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Abstract—In this paper we propose a two-component polarimetric
model for soil moisture estimation on vineyards suited for C-band
radar data. According to a polarimetric analysis carried out here, this
scenario is made up of one dominant direct return from the soil and
a multiple scattering component accounting for disturbing and non-
modeled signal fluctuations from soil and short vegetation. We propose
a combined X-Bragg/Fresnel approach to characterize the polarized
direct response from soil. A validation of this polarimetric model has
been performed in terms of its consistency with respect to the available
data both from RADARSAT-2 and from indoor measurements. High
inversion rates are reported for different phenological stages of vines,
and the model gives a consistent interpretation of the data as long
as the volume component power remains about or below 50% of the
surface contribution power. However, the scarcity of soil moisture
measurements in this study prevents the validation of the algorithm
in terms of the accuracy of soil moisture retrieval and an extensive
campaign is required to fully demonstrate the validity of the model.
Different sources of mismatches between the model and the data have
been also discussed and analyzed.

1. INTRODUCTION

Soil moisture is a key factor driving the hydrological processes that
take place on Earth’s surface. Some of these processes are linked to
the development of agricultural crops where the efficient management
of water resources is a critical factor. Hence, the remote sensing
community is focused on the design of tools capable of detecting the
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water stress of crops within wide areas and defining the irrigation needs
of plants. Those tools are even much more efficient when they provide
both high spatial and temporal resolutions. In this context, satellite
radar sensors constitute unique systems for such a purpose.

The main problem for soil moisture estimation in a vegetated
area, based on radar data as input, is the effect of the vegetation
layer on the radar returns. While in case of bare surfaces there are
several techniques that deal successfully with the problem by means
of either semi-empirical models [1–4] or polarimetric approaches [5],
the situation becomes more complicated in vegetated terrain [6–
8]. A multi-angular approach at C-band was proposed in [9] by
using empirical relationships based on backscattering coefficients.
In [10] crop-independent empirical relationships are designed to infer
vegetation height, soil roughness and water content from a multi-
polarization acquisition of RADARSAT-2 data with accuracies of
19%, 10% and 25.5%, respectively. From these estimates the soil
moisture is subsequently retrieved with a 32% relative error. A
further improvement over methods using only the intensity values
consists in including the relative phase information of the polarimetric
measurements and, hence, correlations between channels. In this line,
the application of model-based decomposition schemes has shown great
potential in order to increase the performance of retrieval algorithms
at L-band [11–13]. However, at higher frequencies further research is
still required although some progress has been already made [14].

In [15] an in-deep analysis on the polarimetric response from vine-
yards at C-band data acquired by RADARSAT-2 was performed. Time
series of backscattering coefficients, eigendecomposition parameters
and complex correlation of copolar channels were computed, and it was
shown that the electromagnetic response from this scene is made up of
a strong direct return from soil and a weak and variable depolarized
return due to the development of plants (i.e., grape bunches and leaf
area index — LAI — variations). This previous analysis suggests that
vineyards can be modeled as a two-component scenario composed by a
Bragg (or X-Bragg) surface and a depolarizing target which accounts
for both vegetation variation throughout the phenological cycle and
propagation effects due to roughness variations within the field. This
concept is exploited in this work to extend to C-band the applicability
of radar polarimetry (PolSAR) to soil moisture inversion.

The paper is organized as follows. Section 2 is devoted to recall
some of the fundamental advances of polarimetric SAR modeling that
have been considered in the design of the model we propose. In
Section 3 a two-component polarimetric model suited for vineyards
will be proposed and justified. Besides the ideas recalled from [15]
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for the justification of such a model, some additional evidences aimed
at demonstrating the suitability of the two-component model to the
scene under study are in order, hence, Section 3 will be also dedicated
to this purpose. In particular we will show how the typical Bragg
(or X-Bragg) model for surface electromagnetic characterization of
rough soils covers only partially the scattering events generated by
such a scene. Therefore, in line with the work in [14], we propose
to interpret direct ground response as a combined X-Bragg/Fresnel
model. To this aim, polarimetric data set acquired at the European
Microwave Signature Laboratory (EMSL) at JRC-Ispra (Italy) over a
rough surface will be also analyzed for justifying this interpretation.
In Section 4, the soil moisture inversion algorithm will be presented,
and several issues related to the inversion procedure will be likewise
discussed. Retrieval results will be presented and analyzed in Section 5.
Finally, the main conclusions of this work will be summarized in
Section 6.

2. FUNDAMENTALS ON MODEL-BASED POLSAR
MODELING

The Freeman-Durden decomposition [16, 17] is one of the most
important techniques for PolSAR data exploitation due to both its
relative simplicity and its capability for interpreting the scattering
mechanisms associated with different physical elements in natural
and man-made environments. This technique assumes that the
covariance/coherency matrix of the backscattering data can be
decomposed into three covariance/coherency matrices corresponding
to direct surface (odd-bounce), dihedral-type (double or even-bounce)
and a random volume. The 3× 3 coherency matrix T can be modeled
with the well-known expression given in Eq. (1) [18]:

T = fs




1 β∗ 0
β |β|2 0
0 0 0


 + fd



|α|2 α 0
α∗ 1 0
0 0 0


 +

fv

4

[2 0 0
0 1 0
0 0 1

]
(1)

where the first term in the right side relates to the direct surface
contribution, the second one to the dihedral scattering, and the third
one to the contribution of a randomly oriented set of dipoles.

In recent years some improvements of the Freeman-Durden model
have been proposed to deal with limitations and inconsistencies of such
a model. In [19] a helix component was also included in the method
and a simple threshold-based rule for deciding the type of volume was
proposed. Actually, the modeling of volume component is regarded
as the main source of inaccuracy of the original approach since the
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random cloud of dipoles does not always fit the physics underlying
the different natural media. Some attempts have been investigated
and proposed in order to cope with this problem. In [20, 21] the
authors investigated the issue of negative power of the remainder after
subtraction of the volume component and introduced a new approach
consisting in modulating the contribution attributed to the volume by
means of a nonnegative eigenvalue constraint. Alternatively, in [22]
the assumption of a forest volume as a maximum entropy scenario was
implemented jointly with deorientation [23–25] of the coherency matrix
for minimizing the cross-polar channel. Another different strategy
has been aimed at the improvement of the flexibility of the volume
model. In [26] a generalized volume component was developed which
includes two adjustment factors, i.e., a particle shape parameter [27]
and the copolarized ratio. In [28] a generalized orientation angle
probability density function was introduced and it was used in order
to devise an adaptive decomposition scheme in [29]. More recently,
an empirical model where PolInSAR coherences are used to fit the
volume scattering in a adaptive way on a pixel-by-pixel basis has been
proposed [30]. This empirical model allows an increased dynamic range
of the volume power which leads to avoid the overestimation of the
volume component. Further improvements have been proposed in [31]
where authors have demonstrated that volume scattering power can
be uniquely determined as the minimum generalized eigenvalue of the
eigenproblem defined by Eq. (2):

T · x = λ ·Tvol · x (2)

where T is the measured coherency matrix, Tvol the volume coherency
matrix, and λ the generalized eigenvalue corresponding to the
associated eigenvector x.

Also, Lee et al. [32] have proposed an integral approach based on
the original Freeman-Durden decomposition. Authors have thoroughly
analyzed the deficiencies of existing approaches and they have proposed
some modifications in order to overcome them (specially the negative
power issue) while retaining the original characteristics of the original
approach by Freeman and Durden. Notwithstanding all these
improvements, so far there is no clear evidence that allows us to make
an a priori selection of one of these volume models among all the rest
for polarimetric SAR data exploitation. Contrarily, it seems that for
a given practical problem the more appropriate strategy would be to
select the volume scattering model in accordance to a previous analysis
on the SAR data and/or an a priori knowledge of the properties of
the natural cover. This would be indeed a reasonable strategy for
PolSAR modeling when the target can be modeled as a dominant rank-
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1 component and a weak depolarized return which acts as a sort of
source of disturbing effects on the desired strong polarized component.
This is the key idea of the Huynen decomposition which has been
somehow taken into consideration on later works such as the two-
component decomposition by Freeman for mixed natural media [27],
the surface depolarization model proposed by Allain [33], and also the
two-component model adopted for rice scenes at X-band with dual-
polarized data [34]. Actually, this rank-1 plus depolarizing component
model theoretically describes the behavior we found in vineyards in our
polarimetric study performed in [15] at C-band. In this scenario the
direct ground scattering dominates consistently the response along the
phenological cycle and, on the other hand, the combined effect of high
roughness conditions at C-band and presence of vine plants induces
multiple scattering events which incoherently add to the polarized
ground return. This idea was also discussed in [35] where the effect of
the order of the multiple scattering term on a polarized structure was
studied.

3. PROPOSED MODEL

According to the previous lines, we propose to model the vineyards
scenario has a two-component model made up of one dominant direct
return from the soil and a multiple scattering component accounting
for disturbing and non-modeled signal fluctuations from soil and short
vegetation. The general model is given in Eq. (3):

T = fs




1 β∗ · sinc2ψ 0
β · sinc2ψ 1

2 |β|2 · (1 + sinc4ψ) 0
0 0 1

2 |β|2 · (1− sinc4ψ)




+fms




tms
11 tms

12 0
tms∗
12 tms

22 0
0 0 tms

33


 (3)

The first term in the summation represents the soil surface
characterized by the X-Bragg model proposed in [5], which accounts for
depolarization and cross-polarized signal from the ground. The validity
range of such a model covers the scenarios where the vertical roughness
(represented by s) fulfils the condition k · s < 1, where k = 2π/λ. At
C-band (e.g., 5.4 GHz for RADARSAT-2) this leads to approximately
s = 1 cm, which is expected to fall outside the soil roughness conditions
in the test sites of this study according to the ground-truth reports (see
also Fig. 2). However, in this work we postulate that the addition of
a second non-dominant term accounting for multiple scattering events
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produced at both ground and volume layers can be used to correctly
retrieve some properties of the scene.

The structure of the multiple scattering component is represented
by the second term in the summation of Eq. (3). Previous works in the
literature have pointed out that the multiple scattering contribution
plays a substantially different role depending upon the polarimetric
channel. In [35] the scattering of a cloud of identical spherical particles
was used to demonstrate the role of multiple scattering. The target
was modeled by a diagonal Mueller matrix which in turn corresponds
to a diagonal coherency matrix. In [36] the effect of multiple scattering
in forest canopies at L- and C-band was studied. It was shown that
the influence of multiple scattering was specially noticeable in the
cross-polar channel at C-band. Also in [33] the multiple scattering
component is regarded as a matrix structure whose diagonal terms are
dominant. These ideas suggest that the multiple scattering component
in (3) can be further simplified to a diagonal coherency matrix in the
form of (4):

Tms = fms

[
tms
11 0 0
0 tms

22 0
0 0 tms

33

]
(4)

One possibility to characterize Eq. (4) for inversion purposes
consists of adopting the original random distribution of dipoles
proposed by Freeman and Durden [17] since it still remains as a simple
and physically-based method to characterize the source of the increase
of entropy within a distributed target (see discussion in Section 2).
With such an assumption, the final model for parameter retrieval is
given by Eq. (5):

T = fs




1 β∗ · sinc2ψ 0
β · sinc2ψ 1

2 |β|2 · (1 + sinc4ψ) 0
0 0 1

2 |β|2 · (1− sinc4ψ)




+fms




1
2 0 0
0 1

4 0
0 0 1

4


 (5)

3.1. Surface Component

Three parameters define the surface component model, namely the
backscattering coefficient fs which is common to all matrix elements,
the β value, and the roughness angle ψ which represents the angular
width of the distribution of angles of facets integrating the soil surface.
On the one hand, β, which is a complex value, is defined in the Bragg
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scattering model as [37]:

β =
Bh −Bv

Bh + Bv
, |β| < 1 (6)

where Bh and Bv are the Bragg scattering coefficients expressed as
functions of the relative dielectric constant of the surface εs and the
incidence angle θ. Their expressions are shown in Eq. (7):

Bh =
cos θ −

√
εs − sin2 θ

cos θ +
√

εs − sin2 θ

Bv =
(εs − 1)

(
sin2 θ − εs(1 + sin2 θ)

)
(
εs cos θ +

√
εs − sin2 θ

)2

(7)

where the imaginary part of εs is negligigle with respect to the real
part according to the electromagnetic properties of soil as a function
of the wavelength [37]. Besides, the condition |Bv| > |Bh| is fulfilled,
which means that the real part of β is expected to be a negative value.

On the other hand, the roughness angle ψ is a key element in
the X-Bragg model since it parametrizes depolarization and cross-
polarization effects induced by soil roughness [5]. Actually, there are
different methods [38–40] for estimating ψ which could lead to different
solutions of such a parameter.

Taking into account the two considerations made before we
observe that, under the X-Bragg hypothesis, the t12 element of the
coherency matrix modeling the surface component (see Eq. (5)) must
be a negative value for angular distributions between −π/2 and π/2.
Nevertheless, we have observed in experimental data at C-band that
the real part of the t12 element, i.e., <(t12), can adopt both positive
and negative values in high amounts. Therefore, this means that
the X-Bragg model is only partially fulfilled at C-band. We have
checked this behavior by analyzing both the electromagnetic response
of a rough surface under controlled conditions in the EMSL facilities
and the radar data acquired by RADARSAT-2 sensor. Fig. 1 shows
<(t12) as a function of frequency and its histogram at 5.4 GHz. The
expected negative values, according to the Bragg model, appear at low
frequencies and up to S-band, but from the transition between S- and
C-band <(t12) oscillates between negative and positive quantities. On
the other hand, the histogram of <(t12) at C-band shows a Gaussian-
like distribution with mean around zero. Likewise, the histogram for
<(t12) of one of the vine parcels in our study is plotted in Fig. 2 with
the corresponding photograph for reference purposes on the status of
the field. As seen, there is an agreement between laboratory and real
SAR data and, consequently, this shows a partial disagreement between
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Figure 1. Statistics of <(t12) for a rough surface: (a) variation
as a function of frequency and (b) histogram at C-band for
72 measurements taken from different azimuth angles. Radar data
acquired at the EMSL.
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Figure 2. One of the vine parcels under study: (a) photograph and
(b) histogram of <(t12) for RADARSAT-2 data.

the X-Bragg model and the data set acquired at C-band which hinders
the application of current approaches [11, 12] which were successfully
applied to L-band data.

In order to overcome this issue, we propose to model the surface
component as a hybrid X-Bragg/Fresnel model so as to give an
interpretation to both the negative and the positive values for <(t12).

Despite the Fresnel equations predict a null backscattering for a
perfectly smooth surface, this model can be modified for accounting for
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soil roughness and, hence, leading to a non-zero backscattered power.
This is possible by modeling the surface by means of a collection of
facets with finite size [18]. Hence, in the BSA convention the model
expresses the Fresnel equations as given in Eq. (8) [18]:

Rh = f(λ, θ, L) ·
√

εs − sin2 θ − cos θ

cos θ +
√

εs − sin2 θ
= −f(λ, θ, L) ·Bh

Rv = f(λ, θ, L) · εs cos θ −
√

εs − sin2 θ

εs cos θ +
√

εs − sin2 θ

(8)

where the term f(λ, θ, L) depends on the wavelength λ, the incidence
angle θ and the dimension of the square facet L assumed for this model.
This term is given by expression (9) as:

f(λ, θ, L) =
2
√

πL

λ
· cos θ · sinc(kL sin θ) (9)

According to Eqs. (8)–(9) and following the same procedure to
define the surface component for the coherency matrix, a different β
parameter, depending again on the soil relative permittivity and the
incidence angle, is obtained. It will be denoted as β′ hereafter to avoid
confusion with the original β. Contrarily to β, the dynamic range
of β′ contains only positive values. As we will show later, this will
improve the interpretation of the data and increase the performance
of the inversion algorithm.

3.2. Volume Component

According to our discussion in Section 2, the second contribution of the
two-component model is the random volume assumed by Freeman and
Durden [17], where the only unknown is the backscattering coefficient
fms (see Eq. (5)). In a recent work by Cui et al. [31] it has been
shown that the volume scattering power can be uniquely determined
as the minimum generalized eigenvalue of the eigenproblem defined by
Eq. (2). This is the approach we adopt in this work for defining the
volume component.

3.3. Further Evidences Supporting a Two-component
PolSAR Model

The adoption of model given in Eq. (5) and discussed above is also
supported by the analysis performed in [15] where the following
behavior on the polarimetric response was found:
(i) Entropy values were confined in the 0.5–0.8 range along the whole

phenological cycle.
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(ii) There is one dominant eigenvalue, which associated alpha angle
was always lower than 20◦.

(iii) The copolar phase difference (CPD) remained low, always within
±20◦.

Figures 3 and 4 show the histograms of dominant alpha and
copolar phase difference for two of the parcels under study for both
early and advanced phenological stages (April 19th and July 24th,
respectively). The former corresponds to a bare surface with short
vine stocks (see Fig. 2), and for the latter the vine morphology is fully
developed in terms of LAI and plant height and the grape bunches are
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compact clusters. In case of α1 the standard deviation is below 10◦
and in case of the CPD the highest value is 20◦. These results indicate
that the surface scattering coming from the ground is the dominant
contribution in the whole area of both parcels.

In order to give further evidences for the interpretation above, we
have also computed the conformity coefficient proposed in [41]. This
coefficient is defined as in Eq. (10), where C is the covariance matrix,
and tr(C) is the trace of C. The reflection symmetry hypothesis is
assumed and it has been shown its capability for discriminating among
direct surface, double-bounce and volume scattering mechanisms. The
conformity value tends to unity for bare soil (copolar channels are
correlated and their relative phase is zero). On the other hand,
it will tend to −1 for double-bounce mechanisms (copolar channels
are correlated and their relative phase is 180◦). In case of volume
scattering, the conformity coefficient takes an intermediate value since
the HV channel is relatively large and there is a weak correlation
between copolar channels. Authors in [41] found that the conformity
values for volume scattering were in the range [−0.2, 0.35]. In Fig. 5
the histograms of the conformity coefficient for April 19 and July 24
for one of the parcels under analysis are displayed (these are similar
for the other parcel). It is seen that the interpretation of surface and
volume scattering mechanisms is also consistent with this coefficient.

µ =
2 · <(C13)− C22

tr(C)
(10)
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3.4. Alternative Approaches

Other alternative approaches found in the literature were previously
tested before considering the proposed model as the best option for
the particular scenario we study in this paper. In particular we
tested the approach proposed by Jagdhuber et al. [12] for a single
incidence angle and considering a random volume for modeling the
vines canopy. Also, a more flexible model propose by Antropov et
al. [26] was also implemented since it makes use of the copolarized
ratio and the copolar cross-correlation as fitting factors. However, as
authors state in [26], we did not find important differences in terms of
scattering mechanisms with respect to the Freeman-Durden approach.
In any case, this preliminary work gave us an additional evidence that
the two-component model was physically possible for characterizing
vineyards since a dominant direct surface component was consistently
estimated, whereas the double-bounce contribution was negligible.

Additionally, a hybrid procedure consisting on an eigendecomposi-
tion of the coherency matrix for first extracting the dominant polarized
component [31] was also tested. Once this single component was es-
timated, the remainder was associated with the disturbing effects of
higher roughness soil areas and vines canopy. In these tests we ob-
served that the t11 element of the coherency matrix was systematically
assigned to the fs backscattering coefficient of the dominant surface
contribution and, hence, the secondary volume component was made
up by a diagonal matrix expressed as (0, 1, 1). Therefore, these re-
sults did not yield any positive conclusion since the solutions were not
consistent with the physical model proposed.

4. SOIL MOISTURE INVERSION ALGORITHM

Following our reasoning we propose an inversion algorithm for soil
moisture suitable for environments where the direct surface response is
the strongest contribution to the radar echoes and where the vegetation
layer together with variations of terrain roughness act as a source
of depolarization which is accounted for as disturbing effects on the
dominant polarized signature from soil surface.

Figure 6 shows the flowchart of the inversion algorithm. The
starting point is the coherency matrix T estimated by applying a
multi-look filter (e.g., 7×7 refined Lee filter in this particular example).
Then, the deorientation procedure proposed by An et al. [22] is applied.
This method rotates the coherency matrix a certain angle about
the line of sight to minimize the cross-polar channel and allows to
redistribute the power from it to the copolar ones. By doing so, it
avoids the cases where t33 > t22 which would affect negatively the
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Figure 6. Flowchart of the proposed inversion algorithm for
vineyards.

inversion performance (see Section 5). Additionally, it has been proven
that the orientation compensation reduces the correlation between
copolar and cross-polar channels [42] and, hence, this leads to a
relaxation of the reflection symmetry assumption [32].

After deorientation, the structure of the new matrix T′ is analyzed
to check whether full azimuthal symmetry is fulfilled or not. We
have used an empirical test consisting in calculating the ratio of the
minimum between t22 and t33 over |t12|. From several tests we have
performed over the available data sets we have observed that the
inversion performance increases and saturates when this ratio is about
10 dB. Hence, this threshold is set to that value. This is a necessary
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step since we have observed in our tests that a number of pixels exhibits
this behavior and, hence, the surface component must be modified from
expression in Eq. (5) to the expression in Eq. (11):

Tsurf = fs




1 0 0
0 1

2 |β|2 0
0 0 1

2 |β|2


 (11)

Once the full azimuthal symmetry condition has been checked, the
next step consists in estimating the volume component by solving the
eigenproblem defined by Eq. (2) [31]. Then, the roughness angle ψ
and the surface parameters fs and β are calculated. Note that when
the pixel satisfies the azimuthal symmetry case, the surface is modeled
just by fs and |β| but not by ψ. In such a case, the soil moisture value
is inverted from |β| by means of the Bragg model.

Subtraction of the term fv/4 to both t22 and t33 elements of the
deoriented matrix T′ leads to the estimation of roughness angle ψ since
the new t′22 and t′33 elements are:

t′22 =
1
2
|β|2 · (1 + sinc(4ψ))

t′33 =
1
2
|β|2 · (1− sinc(4ψ))

(12)

The ratio of both equations in expression (12) gives the
relationship in (13) [39] which allows to find ψ.

t′22

t′33

=
1 + sinc(4ψ)
1− sinc(4ψ)

−→ sinc(4ψ) =

t′22
t′33
− 1

t′22
t′33

+ 1
(13)

After estimation of the volume component and the roughness
angle, the fs and β parameters are computed as in (14):

fs = t′11 = t11 − fv

2

β =
t∗′12

fs · sinc(2ψ)

(14)

The following step checks the real part of the t′12 element. Once the
sign of <(t′12) is known, the retrieval of the permittivity constant either
from the Bragg or the Fresnel model is performed accordingly. Finally,
the soil moisture value is obtained from the permittivity constant by
inverting the expression by Topp et al. [43] given in expression (15) as:

mv(%) = −5.3 + 2.92 · εs − 0.055 · ε2
s + 0.0004 · ε3

s (15)
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5. ASSESSMENT OF THE POLARIMETRIC MODEL

The assessment of both the polarimetric model and the inversion
algorithm has been carried out by using RADARSAT-2 images
acquired in 2010 over vineyards located in Monòver (Alicante, Spain).
A total of 17 SAR images in fine quad-pol mode were acquired covering
the whole phenological cycle, with 34◦ and 39◦ incidence angles. The
monitored area contained six vine parcels, three of them drip irrigated
and three non-irrigated. All the vineyards were sprawling canopies
with no trellis system or supporting structures. The ground-truth
campaign consisted in measurements of plant height, LAI, phenology
stage, and the soil moisture, among other physiological parameters. It
must be noted that only one single measurement of soil moisture was
performed within every parcel. The reader is referenced to [15] for
more details on the SAR data and ground-truth campaigns.

In this work we have limited our study to two different parcels
among those analyzed in [15]. Their main features are listed in Table 1.
The soil moisture values exhibit two different and nearly constant
values for the first and second halves of the cycle, i.e., from April
to June and from June to September, respectively. Therefore, we have
selected two images corresponding to both periods as representatives
of both stages. These images were acquired on April 19 and July 24
at a 34◦ incidence (FQ15 beam). Soil moisture values are summarized
in Table 2.

5.1. Results

Figure 7 displays the retrieved soil moisture maps for parcels 1 (top
row) and 2 (bottom row) on April 19, June 06 and July 24 (left to

Table 1. Characteristics of the parcels in the study area.

Parcel
Area

(ha)

Ground

slope (%)

Vine

spacing

(m)

Row

spacing

(m)

Irrigation

system

Lat/Lon

coordinates

1 2.83 3.5 2.4 2.6 unirrigated 38.457◦/−0.917◦

2 1.16 1.9 1.9 2.3 drip 38.432◦/−0.926◦

Table 2. Soil moisture of the parcels in the study area.

Parcel 1 Parcel 2
April–June 20–25% 10%
June–Sept. 5% 5%
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Figure 7. Soil moisture maps (%) for both parcels and dates April
19, June 06 and July 24.

right). According to these results, most of pixels are associated with
low soil moisture values, not higher than 10–12%. Several spots around
15–20% are also visible (light blue color) as well as smaller areas
with values higher than 35% (orange and red colors). White gaps
represent pixels where non-feasible values were retrieved. In general,
the inversion model is able to catch a high spatial variability of soil
moisture at parcel level. This can be also seen in the histograms
for the retrieved values of relative permittivity and soil moisture for
both parcels, shown in Fig. 8. The procedure yields a high amount
of soil moisture values below 15–20%, i.e., a permittivity about 8–10.
Also, note that the histograms are dominated by extreme values of
permittivity corresponding to 2 and 40. This is a consequence of the
reduced dynamic range of the β and β′ parameters and further analysis
is required in order to understand the impact of such an issue. Actually,
the lack of detailed ground-truth samples (only one single point per
parcel is available) prevents any complete statistical assessment on
the algorithm performance in terms of final soil moisture estimates.
Nevertheless, we can provide an assessment of the consistency of the
model in terms of the number of pixels that match the polarimetric
characterization proposed in Section 3, i.e., the inversion rate, which
gives an insight on the validity of the retrieval procedure.

Tables 3 and 4 show the inversion rates for the whole time
series (seven dates starting from April 19th being the last one on
September 10th) for both parcels. The retrieval procedure has been
applied with and without including the data compensation by means of



Progress In Electromagnetics Research, Vol. 142, 2013 655

2 10 15 20 25 30 35 40
0

20

40

60

80

100

120

140

160

180

200
Histogram for dielectric constant  Parcel #1

Soil dielectric constant

N
r.

 o
f 

o
c
c
u

rr
e

n
c
e

19 Apr
24 Jul

0 10 15 20 25 30 35 40 45 50
0

20

40

60

80

100

120

140

160
Histogram for soil moisture values (%)  Parcel #1

19 Apr
24 Jul

2 10 15 20 25 30 35 40
0

50

100

150
Histogram for dielectric constant  Parcel #2

Soil dielectric constant

N
r.

 o
f 

o
c
c
u

rr
e

n
c
e

19 Apr
24 Jul

0 10 15 20 25 30 35 40 45 50
0

20

40

60

80

100

120

140
Histogram for soil moisture values (%)  Parcel #2

Soil moisture (%)

19 Apr
24 Jul

Soil moisture (%)

N
r.

 o
f 

o
c
c
u

rr
e

n
c
e

N
r.

 o
f 

o
c
c
u

rr
e

n
c
e

5

5 5

5

-

- -

-

Figure 8. Histograms of permittivity and soil moisture (%) for both
parcels and April 19 and July 24.

Table 3. Inversion rates for parcel 1.

April 19 May 13 June 6 June 30 July 24 Aug. 17 Sep. 10

With deorient. 90.1% 91.48% 81.58% 92.41% 77.86% 83.9% 85.75%

No deorient. 83.75% 83.12% 73.06% 85.76% 65.63% 73.53% 74.46%

Table 4. Inversion rates for parcel 2.

April 19 May 13 June 6 June 30 July 24 Aug. 17 Sep. 10

With deorient. 97.05% 97.29% 95.57% 76.65% 70.51% 70.02% 79.12%

No deorient. 93.61% 97.05% 94.6% 73.71% 64.86% 70.02% 72.72%
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deorientation. As seen in both tables the application of deorientation
improves the inversion rate up to 12% in parcel 1 and up to about 6%
in case of parcel 2.

Considering the results for the compensated data, the overall
conclusions on the validity of the model are different depending upon
the parcel under analysis. In case of parcel 1 the inversion rate
experiences some oscillations but does not take values below 81% for
all dates but for the one on July 24th where a 77.86% is achieved.
However, parcel 2 exhibits a clearly different behavior for two periods
of the phenological cycle. For the first period, which extends from April
19th to June 6th, it exhibits inversion rates not below 95%. It must be
noted that this period covers three different scenarios, namely: 1) the
image on April 19th corresponds to the scenario depicted in Fig. 2
where a bare surface containing small vine stocks is present; 2) the
image on May 13th corresponds to the phenological scale known as
fruit set [44] and the LAI is slightly below 0.4 m2/m2; 3) the image on
June 6 (see Fig. 9 for visual reference) is a key moment on vineyards
development since there happens a jump in LAI up to 0.8 m2/m2 (the
maximum for this parcel is 1 m2/m2). Therefore, according to this first
stage, it can be concluded that the polarimetric model is well adapted
to the changes in the vineyards scenario.

On the other hand, for the second set of images, which spreads
from June 30 to September 10, the inversion rate has decreased
significantly and oscillates between 70% and 79%. These differences
on the inversion rates depending upon both the parcel and the
phenological period suggest that there exist additional features still not

Figure 9. Picture of parcel 2 on June 6th.
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well identified and that their effects vary depending upon the particular
parcel.

5.2. Sources of Inconsistencies

Obviously, all models and inversion procedures present inconsistencies
when applied to real SAR data. In this study we have identified several
issues that may affect the retrieval performance:
(i) The limited dynamic range of β and β′ parameters for Bragg and

Fresnel formulations, respectively. Fig. 10 shows the theoretical
values of β and β′ and the experimental values retrieved on July
24 for parcel 1. As seen, there is a subset of both β and β′
values falling outside the physically realizable interval (around
22% as shown in Table 3). This is an intrinsic drawback of
the surface model and it is also exhibited in experiments at L-
band over several types of crops [12]. Hence, electromagnetic
modeling efforts towards an improved surface characterization are
required [14, 45, 46].
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Figure 10. (a) Theoretical dynamic range of Bragg and Fresnel
models for 34◦ incidence angle and (b) retrieved values of β and β′ on
July 24 for parcel 1. Blue and green horizontal lines in (b) represent the
maximum and minimum value predicted by Fresnel and Bragg models,
respectively. Red dots inside the circles correspond to feasible values
of both β and β′.

(ii) The balance between the volume component (i.e., multiple
scattering events due to both the high roughness at C-band
and the volume scattering from vine plants) and the polarized
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component from soil is a key factor for the suitability of the
model. Actually, this is the key problem faced by polarimetric
decompositions which has not been fully understood so far (see
Section 2). The experimental evidences we have found (see
Section 3.3) suggest that this particular scenario is a perfect
candidate to be modeled by a dominant surface component and
a second weak depolarizing contribution. Nevertheless, we have
observed in our tests that even though the total volume power
is statistically lower than that for the surface component, the
consistency of the model becomes more limited as the volume-
to-surface ratio gets higher, i.e., as the volume contribution is
not weak when compared to the surface one. Histograms of
such a ratio for all dates have been computed and plotted in
Fig. 11. By inspecting the inversion rates on June 6 and June
30 for both parcels in Tables 3 and 4 and comparing them to
histograms in Fig. 11 one can see a clear correlation between both
indicators. The more the maximum of the histogram shifts to
the left, the higher the inversion rate will be. This statement
results evident when observing the differences between June 6
and June 30 for parcel 1 where the inversion rates are 81.58%
and 92.41%, respectively. This improvement is reflected in the
histograms for both dates (dotted and dashed lines for June 6
and June 30, respectively). From these results, we can state
that the two-component model fits these data in a 80% or higher
percentage whenever the volume-to-surface ratio remains around
50% or below, i.e., the volume response is 3 dB or more below the
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Figure 11. Histograms of volume-to-surface ratio for all dates for
(a) parcel 1 and (b) parcel 2.
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surface response. On the contrary, the inversion rate will decrease
below 80%.

(iii) The imaginary part of β is commonly ignored. However, the
inspection of experimental data reveals that this term could be
significant and additional effects should be included in the model
to properly account for them. In Fig. 12(a) the ratio between
imaginary and real parts of element t12 is plotted against the
frequency for the EMSL data, which shows that even at lower
frequencies the term =(t12) is at least of the same order as <(t12).
In Fig. 12(b) the histograms of such a ratio at L- and C-band
suggest that this issue could affect in the same way both frequency
bands.
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Figure 12. (a) Ratio between imaginary and real parts of element
t12; (b) Histograms of the ratio at L- and C-band. SAR data acquired
at the EMSL.

(iv) According to our data and despite the application of
the orientation angle compensation, the reflection symmetry
assumption is not fully fulfilled. This point needs further research
in order to better understand the impact of such approximation in
the performance of the algorithm. The next step should tackle the
design of an approach based on the usage of the fully polarimetric
information [31].

(v) Another source of uncertainty is the lack of soil texture
information since it could affect the conversion from dielectric
properties of soil to the corresponding moisture values [3].
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6. SUMMARY

This paper constitutes a follow-up contribution on the topic of
vineyards monitoring by means of radar sensors and specifically we
have focused in soil moisture estimation. In a previous work we defined
this type of natural target as a two-component scenario and in the
present paper the corresponding polarimetric SAR model is designed
based on previous PolSAR models found in the literature. This
scenario is made up of one dominant direct return from the soil and
a multiple scattering component accounting for disturbing and non-
modeled signal fluctuations from soil and short vegetation. We have
further analyzed the polarimetric indicators that give support to such
a model and we have proposed a combined X-Bragg/Fresnel approach
to characterize the polarized direct response from soil. Validation of
polarimetric model has been performed in terms of its consistency
with respect to the available data. Also, the analysis of laboratory
data gathered at the EMSL over a rough surface gives support to
these statements. High inversion rates are reported for different
phenological stages of vines and according to the results presented
here the model gives a consistent interpretation of the data as long
as the volume component power remains about or below 50% of the
surface component power. Validation in terms of the accuracy of
soil moisture retrieval has not been possible due to the scarcity of
ground measurements and an extensive campaign is required to fully
demonstrate the validity of the model. Different sources of mismatches
between the model and the data have been also discussed and analyzed.

Alternative configurations also deserve attention since they could
contribute to improve the performance of this approach for soil
moisture retrieval over vineyards. On the one hand, it is expected
that the use of an L-band polarimetric sensor will greatly improve
the inversion results because of both the higher contrast between
ground and vegetation and the lower impact of soil roughness [13].
On the other hand, the model-based decomposition strategies
applied to PolInSAR observables could potentially lead to a better
retrieval performance through the separation of coherency/covariance
interferometric matrices expressed in terms of ground and canopy
parameters [47–49].
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