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Abstract—An analytical procedure for the calculation of the
inductance of planar zig-zag spiral inductors is proposed. The
procedure is based on the partial inductance concept and models the
inductor as a series of a number of parts. The self-inductance of each
individual part, which has the shape of a parallelogram, and the mutual
inductance between any two parts of the inductor are determined. The
inductance of a planar zig-zag spiral inductor can thus be obtained
for any width, length and angle of the saw-tooth configuration. The
procedure is validated with experimental measurements; the agreement
between estimated and measured inductances is very good.

1. INTRODUCTION

The calculation of inductance, historically important in power
engineering applications, has recently grown new interest due to the
development of contactless power transfer systems [1]. In particular,
planar inductors are used as intermediate resonators between the
transmitting and receiving coils to improve the efficiency of the
wireless power transfer, channeling the magnetic field in resonance
condition. Inductors and resonators are also essential components in
radio frequency and microwave integrated circuits for making low noise
amplifiers, oscillators, impedance matching networks and filters. In
several of these applications, these components are shaped in planar
spiral geometries etched or milled on a printed circuit board (PCB) and
the accurate prediction of the inductance allows the determination of
the resonant frequency of the structure. A number of papers have been
developed to model planar rectangular spiral inductors. Their relative
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easy layout requires extensive computation if modelled numerically
using full-wave electromagnetic methods [2]; the solution may be
indeed accurate, however run times may be long and the analysis may
be limited to inductors of just a few turns only. The inductance of
planar rectangular spiral inductors can be more efficiently calculated
with analytical procedures, as in [3, 4]. For more complex geometries
of inductors, such as square, hexagonal, octagonal and circular shapes,
approximate expressions are given [5].

In this paper, an analytical procedure for the calculation of the
inductance of a planar spiral inductor with saw-toothed shaped sides
based on the partial inductance concept is presented. This geometry is
derived from the spiral antenna with zig-zag arms [6] and its structure
is shown in Fig. 1. This type of inductor can be of interest in several
applications where there is a need to increase the total length of the
inductor and its inductance without changing its external dimensions.

Figure 1. Planar zig-zag spiral inductor subdivided in N parts.

The paper is organized as follows. In Section 2, the procedure
to calculate the inductance of a planar zig-zag spiral inductor is first
outlined; then, the closed-form expressions for the partial self- and
mutual inductances of thin parallelograms are given. Section 3 presents
the application of the proposed approach to planar zig-zag spiral
structures and the comparison with measurement results.

2. INDUCTANCE CALCULATION

The inductance of a planar zig-zag spiral inductor can be conveniently
calculated by means of a method initially outlined by Grover [7]
and significantly expanded by Ruehli [8], who further developed the
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concepts in [7] under a new comprehensive theory of inductance known
as the theory of partial inductance. The method is based on the
calculation of the partial inductance of straight loop elements, as
it is demonstrated that an inductance contribution can be uniquely
associated to each element of a closed loop. The total inductance
of a loop is then equal to the sum of the partial self-inductances of
each straight element plus all the partial mutual inductances between
the elements. There is no unique choice of the elements into which a
circuit is divided. In [8], it is demonstrated that unique inductances
can be obtained also for incomplete loops, such as planar zig-zag spiral
inductors: the open loop inductance is the closed loop inductance with
the partial inductances of the closing path removed.

The partial self- and mutual-inductances of straight conductors
of rectangular cross-section are given in approximate and exact forms
in [7–12], respectively. In this paper, the calculation of the inductance
of a planar zig-zag spiral inductor is carried out by neglecting the
thickness of the conductor. The planar zig-zag spiral inductor is
partitioned into N parts or elements, as shown in Fig. 1. Each part
has the shape of a thin parallelogram, with the exception of the two
adjacent parts concurrent at the points where the horizontal sides meet
the vertical sides. For layout requirements, in fact, these parts need to
be slightly different from a parallelogram. The total inductance L of
the inductor of Fig. 1 is then the sum of all partial self- and mutual
inductances of the N parts:

L =
N∑

i=1

N∑

j=1

Mpij (1)

where Mpij (j 6= i) is the partial mutual inductance between any two
parallelograms i and j of the spiral inductor, and Mpij (j = i) is the
partial self-inductance of the ith parallelogram.

2.1. Analytical Calculation of the Partial Self-inductance of
a Thin Parallelogram

The zig-zag spiral inductor has a constant cross section of width w
and negligible thickness along its length, as shown in Fig. 2. The
angle of the spiral is θ, with 0 ≤ θ < π/2, and the length of each
spiral element is l. The inductor may then be thought as a bundle
of parallel filaments, each of width dx and carrying a current density
constant along the length of each filament. The current density is
then assumed uniform throughout the zig-zag spiral inductor. With
reference to Fig. 3 the partial self-inductance of a thin parallelogram
can be evaluated as a four-fold integral from the definition of the partial
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mutual inductance between two parallel thin parallelograms p and q
each with a constant current density

Mpq=
µ0

4π

1
wp

1
wq

×
∫ wp

0

∫ wq

0

∫ lp

0

∫ lq

0

dx1dx2dz1dz2√
(x2−x1+d)2+[z2−z1+(x2−x1)tan θ+h]2

(2)

where µ0 is the magnetic permeability of free space, wp, lp and
wq, lq are the width and the length of the parallelograms p and q,
respectively, d = xq1 − xp1 and h = zq1 − zp1 . As the current density is
assumed constant along the length of each filament, the partial mutual
inductance between two filaments of the two parallelograms is given
by Neumann’s formula

Mf =
µ0

4π

∫ l1

0

∫ l2

0

dz1dz2

r
(3)

where r is the distance between two elements of length dz1 and dz2 of
the two filaments of length l1 and l2, respectively.

The partial self-inductance of a thin parallelogram can be found
from (2) by performing the integration over the same area. The
two parallelograms p and q are then the same, and thus letting
wp = wq = w, lp = lq = l, d = 0 and h = 0 in (2) the expression
for the partial self-inductance Lp = Mpp of a thin parallelogram is
obtained as

Lp =
µ0

4π

1
w2

∫ w

0

∫ w

0

∫ l

0

∫ l

0

dx1dx2dz1dz2√
(x2−x1)

2+[z2−z1+(x2 − x1) tan θ]2
. (4)
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In general, the solution of the four-fold integration is obtained by
introducing new variables u = x2 − x1 and v = z2 − z1 which yields
the expression

Lp =
µ0

4π

1
w2

∫ w

0
dx1

∫ w−x1

−x1

du

∫ l

0
dz1

∫ l−z1

−z1

dv√
u2+(v+u tan θ)2

. (5)

The partial self-inductance of a thin parallelogram of width w and
length l is then

Lp =
µ0

4π

1
6w2

[
4t

(
w3 +

l3

F 3
5

)
log(F5 − t) + 4w3F5 +

4l3

F 2
5

−2(F1 + F2)
(

w2 +
l2

F 2
5

)
+ 2w2(3l + wt) log

(
wt + F1 + l

w

)

+2w2(3l − wt) log
(−wt + F2 + l

w

)
+

6wl2

F5
log

(
F1F5 + F3

l

)

+
6wl2

F5
log

(
F2F5 + F4

l

)
+

2l3t

F 3
5

log
(

F1F5 + F3

F2F5 + F4

)]
(6)

where

F1 =
√

w (wt2 + w + 2lt) + l2,

F2 =
√

w (wt2 + w − 2lt) + l2,

F3 = wt2 + w + lt,

F4 = wt2 + w − lt,

F5 =
√

t2 + 1,

and t = tan θ. It can be verified that (6) reduces to the expression of
the self-inductance of a thin rectangle [8, 11–13] for t = 0.

2.2. Partial Mutual Inductance between Zig-zag Spiral Parts

It is not straightforward to find a closed form expression for the partial
mutual inductance between any two parallel thin parallelograms p and
q of the planar spiral inductor. An approximation can then be adopted
for the parallelograms, which are represented as straight filaments. The
segments forming the axis of the planar zig-zag spiral inductor may
be chosen as the filaments representing the parallelograms, as Fig. 4
shows. The partial mutual inductance between two parallelograms
can then be calculated as the partial mutual inductance between two
filaments, which is given by the Neumann’s formula (3). Campbell [14]
first proposed a general solution of the Neumann integral for any two
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straight wires with negligible thickness in any relative location in space.
Here the solutions in a form more suitable for implementation in a
computer code are proposed. There are three possible configurations
for any two filaments of a planar zig-zag spiral inductor: i) the
filaments are parallel, ii) the filaments are incident at a point forming
an angle to each other, iii) the filaments are perpendicular. The last
case is the simplest as the partial mutual inductance between any
two perpendicular filaments is always zero. The possible filament
configurations are shown in Figs. 5(a) and (b).

Figure 4. Planar zig-zag spiral inductor of square shape (side
dimension l0) with its axis.
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Figure 5. Configurations of any two filaments of a planar zig-zag
spiral inductor. (a) Parallel straight filaments. (b) Incident straight
filaments forming an angle θ to each other.
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2.2.1. Partial Mutual Inductance between Parallel Straight Filaments

The partial mutual inductance Mpf between any two parallel filaments
AB, ab in any relative position in space can be found from Neumann’s
formula (3), where r2 = Pp2 + (S − s)2. With reference to Fig. 5(a),
P ≡ A, Pp is the common perpendicular of the two filaments, S
and s are the distances from the common perpendicular Pp of the
two elements dS and ds in the positive directions along AB and ab,
respectively. From [14], it can be found that

Mpf =
µ0

4π

[√
(pa− PA)2 + Pp2 −

√
(pb− PA)2 + Pp2

−
√

(pa− PB)2 + Pp2 +
√

(pb− PB)2 + Pp2

+(PA− pa) log
(√

(pa− PA)2 + Pp2 + pa− PA
)

−(PA− pb) log
(√

(pb− PA)2 + Pp2 + pb− PA
)

−(PB − pa) log
(√

(pa− PB)2 + Pp2 + pa− PB
)

+(PB − pb) log
(√

(pb− PB)2 + Pp2 + pb− PB
)]

(7)

that being PA = 0 can be simplified as

Mpf =
µ0

4π

[√
pa2 + Pp2 −

√
pb2 + Pp2

−
√

(pa− PB)2 + Pp2 +
√

(pb− PB)2 + Pp2

−pa log
(√

pa2 + Pp2 + pa
)

+pb log
(√

pb2 + Pp2 + pb
)

−(PB − pa) log
(√

(pa− PB)2 + Pp2 + pa− PB
)

+(PB − pb) log
(√

(pb− PB)2 + Pp2 + pb− PB
)]

. (8)

A particular case of this configuration occurs when the two filaments
are aligned and offset. In this case, P ≡ A ≡ p and thus Pp = PA = 0
so that (8) reduces to

Mpf =
µ0

4π
[−pa log(2pa)− (PB − pa) log 2(pa− PB)

+pb log(2pb) + (PB − pb) log 2(pb− PB)] . (9)
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2.2.2. Partial Mutual Inductance between Straight Filaments Incident
at an Angle

The general case of the partial mutual inductance Mif between any
two coplanar filaments AB, ab incident at an angle θ that do not share
a common point can be derived from Neumann’s formula (3), where
r2 = S2 − 2Ss cos θ + s2. In fact, with reference to Fig. 5(b), P ≡ p
and then Pp = 0; S and s are the distances from the point P ≡ p of
the two elements dS and ds in the positive directions along AB and
ab, respectively. From [14], it can be found that

Mif =
µ0

4π
cos θ

[
pa log

(√
−2paPA cos θ + pa2 + PA2 − pa cos θ + PA

)

+PA log
(√

−2paPA cos θ + pa2 + PA2 − PA cos θ + pa
)

−pa log
(√

−2paPB cos θ + pa2 + PB2 − pa cos θ + PB
)

−PB log
(√

−2paPB cos θ + pa2 + PB2 − PB cos θ + pa
)

−PA log
(√

−2PApb cos θ + PA2 + pb2 − PA cos θ + pb
)

−pb log
(√

−2PApb cos θ + PA2 + pb2 − pb cos θ + PA
)

+pb log
(√

−2pbPB cos θ + pb2 + PB2 − pb cos θ + PB
)

+PB log
(√

−2pbPB cos θ+pb2+PB2−PB cos θ+pb
)]

. (10)

The case of two filaments starting from a common point is readily
available from (10) letting P ≡ p ≡ A ≡ a and thus PA = pa = 0:

Mif =
µ0

4π
cos θ [−PB log (PB(1− cos θ))− pb log (pb(1− cos θ))

+pb log
(√

−2pbPB cos θ + pb2 + PB2 − pb cos θ + PB
)

+PB log
(√

−2pbPB cos θ+pb2+PB2−PB cos θ+pb
)]

. (11)

3. RESULTS

The total inductance of a planar zig-zag spiral inductor is then
calculated with (1) using (6) for the partial self-inductance of the
individual parts of the inductor and (8), (10) for the partial mutual
inductance between any two parts of the inductor. The procedure
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was implemented in a MatlabTM computer code. In the calculation
it is possible to proceed through the elements of the spiral inductor
in one of the two possible directions. For example, choosing the
clockwise direction, the procedure starts from the part in the top
left corner of the planar zig-zag spiral inductor (see Fig. 4). The
planar zig-zag spiral inductor of square shape is defined through the
overall dimension of the outer side, l0, the width w and spacing sl

of the lands, the angle of the spiral, θ, and the number of turns, n.
According to the geometrical dimensions, the outer and inner contours
of the spiral are built in a cartesian coordinate system, from which
the axis is obtained. The axis is subdivided into segments, each
one corresponding to an individual parallelogram of the zig-zag spiral
inductor; the coordinates of the start and end points of each segment,
as well as the angle the segment connecting the two points makes with
the positive x axis, are collected in an array. A N ×N matrix of the
partial self- and mutual inductances of the N spiral parts is then built.
For each individual parallelogram of the spiral inductor, the partial
self-inductance is calculated with (6). The partial mutual inductance
between the straight filaments representing any two parallelograms of
the spiral is calculated as follows. In case the filaments are parallel, the
code calculates the projection of the point P ≡ A of the segment AB
on the segment ab (see Fig. 5(a)) and calculates the partial mutual
inductance with (8). If the two segments AB and ab belong to the
same line, then the code calculates the partial mutual inductance
with (9). For filaments incident at an angle different than π/2, the
intersection between the lines connecting A and B and a and b is
found (point P ≡ p, see Fig. 5(b)), and the partial mutual inductance
is given by (10). If the filaments AB and ab are incident and share a
common point (viz., P ≡ p ≡ A ≡ a), the partial mutual inductance
is calculated with (11). Differently, the partial mutual inductance is
equal to zero if the filaments are perpendicular. The partial self- and
mutual inductances of the planar zig-zag spiral parts are then collected
in a N ×N symmetric matrix Lp

Lp =




Lp1 Mp12 . . . Mp1i . . . Mp1j . . . Mp1N

Mp12 Lp2 . . . Mp2i . . . Mp2j . . . Mp2N
...

...
. . .

...
. . .

...
. . .

...
Mp1i Mp2i . . . Lpi . . . Mpij . . . MpiN

...
...

. . .
...

. . .
...

. . .
...

Mp1j Mp2j . . . Mpij . . . Lpj . . . MpjN
...

...
. . .

...
. . .

...
. . .

...
Mp1N Mp2N . . . MpiN . . . MpjN . . . LpN




(12)
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where Lpi = Mpii is the partial self-inductance of the element i, and
Mpij is the partial mutual inductance between the elements i and j.
The sum of the elements of Lp along any ith row or column yields the
partial inductance of the ith part of the planar zig-zag spiral inductor;
the sum of all the elements of Lp yields the total inductance (1) of the
planar zig-zag spiral inductor

LZSI =
N∑

i=1

N∑

j=1

Mpij (13)

The analytical calculations are validated by means of measure-
ments carried out with an Agilent 4263B LCR impedance analyzer, at

Figure 6. Samples of planar zig-zag spiral inductors of Table 1. From
left to right, top row: samples I–III; bottom row: samples IV–VI.

Table 1. Comparison between the total inductance values obtained
with (13), LZSI , with FastHenry, LZSI ,FH , and with experimental
measurements, LZSI ,m.

Sample n N
l0

[mm]
θ

w

[mm]

sl

[mm]

LZSI

[µH]

LZSI ,FH

[µH]

LZSI ,m

[µH]

I 11 1056 60 π/6 1.0 1.2 3.34 3.37 3.5

II 9 720 60 π/4 1.0 1.2 2.51 2.48 2.6

III 6 336 60 π/3 1.0 1.2 1.54 1.39 1.5

IV 12 1248 80 π/6 1.0 1.7 5.35 5.41 5.7

V 12 1248 80 π/4 1.0 1.2 5.54 5.61 5.6

VI 12 1248 80 π/3 0.7 0.9 6.88 6.29 6.4

VII 14 1680 130 π/3 0.9 1.1 14.13 12.99 13.5
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the operating frequency of 100 Hz, and with calculations carried out
with FastHenry, a multipole-accelerated 3D inductance extraction pro-
gram based on magnetoquasistatic analysis [15]. Seven planar zig-zag
spiral inductor samples were fabricated with the photochemical etch-
ing technique. The characteristics of the samples are summarized in
Table 1. Samples I, II and III have the same overall dimension of the
outer side, same land width and spacing between lands of adjacent
turns; their angles are π/6, π/4 and π/3, respectively. With these geo-
metrical parameters, the three samples have different number of turns
(11, 9 and 6, respectively), and different number of parts (1056, 720
and 336, respectively). Samples IV, V and VI have the same overall
dimension of the outer side and are designed in order to have the same
number of turns and parts being their angles π/6, π/4 and π/3, respec-
tively. To obtain this, they present different land width and spacing
between lands of adjacent turns. Sample VII was built with a larger
outer dimension than all other samples and an angle of π/3. Sam-
ples I to VI are shown in Fig. 6. The calculations and measurements
of the inductance of the planar zig-zag spiral inductors are collected
in Table 1; as it can be noticed, the comparison shows a very good
agreement. As regards the calculations with FastHenry, it has to be
noticed that each parallelogram of the planar zig-zag spiral inductor is
represented as a thin rectangular parallelepiped of width w and length
l. Table 2 shows the comparison between the partial self-inductance
values of each part of the considered planar zig-zag spiral inductors
obtained with the exact expression (6), Lexact, and approximated with
the self-inductance of a rectangle, Lrectangle. It can be noticed that the

Table 2. Comparison between the partial self-inductance values of
each part of the planar zig-zag spiral inductor obtained with the
exact expression (6), Lexact, and approximated with the partial self-
inductance of a rectangle, Lrectangle.

Sample
l0

[mm]
θ

w

[mm]

l

[mm]

Lexact

[nH]

Lrectangle

[nH]

I 60 π/6 1.0 1.47 0.516 0.523

II 60 π/4 1.0 2.2 0.911 0.935

III 60 π/3 1.0 4.4 2.35 2.42

IV 80 π/6 1.0 1.8 0.695 0.703

V 80 π/4 1.0 2.2 0.911 0.935

VI 80 π/3 0.7 3.2 1.73 1.78

VII 130 π/3 0.9 4.35 2.32 2.39
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Table 3. Partial self-inductance [nH] of parallelograms of different
dimensions calculated with (6) as a function of the angle θ.

θ
w = 1, l = 10

[mm]
w = 2, l = 10

[mm]
w = 2, l = 20

[mm]

arctan (0.0) 7.06 5.74 14.11
arctan (0.5) 7.05 5.72 14.1
arctan (1.0) 7.03 5.68 14.06
arctan (1.5) 7.00 5.62 13.99
arctan (2.0) 6.95 5.54 13.91
arctan (2.5) 6.91 5.45 13.81
arctan (3.0) 6.85 5.36 13.71
arctan (3.5) 6.80 5.25 13.59
arctan (4.0) 6.73 5.15 13.47

use of the exact expression (6) allows a minor error in the calculation
of the total inductance of the planar zig-zag spiral inductor. As it
can be expected, the difference between the partial self-inductance of
a parallelogram calculated with (6) and that of a rectangle increases
with the angle of the parallelogram, as Table 3 shows.

4. CONCLUSION

An analytical procedure for the determination of the inductance of
planar zig-zag spiral inductors is presented in this paper. The inductor
is partitioned into a number of parts, each with the shape of a
parallelogram. The procedure is based on the partial inductance
concept and consists in determining the partial self-inductance of
each part and the partial mutual inductance between any two parts
of the inductor. The partial self-inductance expression of a thin
parallelogram is obtained in closed-form; as regards the partial mutual
inductance calculations, the thin parallelograms are represented by
segments (e.g., their axes), and the partial mutual inductances between
filaments in any relative position are calculated. The comparison
between analytical predictions and measurement shows a very good
agreement. The exact analytical expression for the partial self-
inductance of a parallelogram, presented in this paper, allows the error
in the calculation of the inductance of the planar zig-zag spiral inductor
to be reduced.



Progress In Electromagnetics Research, Vol. 142, 2013 219

REFERENCES

1. Sandrolini, L., U. Reggiani, G. Puccetti, and Y. Neau, “Equivalent
circuit characterization of resonant magnetic coupling for wireless
transmission of electrical energy,” Int. J. Circ. Theor. Appl.,
Vol. 41, No. 7, 753–771, 2013.

2. Schmükle, F. J., “The method of lines for the analysis of
rectangular spiral inductors,” IEEE Trans. on Microwave Theory
and Techn., Vol. 41, 1183–1186, Jun./Jul. 1993.

3. Greenhouse, H. M., “Design of planar rectangular microelectronic
inductors,” IEEE Trans. on Parts, Hybrids, and Packaging,
Vol. 10, No. 2, 101–109, 1974.

4. Kuo, J.-T., K.-Y. Su, T.-Y. Liu, H.-H. Chen, and S.-J. Chung,
“Analytical calculation for dc inductances of rectangular spiral
inductors with finite metal thickness in the peec formulation,”
IEEE Microwave and Wireless Components Letters, Vol. 16, No. 2,
69–71, 2006.

5. Mohan, S. S., M. del Mar Hershenson, S. P. Boyd, and T. H. Lee,
“Simple accurate expressions for planar spiral inductances,” IEEE
Journal of Solid-state Circuits, Vol. 34, No. 10, 1419–1424, 1999.

6. Patterson, W. F. and E. T. Roland, “Spiral antenna with zigzag
arms to reduce size,” US Patent 3,454,951, 1969.

7. Grover, F. W., Inductance Calculations Working Formulas and
tables, 2nd Edition, D. van Nostrand Comp., Inc., New York, USA,
1947.

8. Ruehli, A. E., “Inductance calculations in a complex integrated
circuit environment,” IBM Journal of Research and Development,
Vol. 16, No. 5, 470–481, 1972.

9. Rosa, E. B., “The self and mutual inductances of linear
conductors,” Bullettin of the Bureau of Standards, Vol. 4, No. 2,
301–344, 1908.

10. Stojanovic, G., M. Damnjanovic, V. Desnica, L. Zivanov,
R. Raghavendra, P. Bellew, and N. McLoughlin, “High-
performance zig-zag and meander inductors embedded in ferrite
material,” Journal of Magnetism and Magnetic Materials,
Vol. 297, No. 2, 76–83, 2006.

11. Hoer, C. and C. Love, “Exact inductance equations for rectangular
conductors with applications to more complicated geometries,” J.
Res. Nat. Bur. Stand. Sec. C: Eng. Inst., Vol. 69C, 127–137, Apr.–
Jun. 1965.

12. Paul, C. R., Inductance — Loop and Partial, 246–306, John Wiley
& Sons, Hoboken, NJ, USA, 2010.



220 Sandrolini, Reggiani, and Puccetti

13. Piatek, Z. and B. Baron, “Exact closed form formula for self
inductance of conductor of rectangular cross section,” Progress
In Electromagnetics Research M, Vol. 26, 225–236, 2012.

14. Campbell, G. A., “Mutual inductances of circuits composed of
straight wires,” Phys. Rev., Vol. 5, 452–458, Jun. 1915.

15. Kamon, M., M. J. Tsuk, and J. K. White, “FASTHENRY: A
multipole-accelerated 3-D inductance extraction program,” IEEE
Trans. on Microwave Theory and Techn., Vol. 42, No. 9, 1750–
1758, Sep. 1994.


