are the three projections along the
principal axes of the distance R = |r− r′| between the observation
point r = (x, y, z) and the source point r′ = (x′, y′, z′) in the (0, 0) unit
cell.
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It is evident that the spatial representation of the 2-D periodic
Green’s function in (6) has a very slow convergence, since the terms
in the summation (6) decay as O (1/m) as m → ∞ and O (1/n) as
n → ∞. To accelerate the calculation of the 2-D periodic Green’s
function, the Poisson’s transformation is first applied to produce the
equivalent and alternative expression

Gp

(
r, r′

)
=

1
2jA

n=+∞∑
n=−∞

m=+∞∑
m=−∞

e−jkz(m,n)|z|

kz (m,n)
e−j kt(m,n)·(ρ−ρ′) (8)

where

kt (m,n) =ux

[
βinc

x + 2π

(
n

py cosφ
− m sinφ

ps cosφ

)]

+ uy

(
βinc

y +
2π

ps
m

)
(9a)

kz(m,n) =
√

k2
0 − kt (m,n) · kt (m,n) (9b)

while ρ and ρ′ are the vectorial projections of the observation and
source points on the transverse xy-plane, respectively, and A =
pyps cosφ is the area of the unit cell. The representation in (8),
known as spectral representation, is exponentially convergent, except
for observation points close to the source plane. In the latter cases,
the convergence is extremely slow and, in order to accelerate the
calculation of the 2-D periodic Green’s function, the Ewald summation
technique is adopted [27], since it efficiently combines the spatial (6)
and the spectral (8) representations to obtain a final expression of the
2-D periodic Green’s function as a sum of two Gaussian fast decaying
convergent series. In particular, the 2-D periodic Green’s function can
be expressed as Gp = Gspat + Gspect. The modified spatial series is
given by

Gspat=
1
8π

n=+∞∑
n=−∞

m=+∞∑
m=−∞

e−jβinc
t ·ρmn

Rmn

·
[
e−jk0Rmnerfc

(
RmnE− jk0

2E

)
+e+jk0Rmnerfc

(
RmnE+

jk0

2E

)]
, (10)

while the modified spectral series is given by

Gspect=
1

4jA

n=+∞∑
n=−∞

m=+∞∑
m=−∞

e−jkt(m,n)·(ρ−ρ′)

kz (m,n)

·
[
e−jkz |w|erfc

(
jkz

2E
−|w|E

)
+e+jkz |w|erfc

(
jkz

2E
+ |w|E

)]
, (11)
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where erfc(·) is the complementary error function. An efficient
algorithm for the evaluation of the complementary error function with
complex argument is reported in [28]. The real number E is the
splitting parameter of the Ewald method and it is usually chosen by
balancing the rate of decay of the two series in order to minimize the
total number of terms in (10) and (11) [29, 30]. For spatial periods
smaller than one wavelength the optimum value is [29]

Eopt =
√

π

A
. (12)

4.2. MoM Solution

The integral Equation (5) is solved by using the MoM formulation
with subdomain basis functions and a Galerkin testing procedure. The
surface S of the individual element in the unit cell has been discretized
through nonoverlapping triangles and the unknown electric current
density J has been expanded by a set of N subdomain vector basis
functions (BFs) Λi as

J (r) =
N∑

i=1

JiΛi (r) , (13)

where Ji are unknown complex amplitudes. As BFs we used the first-
order roof-top Rao-Wilton-Glisson basis functions [31], which provide
a continuous normal and linear tangent (CN/LT) representation of the
vector quantities and proved to be accurate and efficient [23]. Each BF
is associated with one interior edge i of the mesh (i = 1, . . . , N) and it
is defined on the two triangles T+

i and T−i adjacent to such i-th edge
as shown in Fig. 4. The BF can be expressed as

Λi (r) =





+ `i

2A+
i

ρ+
i (r) r inside T+

i

− `i

2A−i
ρ−i (r) r inside T−i

0 elsewhere

, (14)

where `i is the length of the i -th edge, A±i are the areas of the surface
triangular patches T±i and the vectors ρ±i connect the observation point
r with the third free vertex of the plus/minus triangle.

Introducing the subdomain basis functions in Equation (5) and
applying the Galerkin’s test procedure, we obtain the final matrix
equation of the problem as

[Z] [J] = [V] (15)
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where

Zij = jω

∫

S

Λi(r) ·
∫

S

GA(r, r′) ·Λj(r′) dS′dS

+
1
jω

∫

S

∇ ·Λi(r)
∫

S

GV (r, r′)∇ ·Λj(r′) dS′dS (16a)

Vi =
∫

S

Λi(r) ·Einc(r)dS, (16b)

and J is the vector of unknown complex amplitudes.
As concerns the integrations, the GF shows a singularity 1/R as

the observation point r approaches the source point r′ (i.e., R → 0); in
the proposed approach, such a singularity is extracted and analytical
formulas [32] are used for the correct integration of the static 3-D
GF times the vector BFs on the source triangles. Classical Gaussian
quadrature rules are then used to compute all the remaining source
and testing integrals [33].

A final remark concerns the MoM implementation for FSSs with
PEC objects extending across the unit-cell boundaries. In such cases,
the basis functions associated with the edges lying on the borders must
allow the current to flow from one unit cell to the next. Floquet’s
theorem establishes that the currents on the periodic boundary of
a surface mesh are related to the currents on the opposite periodic
boundary through a phase relation. If the unknown current amplitude
at an edge on one of the periodic boundaries is Jm, the value of the
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current at the corresponding edge on the opposite periodic boundary
is given by Jmejβinc·p [15]. This constraint is enforced in the MoM
implementation adopting a symmetrical mesh on the opposite borders
of the unit cell. The basis functions associated with opposite edges are
joined to create only one unknown in the MoM system [18]. In this
way, we end up with a complex-valued basis function which crosses the
border, being partially defined on the triangle belonging to one edge
and partially on the triangle belonging to the opposite edge, linearly
independent from the others.

5. NUMERICAL RESULTS

To assess the suitability of the proposed structure in the frequency
range below 1 GHz, we have computed the reflection coefficient Γ
of the doubly periodic quadrifilar spiral apertures surface with the
geometrical parameters reported in Table 1. All the structures are
electrically small: in fact the period p ranges around 10 mm: at
the maximum frequency of 1 GHz, the ratio between the maximum
structure dimension and the wavelength is about 1/30. The results
confirm that this type of doubly periodic elements shows a strong sub-
wavelength response.

Table 1 summarizes the main features of the reflection coefficients
of the periodic structures as functions of geometrical parameters and
spiral segments number: the resonant frequency fr, the BW computed
at a level equal to 20 dB, and the relevant FBW.

Table 1. Influence of geometrical parameters and number of spiral
segments on resonant frequency, bandwidth and fractional bandwidth.

Structure
w g p

N
fr BW FBW

[mm] [mm] [mm] [GHz] [GHz] [%]
#1 0.10 0.10 11.00 14 0.395 0.042 10.81
#2 0.15 0.10 10.75 11 0.522 0.052 10.09
#3 0.20 0.10 10.50 9 0.664 0.063 9.51
#4 0.10 0.15 10.75 11 0.493 0.061 12.41
#5 0.10 0.20 10.50 9 0.602 0.082 13.63
#6 0.10 0.30 10.80 7 0.737 0.113 15.40

Figure 5(a) shows the comparison among the reflection coefficients
under a TEM impinging wave (α = 0◦, θinc = 0◦ and φinc = 90◦) of
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Figure 5. Reflection coefficient Γ as function of (mainly) (a) arm
width w and (b) arm spacing g.

the first three structures denoted in Table 1 as #1, #2, and #3 whose
main difference is the width w. It should be noted that the number
of counter-woven segments N reduces by increasing w in order to keep
the period p almost constant.

In addition, Fig. 5(b) shows the comparison among structures #1,
#4, #5, and #6 characterized by an increasing spacing g. Even in this
case the period p is kept almost constant, by reducing progressively the
number of segments N . All the relevant geometrical parameters have
been chosen in order to have a resonant frequency fr below 1 GHz. In
particular, it is possible to note that the increase of the width w from
0.1mm to 0.2 mm leads to higher resonant frequencies, (from 395 MHz
to 664 MHz) and to a (small) reduction of the FBW from 35.31% to
31.24%, respectively. On the contrary, the increase of the spacing g
from 0.1 to 0.3mm still leads to higher resonant frequencies (from
395MHz to 737MHz), but also significantly increases the relevant
FBW (from 35.31% to 49.88%, respectively).

The results have been fully validated by means of two commercial
codes: CST based on the Finite Integration Technique in the Time
Domain and HFSS based on the Finite Element method in the
Frequency Domain [34, 35]. Fig. 6 shows the comparison among the
reflection coefficients Γ of the structures #1 and #6 (only these two
FSS are considered for the sake of conciseness) computed either by
the proposed MoM procedure and by the aforementioned codes. The
agreement is excellent.

In Figs. 7(a) and 7(b), the sensitivity of BW and FBW with
respect to incidence angle variations is reported considering TE- (α =
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90◦ and φinc = 90◦) or TM-polarized (α = 0◦ and φinc = 90◦) plane
waves, respectively. It should be noted that both BW and FBW
increase with the angle of incidence.

Theoretically, when the spatial periods are much lower than the
wavelength, the behaviour of an FSS can be predicted by an equivalent
surface impedance Zs that is homogeneous, i.e., independent of the
spatial position on the plane. Nevertheless, the analytical expression of
the surface impedances can be carried out only in simple configurations
(e.g., 1-D array of wires, 2-D array of patches or apertures), being
the results of complex homogenization techniques [36–38]. The
surface impedance provides an equivalent circuit representation of the
FSS that is commonly used for the analysis. When the analytical
expression of the surface impedance is not available, an approximate
equivalent circuit model can still be obtained adopting extraction
techniques directly on the results of measurements or full-wave
numerical simulations. Yet, the values of the lumped elements in
the equivalent circuit are valid only for the particular geometric
configuration and incidence angle of the impinging wave that have
been considered.

In the plane-wave incidence problem, the spiral-aperture array can
be represented by a LC circuit with a shunt reactance composed of an
inductance L and a capacitance C connected in parallel, as shown in
Fig. 8. The equivalent shunt impedance L has been computed using
the extraction technique described in [39–42] passing through the Z-
parameters of the structure, easily obtained from the S-parameters.
Fig. 9 shows the comparison between Z- and S-parameters computed
through the MoM code and the relevant parameters obtained from
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Figure 7. Reflection coefficient Γ ((a) and (b) structure #1, (c) and
(d) structure #6) as a function of the angle of incidence for TE and
TM -polarization.

the equivalent circuit extracted for the structure #1. The L and
C parameters retrieved from the simulation of the structure #1
have the values L = 83.237 nH and C = 1.936 pF, respectively.
The S-parameters of the shunt-thru two-terminal component can be
computed as

Sshunt =
1

YFSS + 2Y0

[ −YFSS 2Y0

2Y0 −YFSS

]
(17)

where YFSS = [ZFSS]
−1 is the equivalent shunt admittance. Although

the simple equivalent-circuit model gives only a basic description of
artificial surfaces with complex unit-cell geometries (such as the doubly
periodic array of entwined quadrifilar spiral apertures), it allows a fairly
accurate guess of the FSS response near the fundamental resonance and
provides qualitative insights into the principal features of the resonant
structure.
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surrounding medium, represented by means of transmission lines (or
by its characteristic impedance, Z0).
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Figure 9. Frequency trends of (a) Z- and (b) S-parameters computed
through the full-wave MoM code or the equivalent circuit shown in
Fig. 8.

Successively, the FSS structures #2 and #4 of Table 1 have been
used to design an absorber for the first resonant frequency of the
shielded box shown in the inset of Fig. 1. The absorber configuration
is shown in Fig. 10: it is a dielectric multilayered structure comprised
of the two piled up dielectric slabs (dielectric #1 and #3) with the
first FSS structure (FSS #2) placed on the surface between them and
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Figure 10. Configuration of the proposed absorber, realized by means
of two dielectric layers and two entwined spiral aperture FSSs.

the second FSS structure (FSS #4) placed on the top surface. The
continuous PEC plate placed at the bottom represents, generally with
good approximation, the walls of the box. The use of two closely
interacting FSSs is instead suggested in order to easily match the
resonant frequency of the field which needs to be damped. In this
connection, the FSS #4 is assumed to be perfectly conducting while the
FSS #2 is characterized by a finite conductivity (i.e., it is a lossy FSS).
In particular, the parameters of the designed absorber are as follows:
εr1 = 10, εr3 = 4.2, tan δ1 = tan δ3 = 0.025, d1 = d3 = 4 mm. Finally,
the FSS #2 is formed by a resistive sheet with surface resistance equal
to 150 Ω/¤.

From Fig. 11 it is possible to note that the absorber is effective
exactly at the first resonant frequency of the shielded enclosure
and that its performance is reasonable compared to its geometrical
dimensions. The proposed FSSs included into the absorber are able to
absorb an EM field whose wavelength is about 50 times greater than
its spatial period p. Moreover, the absorbing performance are not too
much degraded by increasing the angle of incidence θinc, as shown in
Fig. 11. Nevertheless, a larger bandwidth would be useful to damp
also higher-order resonant modes: an ongoing research is currently
conducted to improve the BW, exploiting multi-resonances.
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Figure 11. Reflection coefficient Γ of the proposed absorber
configuration as function of the incidence angle, for (a) TE- and (b)
TM -polarization.

6. CONCLUSIONS

In this work, a new intertwined spiral-aperture frequency-selective sur-
face is proposed for the design of polarization-insensitive metamaterial
absorbers that operate below 1GHz, where the first resonances of small
commercial enclosures take place. The presented results show that the
proposed FSS has a strong sub-wavelength response, enhanced by the
dielectric substrate, which is suitable for the design of compact planar
absorbers with excellent angular and polarization stability. Finally,
a compact and light-weight absorbing material based on these novel
FSSs is presented and its EM behavior analyzed.

APPENDIX A.

Actual enclosures generally present a number of apertures of different
shapes. The absorbers used to line the internal sides of actual
enclosures must conform with the apertures. To this end, the proposed
FSS geometry may be adapted preserving the main features of the
configuration, as shown in Fig. A1: in the example, one unit cell
has been removed and the arms of neighboring spiral apertures are
connected in order to retain apertures intertwining. In case of
apertures wider than one unit cell, a similar adaptation may be also
considered.
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APERTURE

Figure A1. Adaption of the proposed absorber’s geometry to a
possible aperture a wall of the enclosure.
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