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Abstract—The near-field surrounding devices can be arbitrarily
sculpted if they are embedded in a spatially variant anisotropic
metamaterial (SVAM). Our SVAMs are low loss because they do not
contain metals and are extraordinarily broadband, working from DC
up to a cutoff. In the present work, a microstrip transmission line was
isolated from a metal object placed in close proximity by embedding
it in a SVAM so that the field avoided the object. Our paper begins
by outlining a simple model for studying transmission lines embedded
in SVAMs. We then present our design and experimental results to
confirm the concept.

1. INTRODUCTION

3D printing is poised to revolutionize manufacturing [1] and transform
the way electronics and electromagnetic devices are designed and
manufactured. It offers the ability to arbitrarily place different
materials in three dimensions with high precision. This will enable us
to break away from traditional planar designs and to utilize the third
dimension like never before. More functions can be fit into the same
amount of space, products with novel form factors can be more easily
manufactured, interconnect can be routed more smoothly, interfaces
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can be better implemented, electrical and mechanical functions can be
comingled, and entirely new device paradigms will be invented. When
we depart from traditional planar topologies, however, many new
problems arise like signal integrity, crosstalk, noise, and unintentional
coupling between devices [2–5].

Many solutions have been proposed to reduce coupling and cross
talk including via hole fences [6, 7], guarded ground tracks [8], step
shaped transmission lines [9], and even faraday cages [10]. All of these
approaches, however, use metals and can produce even more problems
in the framework of a 3D system because the isolation structures
themselves occupy space and limit how closely components can be
placed. In the present work, we propose spatially variant anisotropic
metamaterials (SVAMs) as an all-dielectric technique to mitigate
these problems. Anisotropic materials possess a different dielectric
response depending on the direction of the field. In such a case, the
permittivity and/or permeability are described by tensors instead of
scalar quantities. Inside an anisotropic medium, the fields tend to
develop in the directions with the highest constitutive parameters.
This can be confined to a single direction if the anisotropy is made
uniaxial. By spatially varying the orientation of the anisotropy around
a device, the near-field can be sculpted almost arbitrarily on a highly
subwavelength scale. In fact, static fields can be sculpted the same
way.

The degree to which fields can be sculpted inside SVAMs depends
on the strength of the anisotropy, or birefringence, and how well the
orientation can be spatially varied. Metamaterials are engineered
composites composed of a periodic lattice of physical features that
interact with the electromagnetic field to provide new and useful
properties [11, 12]. They can provide very strong birefringence and,
combined with 3D printing, provide a mechanism for spatially varying
the orientation of the anisotropy [13]. Traditional metamaterials
are composed of resonant metallic elements that produce very high
loss [14, 15]. To overcome this, our SVAMs are all-dielectric so they
can be composed of very low loss materials and even be monolithic.
Further, our SVAMs are nonresonant so they are extraordinarily
broadband, working from DC up to a cutoff where the structure
becomes resonant.

In this paper, we present a simple and powerful numerical
technique that makes it easy to study devices embedded in spatially
variant anisotropic media. Many commercial solvers such as Ansys
HFSSTM can either not incorporate arbitrary anisotropy or it is
prohibitively difficult to build spatially variant anisotropy into the
model. We use our tool to study how the field surrounding a microstrip
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transmission line can be sculpted by embedding it in a SVAM. We
study the impact of the strength of the anisotropy as well as spatially
varying the orientation of the anisotropy. Based on these findings,
we demonstrate the concept experimentally by isolating a microstrip
transmission line from a metal object placed in close proximity by
embedding it in a specially designed SVAM.

2. MODELING APPROACH

2.1. Governing Equations

The fundamental mode in a transmission line is very close to TEM
(transverse electromagnetic). In this case, the analysis reduces to
an electrostatic problem and transmission lines can be modeled using
the inhomogeneous Laplace’s equation instead of the more rigorous
wave equation. We start with Maxwell’s divergence equation, the
constitutive relation for the electric field in an anisotropic material,
and the relation between the electric field and the scalar potential.
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We derive the inhomogeneous Laplace’s equation by substituting
Equation (2) into Equation (1) to eliminate the D field, and then
substituting Equation (3) into this new expression to eliminate the E
field.

[
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∂x

∂
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] [
εxx (x, y) εxy (x, y)
εyx (x, y) εyy (x, y)

] [
∂/∂x
∂/∂y

]
V (x, y) = 0 (4)

Given a solution to this equation, the E field can be computed using
Equation (3) and then the D field computed using Equation (2).
At this point, all of the fields surrounding the device are known,
can be visualized, and can be used to calculate the transmission line
parameters. First, we calculate the distributed capacitance C of the
line by looking it at as a capacitor. Given the electric fields, the total
energy U stored in this system is

U =
1
2

∫∫

A

(
~D · ~E

)
dxdy. (5)
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This integral is taken over the entire cross section of the transmission
line and must encompass all of the field energy. The energy stored in a
capacitor is related to its capacitance C and stored voltage V0 through
Equation (6).

U = CV 2
0

/
2 (6)

Combining Equations (5) and (6) gives us an equation to calculate the
distributed capacitance from the electric fields.

C =
1

V 2
0

∫∫

A

(
~D · ~E

)
dxdy (7)

Second, if the medium surrounding the transmission line has no
magnetic response, we can calculate the distributed inductance L
directly from the distributed capacitance Cair of the same transmission
line embedded in air instead of the anisotropic dielectric. In this case,
the velocity of the wave on the line is related to the transmission line
parameters through c0

∼= 1/
√

LCair . Solving this for L yields

L = 1
/(

c2
0Cair

)
. (8)

Given the distributed inductance and capacitance, the characteristic
impedance of the transmission line is

Z0 =
√

L/C (9)

and the propagation constant at frequency ω is

β = ω
√

LC. (10)

2.2. Numerical Solution to Equation (4)

The remaining challenge is obtaining the solution to Equation (4).
We solved this using a simple finite-difference method. This approach
approximates the derivatives using central finite-differences. To handle
this in a straightforward manner, we staggered the position of Ex, Ey,
and V across a two-dimensional (2D) grid. The position of these terms
across a 4 × 4 grid is illustrated in Figure 1. The potential is located
at the origin of each cell in the grid. The electric fields are positioned
at the cell boundaries, but offset from the origin by a half cell.

After approximating the derivatives with finite-differences, each of
Equations (1)–(3) are written once for every cell in the grid. Adopting
the matrix operators presented in Refs. [16, 17], these large sets of
equations can be written in block matrix form as

[Dx Dy]
[
dx

dy

]
= 0, (11)
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Figure 1. 4× 4 grid for the finite-difference solution to Equation (4).

[
dx

dy

]
=

[
εxx Rεxy

RTεyx εyy

] [
ex

ey

]
, (12)

[
ex

ey

]
= −

[
DT

x

DT
y

]
v. (13)

Here, Dx and Dy are banded matrices that calculate spatial derivatives
of the electric fields across the staggered grid. The ‘T’ superscript
indicates a transpose operation. The terms εxx , εxy , εyx , and εyy

are diagonal matrices containing the permittivity functions across the
grid. The functions εxx and εyx are defined to be at the same points
as Ex while the functions εxy and εyy are defined at the same points
as Ey. R is a banded matrix that interpolates the Ey quantities to be
at the same positions as the Ex quantities. RT is the transpose of R
and interpolates Ex quantities to be at the same positions as the Ey

quantities. The terms dx, dy, ex and ey are column vectors containing
the field components Dx, Dy, Ex, and Ey respectively throughout the
grid. Lastly, v is a column vector containing the scalar potential V
throughout the grid. The matrix form of Equation (4) is derived by
substituting Equation (12) into Equation (11) to eliminate dx and dy,
and then using Equation (13) to eliminate ex and ey. The resulting
block matrix equation can be written as

Lv = 0, (14)

L = [Dx Dy]
[

εxx Rεxy

RTεyx εyy

] [
DT

x

DT
y

]
. (15)

Equation (14) has only a trivial solution because we have not yet
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defined the potential applied to the conductors. To do this, we
construct a diagonal matrix F which has 1’s in the diagonal positions
corresponding to where conductors are placed on the grid. 0’s are
placed everywhere else. We further construct a column vector vf which
contains the voltages applied to each of the conductors identified in F.
Given these, we modify Equation (14) according to

L′v = b, (16)
L′ = F + (I− F)L, (17)
b = Fvf . (18)

We can now numerically solve Equation (16) as v = (L′)−1b.
Given v, the E field components are calculated using Equation (13)
and then the D field components calculated using Equation (12). After
these functions are obtained, the distributed capacitance is calculated
according to Equation (19).

C =
ε0 ·∆x ·∆y

V 2
0

[dx dy]
[
ex

ey

]
. (19)

Note that the free space permittivity ε0 was removed from
Equation (12) and inserted here for convenience. The entire solution
process is repeated with the dielectric set to air. In this case,
Equation (15) reduces to the homogeneous Laplace’s equation.

Lh = [Dx Dy]

[
DT

x

DT
y

]
(20)

From this, the distributed inductance L is calculated from the
distributed capacitance Cair using Equation (8). Finally, the
characteristic impedance and propagation constant are calculated
using Equations (9) and (10), respectively.

2.3. Example and Benchmark

To demonstrate and benchmark the method described above, we
analyzed an ordinary microstrip transmission line. The baseline design
was obtained from the closed form expression in Ref. [18]. The width
of the microstrip was w = 4.0mm, thickness of the substrate was
h = 3.0 mm, and the dielectric constant of the substrate was εr = 9.0.
The impedance calculated analytically using these dimensions was
49Ω.

The grid strategy for the numerical analysis is illustrated in
Figure 2. In practice, many more grid cells are needed. The grid
cells representing the substrate are shown in gray while the cells in air
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Figure 2. Grid strategy for finite-difference analysis of a microstrip
transmission line.

Figure 3. Four arrays describing the distribution of dielectric.

are shown in white. The grid cells corresponding to the signal trace
are shown in red. The digit ‘1’ in these cells indicates the potential
is forced to V0 = 1.0 V at these points. The grid cells corresponding
to the ground metals are shown in blue. The digit ‘0’ in these cells
indicates that the potential is forced to 0 V at these points. The entire
outer boundary was set to ground as the boundary condition. As long
as the spacer regions shown in green are made large enough, usually
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3 to 5 line widths, the model converges to the properties of a real
microstrip.

From this, we form four arrays describing the four dielectric tensor
components (εxx , εxy , εyx , εyy). These arrays are depicted in Figure 3.
This device has an isotropic substrate so the off-diagonal terms εxy and
εyx are zero and the diagonal terms εxx and εyy are the same.

For this analysis, the actual number of grid cells used was Nx =
211 and Ny = 180 representing a region that was 70.3 mm × 60mm.
The size of the grid cells was ∆x = ∆y = 0.3333mm. With these
parameters, the line width was 12 cells and the substrate thickness was
9 cells. The results of this analysis are summarized in Figure 4. The
finite-difference analysis predicted the characteristic impedance to be
46Ω, which is very close to that predicted by the equation in Ref. [18].
The total calculation time was 11 seconds running on a single core of
a 2.5 GHz Pentium i5 processor.

(a) (b) (c) (d)

Figure 4. Numerical results for an ordinary microstrip. (a) Microstrip
design. (b) Potential funtion V (x, y). (c) Electric field E(x, y).
(d) Transmission line parameters.

3. MICROSTRIP EMBEDDED IN ANISOTROPIC
MEDIA

We are now in a position to explore a microstrip embedded in
anisotropic media. First, a series of simulations was performed to
study the effect of the strength of the anisotropy, or birefringence, of
the dielectric medium. We defined birefringence as ∆ε = εxx−εyy when
the crystal axes are chosen so that the tensor is diagonal. The results
of this analysis are provided in Figure 5. The distributed inductance
was not affected because the electrostatic approximation decouples the
magnetic field from the electric field. The distributed capacitance
increased as the dielectric constant of the εyy tensor element was
increased. This lowered the impedance of the transmission line as
expected from Equation (9). The shape of the field was also affected
by the increasing anisotropy. After observing the trend in Figure 5,
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(a) (b) (c) (d)

Figure 5. Study on the effect of the strength of the anisotropy of
the surrounding medium. (a) Microstrip embedded in an isotropic
medium. (b) Microstrip embedded in an anisotropic medium with
∆ε = 8.0. (c) Microstrip embedded in an anisotropic medium with
∆ε = 28.0. (d) Microstrip embedded in an anisotropic medium with
∆ε = 68.0.

(a) (b) (c) (d)

Figure 6. Study on the effect of the strength of spatially varying
the anisotropy of the surrounding medium. (a) Microstrip embedded
in an isotropic medium. (b) Microstrip embedded in an anisotropic
medium. (c) Microstrip embedded in an anisotropic medium tilted
by 60◦. (d) Microstrip embedded in a spatially variant anisotropic
medium.

we conclude that the field does tend to develop along the axis with the
highest dielectric constant. Here, the field developed more strongly
in the vertical direction because εyy > εxx . The degree to which this
occurs was observed to be proportional to the birefringence.

Next, the effect of spatially varying the orientation of the
anisotropy was studied in a series of simulations summarized in
Figure 6. The first device is the same microstrip modeled previously,
but with the dielectric constant set to 2.0. The second device was a
transmission line embedded in an anisotropic medium with εxx = 2.0
and εyy = 70.0. The impedance of the line changed significantly after
embedding in a SVAM so we conclude that transmission lines must be
designed to be embedded. The shape of the field responded consistent
with the discussion around Figure 5. For the third device shown in
Figure 6(c), the orientation of the anisotropy around the transmission
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line was tilted to the left by 60◦. Consistent with the discussion
above, the field shifted in this new direction. The impedance of the
line increased somewhat due to the tilt. In the final device shown in
Figure 6(d), the orientation of the anisotropy was spatially varied and
the field still followed the anisotropy through the spatial variance. The
impedance of this line changed only very slightly. This suggests that
after a device is designed to be embedded in an anisotropic medium, the
near-field can be arbitrarily sculpted using spatially variant anisotropy
with minimal impact on the properties of the line.

To prove the concept in a more rigorous manner, a series of
simulations was performed using Ansys HFSSTM, which is a 3D
full-wave electromagnetic field solver. A standard 50Ω microstrip

(a) (b)

Figure 7. Rigorous 3D simulation of standard microstrip
transmission line with and without a metal ball placed in close
proximity. Transmission line parameters are the same as in Figure 4.
(a) Microstrip line. (b) Microstrip line with metal object near.

(a) (b)

Figure 8. Rigorous 3D simulation of a microstrip embedded
in an SVAM, with and without a metal ball placed in close
proximity. Transmission line parameters are the same as in Figure 4.
(a) Microstrip line embedded in an SVAM. (b) Embedded microstrip
line with metal object near.
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transmission line was designed on Rogers RT/Duroid R©. The line was
simulated with and without a metal ball placed in close proximity.
Cross sections of the field from these simulations are shown in Figure 7.
These show that the near-field of the transmission line shifts toward
the metal ball when it is introduced.

Next, the microstrip was embedded in a SVAM where the
anisotropy was rotated from the surface normal by 60◦ away from the
metal ball. This was done to shift the field away from the ball so that
its presence would not be felt by the microstrip. Cross sections of the
field from these simulations are shown in Figure 8. In this case, the
presence of the ball had much less effect on the shape of the near field,
confirming our concept.

4. DEVICE DESIGN

4.1. Design of the Uniaxial Metamaterial

We began by designing an all-dielectric uniaxial metamaterial to
provide the required anisotropy. It was a square array of high dielectric
constant cylinders embedded in a low dielectric constant medium.
This geometry was chosen because it is known to provide stronger
anisotropy [13]. The SVAM was to be composed of polycarbonate (PC)
thermoplastic backfilled with titanium dioxide (TiO2) nano-powder.
The dielectric constant of the PC was measured to be 2.33. The
dielectric constant of the TiO2 powder was estimated to be 40 using the
Bruggeman model [19] and assuming the packing density was 64% by
volume [20]. Based on these dielectric constants, the dielectric tensor
can be quickly estimated using the Weiner bounds [21].

[εr] =

[
εxx 0 0
0 εyy 0
0 0 εzz

]
(21)

1
εxx

=
1

εzz
=

fo

εr1
+

1− fo

εr2
(22)

εyy = feεr1 + (1− fe) εr2 (23)

With optimized dimensions, the weight terms in the above equations
are fo

∼= 0.72 and fe
∼= 0.72 and we get εxx = 7.24 and εyy = 24.55.

In this work, rigorous values were obtained by modeling the unit cell
with the plane wave expansion method (PWEM) [13, 22, 23]. Using the
PWEM, the dimensions were optimized to maximize the birefringence.
The lattice spacing a should be less than λ/4. In practice, this
dimension should be made as small as possible so that the geometry
of the unit cell still forms well after manufacturing. The optimum
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Figure 9. Cross section of the
unit cell. For εr1 = 40 and εr2 =
2.33, the optimized dimensions
are d/a = 0.8.

Figure 10. SVAM to be placed
on top of an otherwise ordinary
microstrip.

diameter of the cylinder was found to be d = 0.84a. This result is
valid essentially independent of the choice of εr1 and εr2. The resulting
unit cell, shown in Figure 9, was predicted to have εxx = 7.29 and
εyy = 24.15.

4.2. Design of the Spatial Variance

The SVAM was designed so that it could be placed on top of an
otherwise ordinary mictrostrip. It was tapered at either end of the
device to provide a smoother transition of impedance from the bare
microstrip into the SVAM region. A small hole was formed through
the device so that a metal ball could be inserted and located to within
2mm of the microstrip. A CAD model of the SVAM is shown in
Figure 10.

With the cylinders oriented vertically, the near-field around the
line would develop vertically, like that shown in Figure 6(b). To
move the field away from the ball, the cylinders were tilted away from
the ball to an angle of 60◦ following a Gaussian profile. The device
and the change in the orientation of the anisotropy is illustrated in
Figure 11. For this simple design, it was not necessary to employ a
more sophisticated design technique like transformation optics [24], but
it is certainly possible to do this.

In order to spatially vary the orientation of the unit cells
throughout a lattice without changing the size and shape of the
unit cells, we used a novel algorithm to synthesize spatially variant
lattices [25]. The algorithm is capable of spatially varying any
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Figure 11. Orientation of the anisotropy of the SVAM.

combination of attributes of the lattice while still rendering the overall
lattice smooth and continuous. Attributes include unit cell orientation,
lattice spacing, fill fraction, material composition, geometry, and
more. Avoiding discontinuities is important because these can cause
scattering, field concentrations, and other detrimental effects.

5. EXPERIMENTAL RESULTS

5.1. Device Manufacturing

The SVAM was manufactured by 3D printing using a technique called
fused deposition modeling (FDM) [1]. In this process, an inexpensive
thermoplastic filament is fed through a print head where it is melted
and deposited onto the surface of a platform. The print head is
translated across the platform to deposit a layer of material in the
desired pattern. After the layer is printed, the platform is lowered
and the next layer is printed on top of the previous. This process is
repeated for all layers until the part is complete. Several small test
samples were printed to assess the minimum diameter of the holes so
that they would form well in the final device. This was determined to
be 2.0mm. Photographs of the finished device are shown in Figure 12.
In this device, the density of the holes is uniform. The density of
the holes appears different throughout the device only because their
orientation has been spatially varied and the device is shown from two
different perspectives.

Next, the holes were packed with the TiO2 nano-powder. First,
a long wavelength vibrating table was used to shake the powder
down into the holes. This achieved about a 95% fill. Second,
the device was placed in an ultrasonicator to densify the powder.
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Figure 12. 3D printed spatially variant anisotropic metamaterial.

Figure 13. SVAM packed with TiO2 nano-powder.

The remaining voids where filled by hand and then the device was
placed back into the ultrasonicator one last time. Photographs of the
packed SVAM are shown in Figure 13. The long term vision for this
technology is to manufacture the entire circuit and SVAM completely
by 3D printing. At present, no high dielectric constant material is
commercially available for 3D printing so the TiO2 powder was used
instead.

5.2. Measured Results

To test the SVAM, a microstrip transmission line was designed
specifically to be placed under the SVAM. The width of the line was
made to be 10mm so that it would be large relative to the periodic
structure of the metamaterial. In practice, the SVAMs would be
3D printed with much finer dimensions so they can function around
transmission lines having more typical dimensions. The microstrip was
placed onto a cardboard substrate that was 2.8 mm thick. A ground
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plane was placed under the cardboard. Pictures of the microstrip with
and without the SVAM in place are shown in Figure 14.

The scattering parameters from the transmission line were
measured using an Agilent N5245 PNA-X vector network analyzer.
The data is shown in Figure 15. Little was done to match impedance so
the return loss from the bare microstrip averaged around −15 dB. The
dips in this spectrum arise from the Fabry-Perot resonance established
between the connectors at either end of the line. When the SVAM was
inserted, the spectrum shifted and reflection dropped by around 4 dB
on the low frequency side. It is important to note that this data only
shows the background reflection from the bare microstrip and SVAM.
No metal ball was involved in these measurements.

Figure 14. Microstrip transmission line in test setup, with and
without the SVAM in place.

Figure 15. Reflection from the
bare microstrip, with and without
the SVAM in place.

Figure 16. Change in S11

as ball is placed and removed
for two cases: (1) solid blue
line is for the microstrip in air,
and (2) dashed red line is for
the microstrip embedded in the
SVAM.
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From here, the scattering parameters of the bare microstrip were
measured with and without the metal ball in place. The return loss of
the microstrip and the insertion loss of the SVAM itself were calibrated
out of the measurements so that only the effects of the metal ball were
measured. The resulting change in S11, with and without the ball
in place, is plotted as a solid blue line in Figure 16. Fluctuations
approaching 7 dB were measured. This same procedure was repeated,
but with the SVAM in place. The change in S11 is plotted as a dashed
red line in this same figure. For the second case, virtually no change
in S11 was detected because the SVAM sculpted the field away from
the ball. Fluctuations in this second curve were less than 0.5 dB.

6. CONCLUSIONS

3D printing will allow electronics and electromagnetics to break away
from planar geometries and exploit the third dimension like never
before. Placing and connecting components in three dimensions,
however, presents many significant problems like signal integrity and
crosstalk. In this paper, we propose for the first time using spatially
variant anisotropic metamaterials as a means to sculpt the near-field
around devices. To begin this study, we outlined a simple but powerful
technique to study transmission lines embedded in spatially variant
anisotropic media. This model was used to show that the near-field can
be sculpted almost arbitrarily with minimal change to the properties
of the device itself. This conclusion was confirmed with a rigorous 3D
model. Based on these results, we isolated a microstrip transmission
line from a metal ball placed in close proximity by embedding the
line in a SVAM. The presence of the SVAM virtually eliminated any
interference of the ball on the microstrip, confirming our new concept
to manage fields in 3D printed systems.

While the present work focused on using SVAMs for isolation,
the research suggests they can be used for other purposes such as
enhanced coupling, improving the performance of components forced
into awkward form factors, allowing antennas to radiate around and
through other devices, and more.
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