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Abstract—In this paper, a hybrid multiobjective evolutionary
algorithm, MOEA/D-GO (Multiobjective Evolutionary Algorithm
Based on Decomposition combined with Enhanced Genetic Operators),
is proposed for fragment-type antenna design. It combines the ability
and efficiency of MOEA/D to deal with multiobjective optimization
problems with the specific character of two-dimensional chromosome
coding of genetic algorithm. And enhanced genetic operators are also
introduced to generate new individuals. Numerical results of a set
of six multiobjective 0/1 knapsack problems show that MOEA/D-
GO with weighted sum decomposition approach outperforms original
MOEA/D and MOEA/D-PR (MOEA/D combined with Path-
Relinking operator). Then it’s applied to optimize a CPW-fed
monopole antenna to achieve band-notch characteristic. Both
numerical and test results show that MOEA/D-GO is promising
for solving multiobjective optimization problems about fragmented
antenna.

1. INTRODUCTION

Nowadays, antenna design is more than a simple optimization
problem because there are usually several antenna characteristics or
specifications to be synthesized. Generally, such a design optimization
can be stated as a multiobjective optimization problem (MOP)

mininize F (x) = (f1(x), f2(x), . . . , fm(x)) (1)
subject to x ∈ Ω
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where objective functions fi(x) (i = 1, 2, . . . , m) may represent
different antenna characteristics. m is the number of objective
functions, Ω a decision space, and x a decision variable which defines
the antenna structure. For such a MOP, best trade-off for all m
objectives can be achieved by optimal vectors distributed in PF (Pareto
Front) [1].

In this paper, rather than considering continuous variables, we
focus on a kind of special problems where variable is a 0/1 character
string. As known in fragmented antennas, the physical shape can be
described by a matrix where the cells “1” and “0” indicate metal and
non-metal respectively. This kind of antenna is of great popularity due
to flexible impedance matching for different integrated circuit chips
and broad bandwidth characteristic in Radio Frequency IDentification
(RFID) tag antenna [2, 3] and broadband characteristic in microstrip
patch antenna and array element applications [4–6]. Meanwhile, this
concept is employed to design reconfigurable aperture antenna and unit
cell of fractal structure as a frequency selective surface [7, 8]. It’s also
promising in terms of decreasing size of antenna, the design of new
type antenna, and the design of anti-breakdown antenna by decreasing
its radiation area [9–11].

Genetic algorithm (GA) is the most familiar method to optimize
this kind of antenna [2–11] because of its coding representation for
both discrete and continuous parameters. In addition, it can also
search across a wide sampling of the solution space, and handle a large
number of variables [12]. However, most researchers focus on single
objective optimization problems (SOPs) rather than MOPs like (1).
Though MOPs are considered [4, 13], few multiobjective optimization
techniques are employed. In [4, 13], a MOP is aggregated into a SOP
using a weight vector which corresponds to one search direction, which
leads to much computation cost.

In 2007, Multiobjective Evolutionary Algorithm Based on
Decomposition (MOEA/D) [14], was proposed for MOP. In MOEA/D,
a MOP is decomposed into several scalar subproblems which can be
optimized simultaneously. By utilizing the information of solutions
of neighborhood subproblems, MOEA/D has less computational cost,
which has been proved by several numerical tests [14–17].

MOEA/D-based optimization techniques have found successful
applications in antenna and array design [18–21]. In [18, 19], MOEA/D
was applied to a tri-band and a quad-band antenna design by
optimizing structure parameters of a double-sided bow-tie antenna.
In [20], MOEA/D was introduced to design broadband Yagi-Uda
antennas to achieve maximum directivity, minimum voltage standing
wave ratio, and maximum front-to-back ratio. In [21], MOEA/D was
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used in linear antenna array optimization for minimum average side
lobe level and null control in specific directions by optimizing the
element spacing of the array.

This paper explores a highly-efficient multiobjective optimization
technique based on MOEA/D-GO (multiobjective evolutionary
algorithm based on decomposition combined with enhanced genetic
operators) for the multiobjective optimization of fragmented-type
antenna, in which enhanced genetic operators are introduced. Due
to its relative high computation efficiency (in terms of diversity
maintenance and evolution speed), MOEA/D-GO is very promising
in the optimization design of fragmented antennas.

This paper is organized as follows. In Section 2, we propose
MOEA/D-GO, and outline its features and its differences from
original MOEA/D. Section 3 compares MOEA/D-GO with original
MOEA/D and MOEA/D-PR (MOEA/D combined with Path-
Relinking operator) [17]. In Section 4, a fragmented antenna design is
performed by using our developed MOEA/D-GO.

2. MOEA/D-GO

2.1. MOEA/D-GO Implementation

The aggregated decomposition and the simultaneous optimization
give the core idea of MOEA/D [14]. In MOEA/D implementation,
a MOP is first decomposed into several scalar subproblems using
weight vectors, where each scalar subproblem is a weighted aggregation
of all individual objectives in (1). After decomposition, all scalar
subproblems are optimized simultaneously. By taking the information
from its neighboring subproblems, simultaneous optimization of
those decomposed subproblems results in a low computational cost.
MOEA/D-GO is based on the MOEA/D framework, as well as
introducing our enhanced genetic operators.

Flowchart of MOEA/D-GO is shown in Fig. 1. During MOEA/D-
GO implementation, enhanced genetic operators are utilized to
generate a new solution as shown in Fig. 2.

An enhanced crossover operator, which simulates the simplest one-
point crossover operator, in MOEA/D-GO operates as:

(1) select two parents from neighborhood as a and c in Fig. 2
where a is the best individual in neighborhood and c is randomly
selected, then crossover is performed among these two individuals and
the individual b in the current subproblem;

(2) randomly pick a matrix row/column number, and intercept
the contents above/over and below/under this row/column with equal
probability to form a new individual d.
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Figure 1. Flowchart of MOEA/D-GO.
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Figure 2. a: the best chromosome matrix in neighborhood; b: the
chromosome matrix in current subproblem; c: a chromosome matrix
from neighborhood; d: new chromosome matrix by novel crossover; e:
new chromosome matrix by novel mutation.
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Mutation operator operates as:
(1) determine mutation times and mutation is performed on the

newly-generated individual through the above crossover;
(2) for each mutation, randomly select a row/column number, and

vary gene value between “1” and “0” in this row/column with given
probability to obtain individual e in Fig. 2.

2.2. Differences from Original MOEA/D

There are four differences between our proposed MOEA/D-GO and
original MOEA/D in [14]:

(1) coding representation: original MOEA/D and MOEA/D-GO
operate on 1-D and 2-D 0/1 character string, respectively;

(2) selection strategy: original MOEA/D randomly selects two
parents from neighborhood, while MOEA/D-GO selects three parents
from neighborhood, one of which is the best in its neighborhood, one
is the individual belongs to corresponding subproblem, and another is
selected randomly;

(3) crossover operator: one-point crossover operator is applied
to the two solutions in original MOEA/D, while one-point crossover
operator is simulated among three parents in MOEA/D-GO;

(4) mutation operator: the mutation mutates each position of the
child solution in original MOEA/D, while the mutation mutates some
rows and columns in MOEA/D-GO.

2.3. Features of MOEA/D-GO

In MOEA/D-GO, the best individual in neighborhood can be utilized
to guide the global-search, which leads to faster convergence. And the
crossover among three individuals reinforces the diversity. Therefore,
MOEA/D-GO is expected to generate global optimum with better
convergence and diversity than original MOEA/D in [14].

MOEA/D-GO introduces the ability and efficiency of MOEA/D
for dealing with multiobjective optimization problems. Thus, it has all
of the attractive features of MOEA/D framework as follows:

(1) after decomposition, MOEA/D allows the use of selection
operators, local search, fitness assignment, and diversity maintenance
proposed for scalar optimization;

(2) MOEA/D may directly control the movement of each
individual in its population, and the distribution of its computation
effort over different ranges of the PF along different search directions;

(3) for certain MOPs with many objectives and large population,
MOEA/D provides satisfactory search ability for complicated Pareto
set shapes;
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(4) objective normalization techniques can be incorporated into
MOEA/D for solving disparately scaled objectives.

3. COMPARISON WITH ORIGINAL MOEA/D AND
MOEA/D-PR

We compare the performances among MOEA/D-GO, original
MOEA/D, and MOEA/D-PR on six test instances of the multiob-
jective 0/1 knapsack problem.

3.1. Multiobjective 0/1 Knapsack Problem

Given a set of n items and a set of m knapsacks, the multiobjective
0/1 knapsack problem (MOKP n m) can be stated as

maximize fi(x) =
n∑

j=1

pij · xj (i = 1, 2, . . . ,m) (2)

subject to
n∑

j=1

ωij · xj ≤ ci (i = 1, 2, . . . ,m)

x = (x1, x2, . . . , xn)T ∈ {0, 1}n

where pij ≥ 0 is the profit of item j in knapsack i. ωij ≥ 0 is the weight
of item j in knapsack i, and ci is the capacity of knapsack i. xi = 1
means that item i is selected and put in all the knapsacks. In this
paper, six widely used test instances of the above problem [22] have
been used in testing MOEA/D-GO.

3.2. Test Setting

Population and neighborhood size (N, T in [14]) of these three
algorithms, minimal hammming distance ε, and ratio to apply path
relink γ in MOEA/D-PR [17] are listed in Table 1. In this paper, both
weighted sum and Tchebycheff decomposition approaches are used.
Each of them is run 20 times for each test instance. In addition, initial
population is produced randomly and greedy repair method [23] is
employed to deal with constrain in (2). Transformation from 1-D to
2-D 0/1 character string is made.

3.3. Test Results

To make comparison with original MOEA/D and MOEA/D-PR,
inverted generation distance (IGD) metric is used [14]. Let P∗ be
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Table 1. Common parameters.

n m N (H) T ε γ

250 2 150 (149) 10 6 0.8
500 2 200 (199) 10 6 0.8
750 2 250 (249) 10 6 0.8
250 3 351 (25) 10 6 0.8
500 3 351 (25) 10 6 0.8
750 3 150 (149) 10 6 0.8

a set of uniformly distributed points in the objective space along the
PF, and P be an approximation to the PF. The IGD from P∗ to P is
defined as

IGD(P ∗, P ) =
∑

v∈P ∗ d(v, P )
‖ P ∗ ‖ (3)

where d(v, P ) is the Euclidean distance between v and the points in
P . If ‖ P ∗ ‖ is large enough to represent the PF very well, IGD metric
can measure both the diversity and convergence of P in a clear sense.
In order to have a low value of IGD, set P must be very close to the
PF and can not miss any part of the whole PF. In this paper, all of the
non-dominated solutions generated by the tested algorithms after 20
runs are utilized to approximate P ∗. Table 2 presents both the mean
and standard deviation of IGD-metric of the final solutions obtained

Table 2. Mean and standard deviation (Std.) of the IGD-metric
values of the final populations for different tests.

Instance Value-Type MOEA/D-GO MOEA/D MOEA/D-PR

MOKP 250 2
Mean 0.0197 (0.0145) 0.0228 (0.014) 0.0233 (0.0093)

Std. 0.0023 (0.0014) 0.0027 (0.0014) 0.0035 (0.0014)

MOKP 500 2
Mean 0.0127 (0.0187) 0.0196 (0.0217) 0.0181 (0.0064)

Std. 0.0014 (0.0018) 0.0028 (0.0017) 0.0023 (0.0008)

MOKP 750 2
Mean 0.0125 (0.0278) 0.0208 (0.0331) 0.0171 (0.0055)

Std. 0.001 (0.0018) 0.0025 (0.0014) 0.0021 (0.0012)

MOKP 250 3
Mean 0.0501 (0.067) 0.0561 (0.0663) 0.0547 (0.0522)

Std. 0.0012 (0.0021) 0.0023 (0.0024) 0.002 (0.0012)

MOKP 500 3
Mean 0.0421 (0.0699) 0.049 (0.072) 0.043 (0.048)

Std. 0.0013 (0.0019) 0.0015 (0.0025) 0.0016 (0.0014)

MOKP 750 3
Mean 0.0307 (0.0731) 0.0436 (0.078) 0.0356 (0.0436)

Std. 0.0009 (0.0029) 0.0015 (0.0026) 0.0014 (0.0014)
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by each algorithm with weighted sum approach and with Tchebycheff
decomposition approach (in parentheses) for each test instance. Small
mean and small standard deviation of IGD-metric reflect good diversity
and stability respectively.

From Table 2, it is observed that the diversity of MOEA/D-GO
with weighted sum approach is better than original MOEA/D and
MOEA/D-PR in all instances, while that with Tchebycheff approach
is worse than others in all instances. And the same results on stability
happened except MOKP 250 2. It’s noteworthy that MOEA/D-GO
with weighted sum approach works better than MOEA/D-PR with
Tchebycheff approach in all 3-objective instances.

Figure 3 presents the evolution of the average IGD-metric value
of the current population to P∗ with the number of generation in each
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Figure 3. Evolution of IGD-metric values in original MOEA/D,
MOEA/D-PR, and MOEA/D-GO with weighted sum approach for
each test instance.
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algorithm with weighted sum approach for each test instance, which
can reflect evolution speed.

From Fig. 3, it is observed that MOEA/D-GO converges faster
than original MOEA/D and MOEA/D-PR for all instances.

Therefore, it can be concluded that MOEA/D-GO with weighted
sum approach works better in terms of diversity and convergence than
original MOEA/D and MOEA/D-PR with weighted sum approach in
solving two and three objectives instances. For 3-objective MOKPs,
MOEA/D-GO with weighted sum approach performs best among these
six algorithms. It is the reason for that MOEA/D-GO with weighted
sum approach is only considered in the following.

4. FRAGMENTED ANTENNA DESIGN WITH
MOEA/D-GO

A CPW-fed planar circular monopole antenna is proposed for ultra
wideband wireless communications in [24]. This kind of antenna is
optimized to operate at 3.1GHz–10.6 GHz with 6.0GHz–7.2 GHz being
notched by discretizing the radiation part using MOEA/D-GO.

Structure of the CPW-fed fragmented antenna is shown in
Fig. 4, which is printed on a 2.54 mm thick TP-2 substrate
with relative dielectric constant εr = 6.15. Structure param-
eters are like those in [24], that is, (W,L, W1, L1, h, g, d) =
(42mm, 75.35mm, 20.23mm, 25mm, 0.35mm, 1.04mm, 0.25mm). We
fix (W0, L0) = (21.04mm, 12.2mm). Therefore, radiation part is sub-

W

L

W0

L0

h

g d W1

L1

Lc
La

Lb

Figure 4. Geometry of a CPW fed fragmented antenna.
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divided into 12× 20 cells (Lb = Lc = 1.2mm), with overlapped length
La = 0.2mm to ensure electrical contact in such constellations to re-
duce loss like in [4].

4.1. MOP for Fragmented Antenna Design

In terms of the conventional 10 dB return loss requirement, the MOP
objective functions in (1) can be specified as

fi(x) = max
(

10− min
f∈[fi1,fi2]

S11, 0
)

(i = 1, 2) (4)

f3(x) = max
(

max
f∈[f31,f32]

S11 − 10, 0
)

(5)

where [fi1, fi2] (i = 1, 2) in (4) characterizes operation bands,
and [f31, f32] in (5) characterizes notched band. S11 (dB) is the
corresponding return loss of the antenna.

4.2. Optimization Results

In this paper, each function evaluation in (4) and (5) is realized by
means of the simulation of Ansoft HFSS 13.0. It takes about eight
days for a PC with Intel Core 2@2.99GHz to solve this MOP after 42
generations with MOEA/D-GO-based optimization for the fragmented
antenna design. Optimal design and its prototype have been fabricated
as shown in Fig. 5. The dashed line in Fig. 5 shows the original circular
radiation patch with R = 10 mm in [24].

R

(b)(a)

Figure 5. (a) Optimal design, (b) photograph of the fabricated
antenna.
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The simulated and measured return losses of the prototype
antenna are shown in Fig. 6. The return loss was measured by
using Agilent E8362B network analyzer. In Fig. 6, points ‘a’ to ‘d’
mark frequencies of 2.92GHz, 5.98 GHz, 7.29 GHz, and 11.05 GHz,
respectively, which characterize the four frequencies in the simulated
return loss, while points ‘A’ to ‘D’ mark frequencies of 3.06 GHz,
6.0GHz, 7.36GHz, and 11.14 GHz, respectively, which characterize

a b
A B

simulation

measurement

C D

c d

Figure 6. Simulated and measured return loss of the antenna.
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Figure 7. (a) 4.4 GHz, E-plane (xoy), (b) 4.4 GHz, H-plane (xoz);
(c) 9.1 GHz, E-plane (xoy), (d) 9.1 GHz, H-plane (xoz).

the four frequencies in the measured return loss. The simulated and
measured gain patterns are shown in Fig. 7. And the simulated and
measured gain at 4.4 GHz are 4.32 dB and 4.46 dB respectively. The
simulated and measured gain at 9.1 GHz are 3.06 dB and 3.57 dB.

From Figs. 6 and 7, it’s found that the measurement results agree
well with the simulation results of the optimized fragmented antenna.
A little offset occurs probably due to fabrication and measurement
error. Therefore, MOEA/D-GO works well for this kind of fragmented
antenna design.

5. CONCLUSION

A hybrid multiobjective evolutionary optimization algorithm, MOEA/D-
GO, for the synthesis of the fragmented aperture antennas is demon-
strated. Enhanced genetic operators are introduced to generate new
individuals. Numerical results on test instances show that MOEA/D-
GO with weighted sum decomposition approach works better in terms
of diversity and convergence than original MOEA/D and MOEA/D-
PR with weighted sum approach in solving two and three objectives
instances. For 3-objective MOKPs, MOEA/D-GO with weighted sum
approach performs best among these six algorithms. Then it is ap-
plied to optimize CPW-fed fragmented monopole antenna to achieve
band-notched characteristic. Simulated and measured results show the
potential of MOEA/D-GO for this kind of antenna.
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