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Abstract—An on-line method to detect radial mechanical deforma-
tions of power transformer winding turns is presented. First-order
perturbation theory is applied to a transformer winding surrounded
by the transformer tank wall and the iron core. The transformer wind-
ing is modeled as thin conducting cylindrical rings (winding segments
or turns) situated within a coaxial waveguide, where the outer con-
ducting cylinder represents the transformer tank wall while the inner
conducting cylinder represents the iron core. Antennas which radi-
ate and measure microwave fields are proposed inside the transformer
tank in order to identify and quantify the mechanical deformations of
winding turns. The direct propagation problem is solved using con-
ventional waveguide theory with mode-matching and cascading tech-
niques. An optimization algorithm is then used to solve the inverse
problem whereby a good agreement between the reconstructed and
true deformations of the winding segments is obtained.

1. INTRODUCTION

A power transformer is one of the most critical components in
the electric power grid, the occasional failure of which may result
in major consequences for the power supply ability of the grid.
Power transformers are subject to several degradation mechanisms
during operation, including thermal degradation at hot spots, partial
discharges due to local electric field surges, winding deformations
caused by mechanical forces from short circuit currents, and increased
levels of moisture in the cellulose insulation due to decomposition.
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The abovementioned degradation phenomena can be detected using
the available diagnostic methods. However, the available diagnostic
methods are often inaccurate or only applicable off-line. Off-line
methods generally imply a non-service stress of a transformer.

Some proposed on-line methods are presented in [1–4]. For a
brief survey of these methods, see e.g., Section 2 in [3], where, e.g.,
the methods of dissolved gas analysis, in-service partial discharge test
(PD), short-circuit reactance measurements, FRA frequency response
tests and measurements of the vibration intensity of the transformer
tank, are described. From the descriptions in [3] and elsewhere, it
is reasonable to conclude that neither of these methods is capable to
detect and quantitatively measure the actual individual deformations
of the winding segments or turns. The reason for that being that
the results of their measurements are generally only indirectly related
to the individual conductor deformations. It is therefore fair to say
that, as far as the detection of the individual winding conductor
deformations is concerned, the accuracy of the available on-line
methods is limited.

Thus, as far as the present authors are aware of, on-line monitoring
methods of individual winding deformations due to the mechanical
forces from short circuit currents and/or initial manufacturing
inconsistencies are generally not available. In this paper, we therefore
study a principle for an on-line method, which is capable to detect
and measure the individual mechanical deformations, where one or
more winding turns have been slightly deformed from the ideal circular
form to either a simple elliptic form or more realistic wave-shaped
form, described in detail below. Our general method [5, 6] can in
principle also be used to detect the effects of other types of degradation
mechanisms (see e.g., [7]), but the investigation in the present paper
focuses on a specific class of mechanical deformations only.

The present approach is based on inserting antennas inside
the transformer tank, above and below the transformer windings,
which radiate and measure microwave fields. The microwave fields
interact with the winding structure, and the analysis of the measured
signals and their relations to the mechanical structure parameters,
which are critical signatures of mechanical deformations, is an inverse
electromagnetic problem [8]. In this paper, the direct propagation
problem is solved by means of the conventional waveguide theory,
including mode-matching and cascading techniques [9], while the
inverse problem is solved using an optimization technique which allows
us to reconstruct the deformations of the irradiated winding turns.

In the present paper, we use similar methods for solving both
the direct and inverse problems as in [5, 6], and in that sense the



Progress In Electromagnetics Research Letters, Vol. 43, 2013 3

present investigation is incremental as compared to our previous
work [5, 6]. It should, however, be noted that the present paper
is not directly concerned with the conductor displacement problems
described in [5, 6]. The objective of the present paper is the study
of the elliptic, and more importantly, the wave shaped mechanical
deformations of transformer windings only. This type of deformations
is more realistic and more often encountered in actual decommissioned
power transformers compared to the deformations studied in [5, 6], such
that any realistic future diagnostic device will need the mathematical
tools to describe the wave-shaped deformations. As far as the present
authors are aware, the study of such mathematical tools, using
perturbation techniques, is not found in the literature.

Furthermore, we would like to add that this paper provides a proof
that the wave-shaped deformations (to the first-order approximation)
can be reduced to the simple displacements reported in [5, 6] with
the suitable choice of the TM-modes, being an important new result
showing that essentially the same mathematical tools can be used to
cover the broad range of deformations. It is an important step towards
any realistic design of a diagnostic device.

2. THE UNPERTURBED PROBLEM DESCRIPTION

We model a transformer winding structure as a coaxial cylindrical
waveguide, where the outer conducting cylinder represents the
transformer tank wall while the inner conducting cylinder represents
the iron core [6], as shown in Fig. 1. Between the transformer tank
wall and the iron core there is a set of thin conducting cylindrical

Figure 1. The power transformer as a coaxial cylindrical waveguide.
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rings (winding turns) that are situated within the coaxial cylindrical
waveguide. The geometry of our model of a transformer winding
surrounded by the transformer-tank wall and the iron core is shown in
Fig. 2. We denote the four regions (1–4) between the two cylindrical
conductive surfaces of the coaxial waveguide (iron core and tank wall)
and the conductive obstacle (winding turn) as indicated in Fig. 2.

Figure 2. Cross section of a coaxial waveguide as a model of a
transformer winding.

For the propagation problem we only consider TM-modes (Hz =
0) as they include the TEM-mode, which is the dominant mode in all
regions. Following [11], the longitudinal component of the electric field
is given by

Ez =
1

σ + jωε

(
d2Λ
dz2

+ k2Λ
)

T (r, ϕ), (1)

where k2 = jωµ(σ+jωε) and Λ(z) = exp(−jkzz) for waves propagating
in the positive z-direction. The material parameters µ, σ and ε are the
effective permeability, conductivity and permittivity, respectively, for
the transformer winding insulation. The scalar transverse function
denoted by T (r, ϕ) in (1) for TM-waves in a coaxial wave guide is a
solution of the transverse wave equation

∇T T (r, ϕ) + γ2T (r, ϕ) = 0, (2)

where γ is the transverse wave number. An approximate solution of the
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Equation (2) for TM-waves, suitable for our problem, is given by [11]

Tn,m(r, ϕ) = Q sin
nπ(r −RI)
RO −RI

cos(mϕ), (3)

with

γ2
n,m =

n2π2

(RO −RI)2
+

4m2

(RI + RO)2
, (4)

where n = 1, 2, . . . and m = 0, 1, 2, . . . are two integers that denote
the TM-modes in this case. In (3) and (4) we denote the radii of the
inner and outer cylinders of the coaxial waveguide cavity by RI and
RO respectively.

3. MECHANICAL DEFORMATIONS IN POLAR
COORDINATES

Let us first assume that the transformer winding turn of radius R
(equal to inner radius R1 or outer radius R2, according to Fig. 2 for
regions 1 and 2, respectively) lying between the iron core of radius
RC and the transformer tank of radius RW , is slightly deformed from
the expected circular shape of radius R to an ellipse with semi-major
axis a and semi-minor axis b. The ideal circular shape and the actual
deformed elliptic shape of the transformer winding turn are shown in
Fig. 3(a).

(b)(a)

Figure 3. Mechanical deformations of a circular winding of radius
R. (a) Simple elliptic deformation and (b) more realistic wave-shaped
deformation.
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From Fig. 3(a), to the first order of approximation in the small
parameter ε/R, we obtain the following result for the size of the
radial deformation δ(r, ϕ) of the elliptic winding compared to the
unperturbed circular winding

δ(r, ϕ) = δ(ϕ) = r −R = ε cos(2ϕ). (5)
From (5), we see that a − R = +ε for the semi-major axis (r = a)
when ϕ = 0, π, while b−R = −ε for the semi-minor axis (r = b) when
ϕ = π/2, 3π/2 in accordance with Fig. 3(a). Thus we have a = R + ε
and b = R − ε such that, to the second order of approximation in the
small parameter ε/R, the length of the perturbed ellipse is given by

O = 2πR

(
1 +

ε2

4R2

)
≈ 2πR, (6)

and we see that up to the first order in the small parameter ε/R, the
turn length of the winding is unaffected by the perturbation.

Although possible in principle, the simple elliptic deformation
as the one depicted in Fig. 3(a) is unlikely in realistic power
transformer windings. The reason for that observation is that
the power transformer windings are wound in such a way that
their circumference is partly mechanically supported by a number
of solid state (pressboard) spacers, distributed periodically over the
winding circumference. In between these spacers there are vertical
oil ducts, where the transformer oil can flow in order to reduce the
temperature gradient between winding conductors and surrounding
oil, such that the hot spot temperature is kept to a minimum. This
reduces the rate of degradation of the winding insulation due to hot
spots and consequently ensures a longer life expectancy of a power
transformer [12].

However, when subject to heavy radial forces due to short circuit
currents, the parts of the circumference of the winding turns, less
supported by the solid state insulation, are more likely to be deformed
towards the iron core than the parts fully supported by the solid
state insulation [12]. Such deviations are indeed sometimes found
when inspecting old decommissioned power transformers. Some typical
mechanical deformations of winding turns are shown and studied
using frequency response analysis (FRA) in, e.g., [13]. Thus, a
realistic winding deformation can be modeled by a wave-shaped form
depicted in Fig. 3(b), where we have chosen (as an example) that
there are exactly ten segments supported by the solid state insulation
and consequently another ten segments between them that are less
supported by solid state insulation. Thus, the cross section of a winding
segment, seen from the above, displays a periodic wave-shape as shown
in Fig. 3(b).
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Analogously to the case of the elliptic deformation above, to the
first order of approximation in the small parameter ε/R, we obtain
the following result for the size of the radial deformation δ(r, ϕ) of the
wave-shaped deformed winding compared to the unperturbed circular
winding

δ(r, ϕ) = δ(ϕ) = r −R = ε cos(10ϕ). (7)

The result (7) is of course valid for the actual example depicted in
Fig. 3(b), where there are exactly ten segments supported by the solid
state insulation. In general, if the winding manufacturing technology
stipulates some other number k of supporting segments, the general
result analogous to (7) reads

δ(r, ϕ) = δ(ϕ) = r −R = ε cos(kϕ). (8)

In the present paper, we will use the example with k = 10 to derive
the general results, but all the results and conclusions throughout the
paper have a general validity, and can be derived without reference to
this particular example in a straightforward way.

4. THE FIRST-ORDER PERTURBATION MODEL

Following [10] (Problem 8.12), if the eigenvalue parameters and
eigenfunctions of the transverse equation for two boundary contours
C and C0 are (γ2, T ) and (γ2

0 , T0), respectively, then to the first order
in δ(r, ϕ) we have for TM-modes

γ2 − γ2
0 = −

∮
C0

δ(ϕ)|∂T0
∂n |2dl0∫

S0
|T0(r, ϕ)|2dS0

, (9)

where ∂T/∂n = n · ∇T is the derivative in the direction of the surface
normal. In our case, the unperturbed transverse mode functions for
TM-modes are given by (3). Performing the integrations in (9) for the
case of a simple elliptic deformation depicted in Fig. 3(a), we obtain

γ2 − γ2
0 =

n2π2

(RO −RI)2
ε

RO −RI
δn,1, (10)

where δn,1 is the Kronecker delta function and should not be confused
with our deformation parameter δ(r, ϕ) or δ(ϕ). On the other hand,
performing the integrations in (9) for the case of a more realistic
deformation depicted in Fig. 3(b) with k = 10, we obtain

γ2 − γ2
0 =

n2π2

(RO −RI)2
ε

RO −RI
δn,5, (11)
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From the result (11), we observe an interesting property of the
first-order perturbation formula (9) that for any even number k =
2, 4, 6, . . ., we obtain the general result

γ2 − γ2
0 =

n2π2

(RO −RI)2
ε

RO −RI
δn,k/2, (12)

where we again note that δn,k/2 is a Cronecker delta function and
should not be confused with our deformation parameter δ(r, ϕ) or δ(ϕ).

Thus we see that, to the first order of perturbation, only the TM-
modes with m = k/2, i.e., TMm,k/2-modes, give a non-zero deviation
of the eigenvalues γ2 from the unperturbed eigenvalue parameters γ2

0 .
This property of the first-order perturbation model, described by the
result (12), indicates the possibility to distinguish between the different
types of mechanical deformations that can occur in a transformer
winding structure. If there is a genuine radial deformation of the
winding turns described in [6], it will be detected by the lowest TM-
mode of microwave radiation with n = 0 and the contributions from
the higher-order modes will be very small compared to the leading
TMm,0-mode.

On the other hand, if we have an elliptic deformation as the one
depicted in Fig. 3(a), then it will only be detected by the TM-mode
of microwave radiation with n = 1 and the contributions from all
the other modes (n = 0 and n > 1) will be small compared to the
leading TMm,1-mode. Finally, if there is a wave-shaped deformation
as the one depicted in Fig. 3(b), and we know from the winding design
specifications that there is an even number k of solid state insulation
spacers around the winding circumference, then such a deformation
will be detected by the TM-mode of microwave radiation with n = k/2
and the contributions from all the other modes (n < k/2 and n > k/2)
will be small compared to the leading TMm,k/2-mode.

There is therefore a clear distinction between the displacements
results presented in [5, 6], which were obtained using the leading
TMm,0-mode, and the wave-shaped deformation results presented here.
The wave-shaped deformations are, to the first order of approximation,
undetectable by the leading TMm,0-mode and in the results presented
in the present paper the leading mode is effectively excluded. Only
the TMm,k/2-mode is used when performing the calculations in the
present investigation. In particular, the numerical results are obtained
with TMm,5-mode.

Thus, in the first-order approximation, by switching on and off
microwave antennas with different frequency modes of TM-waves it is,
at least in principle, possible not only to detect the radial deformations,
but also to determine their general shape. Using now the result (4)
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with m = k/2, we obtain the perturbed eigenvalue parameters γ2 in
the form

γ2
n,k/2 =

n2π2

(RO −RI)2

(
1 +

ε

RO −RI

)
+

4
(RO + RI)2

. (13)

Thus, in the regions 1 and 2, as depicted in Fig. 2, the mechanical
deformation is equivalent to an effective decrease of R1 and R2, i.e.,

R′
1 = R1 − ε

2
, R′

2 = R2 − ε

2
. (14)

On the other hand, the radii of the iron core and the tank wall are
clearly not affected by the wave-shaped deformation of the winding
turns. Thus in the regions 3 and 4, as depicted in Fig. 2, there
are no effects of the wave-shaped perturbation and we can use
the unperturbed eigenfunctions and eigenvalue parameters. We can
therefore introduce a new variable ρ = r − RC and replace the
mode numbers (n, k/2) simply by (n). Following [6], we define the
orthonormal basis functions for TMn-modes (TMm,k/2-modes) in the
regions 1 (below the conductive obstacle) and 2 (above the conductive
obstacle) as follows

ψ(1)
n (ρ, ϕ) =

√
2− δn,0

π(R′
1 −RC)

cos
(

nπρ

(R′
1 −RC)

)
cos

(
k

2
ϕ

)
, (15)

ψ(2)
n (ρ, ϕ) =

√
2− δn,0

π(RW−R′
2)

cos
[

nπ

π(RW−R′
2)

(a−ρ)
]
cos

(
k

2
ϕ

)
, (16)

while in the regions 3 and 4, with no obstacle present, the basis
functions are equal to each other and given by

ψ(3)
n (ρ, ϕ) = ψ(4)

n (ρ, ϕ)

√
2−δn,0

π(RW−RC)
cos

(
nπρ

(RW−RC)

)
cos

(
k

2
ϕ

)
. (17)

Here we can use the definition of the transverse wave number γn, i.e.,
γ2

n = ω2µε − k2
zn, where we denote the longitudinal wave number for

the n-th mode by kzn. Thus, the longitudinal wave numbers k
(i)
zn and

the TMn-mode impedances Z
(i)
n for the four regions (i = 1, 2, 3, 4) can

be written in the form

k(i)
zn

2
= ω2µε− γ(i)

n

2
, (18)

Z(i)
n =

k
(i)
zn

k
η, η =

√
µ

ε
. (19)

The radial electric fields E
(i)
rn and azimuthal magnetic fields H

(i)
ϕn are

now linear combinations of the basis functions ψ
(i)
n (ρ) for the respective
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region. These transverse fields can be expanded, in terms of the basis
functions, as follows [9]:

E(i)
r (ρ, ϕ, z) =

∞∑

n=0

[
c(i)+
n (z) + c(i)−

n (z)
]
Z(i)

n ψ(i)
n (ρ, ϕ), (20)

H(i)
ϕ (ρ, ϕ, z) =

∞∑

n=0

[
c(i)+
n (z)− c(i)−

n (z)
]
ψ(i)

n (ρ, ϕ). (21)

where for each mode and each region E
(i)
rn = Z

(i)
n H

(i)
ϕn, while c

(i)±
n (z)

are coefficients for modes propagating in ±z-direction. Here we need
to consider the boundary conditions at the planes z = z1 and z = z2.
First, we have the continuity of the transverse electric field component
Er over the entire surface, where E = 0 inside the conductive material
yields that Er vanishes at the metallic part of the boundary. The
second condition is that Hϕ must be continuous over the aperture parts
of the surface. In Equations (20) and (21), the sum is performed over
all modes (0 ≤ n ≤ ∞), but in the numerical implementation, each
summation needs to be reduced from ∞ to a maximum mode number
Ni (i = 1, 2, 3, 4). Thus, with a finite number of modes (0 ≤ ni ≤ Ni),
we define the vectors c±(i)(z) by (i = 1, 2, 3, 4)

c±(i)(z) =
[
c
(i)±
1 (z) c

(i)±
2 (z) . . . c

(i)±
Ni

(z)
]T

. (22)

Following [5], the scattering analysis gives the following results
[

c−(zL)
c+(zR)

]
=

[
S11 S12

S21 S22

] [
c+(zL)
c−(zR)

]
. (23)

Thus we obtain the complete scattering matrix equation for
propagation over one “cell”, i.e., from zL to zR. The cascading of one
cell denoted by a, with scattering matrix Sa and situated in the interval
z1 ≤ z ≤ z2, with a neighboring cell denoted by b, with scattering
matrix Sb and situated in the interval z2 ≤ z ≤ z3, gives the following
scattering equation:

[
c−(z1)

c+(z3)

]
=

[
Sc

11 Sc
12

Sc
21 Sc

22

][
c+(z1)

c−(z3)

]
, (24)

where the cascading formulae for the elements of the total scattering
matrix Sc can be found in e.g., [14]. Using the total cascading
formula (24), it is possible to cascade together any number of cells
by iteration.
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5. RESULTS AND DISCUSSION

The computer simulation geometry of our transformer winding model
is shown in Fig. 4. At this stage, we are mainly concerned with
investigating the diagnostic principles, such that the dimensions chosen
in Fig. 4 are not intended to mimic a realistic power transformer.
It should be noted that the reconstruction of elliptic or wave-shaped
deformations here corresponds to the reconstruction of the equivalent
effective radial extensions [6], as shown in Fig. 4. The inverse problem
to determine the studied parameters x = (ρ1, ρ2, . . . , ρn) is based on
minimizing the optimization function J , defined by

J(x) =
∑

i,j

∣∣∣Scalc
ij (x)− Smeas

ij

∣∣∣
2
, (25)

where Scalc
ij (x) are the elements of the calculated scattering matrix,

and Smeas
ij are the corresponding elements of the measured scattering

matrix. In the present paper, the studied parameters are the radial
positions of the winding turns that reflect the mechanical deformations
according to the formulae (12). The optimization model is tested by
comparing our calculated scattering data with synthetic measurement
data from a full-wave simulation performed with the commercial FEM
program Ansoft HFSS. Here we present a case of reconstruction of 10
conductors, where two of the conductors are subject to wave-shaped

Figure 4. The problem geometry with a distance between the tank
wall and iron core RW − RC = 1 m and five winding turns, each of
width R′

2 −R′
1 = 0.3m and height z2 − z1 = 0.9 m.
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Figure 5. Calculated (red line) versus actual (blue line) conductor
positions, for the case of ten conductor cells at f = 250 MHz.

deformations. The results are shown in Fig. 5, where we obtained good
reconstruction results for the effective winding positions that reflect the
corresponding mechanical deformations according to the formulae (12).

6. CONCLUSION

We studied general wave-shaped deformations of winding turns in a
power transformer using first-order perturbation theory. We simulated
antennas inside the transformer tank to radiate and measure microwave
fields in order to identify and quantify wave-shaped deformations of
winding segments or individual turns. Using optimization to solve
the inverse problem, we obtained a good agreement between the
reconstructed and true deformations of the winding turns.

It should however be noted that in the present stage, we are mainly
concerned with investigating the potential diagnostic principles, so one
can generally say that our present numerical investigations are for
“training” purposes. A proper testing of the actual accuracy of the
proposed model will be possible when we run a model of an actual
transformer with realistic dimensions, with actual measurement data
and when we further improve our optimization algorithm. Such an
investigation will be the subject of further studies.
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