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Abstract—Stacked concentric circular antenna arrays (SCCAA’s)
supporting both the scanning mode and the tracking mode are
optimized in both the azimuth and elevation planes. The gbest-
guided artificial bee colony algorithm (GABCA) is adopted to optimize
the dual-mode field patterns of thinned SCCAA’s. Performance
comparison of the GABCA with conventional ABCA and particle
swarm optimization (PSO) algorithms is also presented.

1. INTRODUCTION

Circular antenna arrays (CAA’s) have received much attention in
mobile communications, satellite links, navigation aids, and so on [1].
The main concerns with these arrays include side-lobe suppression,
location of nulls, beam-width control, and directivity enhancement [2–
6].

The synthesis of antenna patterns often involves a non-convex
optimization. Different evolutionary algorithms (EA’s) have been
proposed to search for the global optimal solution in such complicated
electromagnetic problems. Panduro et al. apply a genetic algorithm
(GA) to optimize the amplitude and location of all the elements
in a CAA, to reduce the side-lobe level while maintaining the
beamwidth [2]. Shihab et al. report that a CAA can be optimized
using a particle swarm optimization (PSO) algorithm, to achieve a
lower side-lobe level using a smaller array [3]. Panduro et al. compare
the optimization methods of GA, PSO and differential evolution
strategy (DES) ones, in suppressing the side-lobe level and increasing
the directivity of a CAA [4]. Roy et al. adopt a modified invasive
weed optimization (IWO) algorithm to reduce the side-lobe level,
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increase the directivity, and control the null locations of a CAA [5].
Basu and Mahanti apply a firefly algorithm to reduce the side-lobe
level of a thinned two-ring concentric circular antenna array (CCAA),
constrained with a given beamwidth [6]. Cylindrical arrays have also
been designed to achieve narrow beamwidth and low side-lobe level in
the azimuth plane [7]. In these tasks, the field patterns in both the
azimuth and the elevation planes are not optimized simultaneously.

In this work, a stacked concentric circular antenna array
(SCCAA), which is a hybrid of CCAA and cylindrical array, is
synthesized and studied. The goal is optimizing the radiation pattern
in the azimuth plane while reducing the beamwidth in the elevation
plane. This SCCAA is designed to operate in both the scanning
mode and the tracking mode in the azimuth plane. A gbest-guided
artificial bee colony algorithm (GABCA) [8] is adopted to optimize
the amplitude and phase of the elements in the SCCAA. Conventional
ABCA and PSO methods are also used to compare the optimization
results and the performance of the GABCA.

This paper is organized as follows. The GABCA and the
ABCA algorithms are briefly reviewed in Section 2, the techniques
of generating the sum and the difference patterns for SCCAA’s are
described in Section 3, pattern synthesis in both the azimuth and
the elevation planes, using GABCA, ABCA and PSO, is discussed
in Section 4, followed by the conclusion in Section 5.

2. BRIEF REVIEW OF THE ARTIFICIAL BEE COLONY
ALGORITHM

The artificial bee colony algorithm (ABCA) is a derivative-free
optimization algorithm, which is inspired by the foraging behavior of
a honey-bee swarm [8]. The ABCA has been successfully applied to
many problems, including array synthesis and steel production [9, 10].
When applied to an optimization problem, each bee searches for
a new food source (solution vector) with the most nectar amount,
also known as the global optimum. In order to improve the search
capability, Zhu and Kwong [8] propose a gbest-guided artificial bee
colony algorithm (GABCA), by exploiting the information in the
global solution of a particle swarm optimization (PSO) technique [11].
Consecutive phases of the GABCA used in this work is briefly reviewed
below.

2.1. Initialization
The number of employed bees and onlookers, as well as the number of
food sources, are set equal to SN. After trailmax times of trial failures
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on a specific food source, the search will be abandoned. The food
source matrix has the explicit form of

¯̄X =




x̄1

x̄2
...

x̄S


 =




x11 x12 . . . x1D

x21 x22 . . . x2D
...

... . . .
...

xS1 xS2 . . . xSD




where S is the number of food sources, D the dimension of the solution
vector, and each row in the matrix records the position of one particular
food source.

The GABCA generates a randomly distributed positions of S food
sources as

¯̄X(1) = Xmin + (Xmax −Xmin)rand(S, D)
where rand(S, D) returns an S × D matrix of random numbers, all
picked from the interval [0, 1]; Xmin and Xmax are the lower and the
upper bounds, respectively, of the positions.

2.2. The Employed Bees Phase
A proper fitness value is defined as a function of the bee position,
based on which the bees can trace the optimal solution. Each employed
bee searches for a new food source in the neighborhood of its present
position, x̄m. The updated coordinate, x̄new[d], with d = 1, 2, . . . , D,
is derived as

x̄new[d] = x̄m[d] + (2× rand− 1) (x̄k[d]− x̄m[d]) (1)
where k is randomly picked from {1, 2, . . . , S}, and is different from m.

Equation (1) can be expedited by making use of the global best
solution vector, ḡ, as [8]

x̄new[d] = x̄m[d] + (2× rand− 1) (x̄k[d]− x̄m[d])
+1.5× rand (ḡ[d]− x̄m[d]) (2)

which will help the bees to move towards a better position with higher
fitness value. If the fitness value (nectar amount) of x̄new is better than
that of x̄m, x̄new will replace x̄m. Otherwise, x̄new will be discarded.

2.3. The Onlookers Phase
An onlooker bee sets target on a food source, x̄m, with probability pm,
and updates its x̄new using the same method as the employed bees.
The probability, pm, is determined as

pm =
Fm

SN∑

m=1

Fm

(3)



154 Yang and Kiang

where Fm is the fitness value at x̄m. A better (larger) Fm implies a
higher probability that x̄m is updated.

In the employed bees phase, each food source attracts one
employed bee. In the onlookers phase, a better food source may attract
more than one onlooker bees, and a worse food source may attract none
at all.

2.4. The Scouts Phase

A food source around x̄m will be abandoned if a bee cannot update
the position with better fitness after trialmax times of fitness iterations.
Under such circumstances, the scout bee is assigned a new food source
at

x̄scout = Xmin + (Xmax −Xmin) rand(1, D)

to replace x̄m, where rand(1, D) returns an 1 × D array of random
numbers, all picked from the interval [0, 1]. This is an analog to the
mutation step in a typical GA.

3. ARRAY PATTERNS OF STACKED CONCENTRIC
CIRCULAR ANTENNA ARRAYS

Figure 1 shows the geometrical configuration of an SCCAA, which is
consisted of P layers of CCAA’s. Each layer of CCAA is composed of
M concentric rings, the mth ring has a radius of rm and contains Nm

elements equally spaced along the circumference.

Figure 1. Geometry of a stacked concentric circular antenna array.
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The array factor of a single layer of CCAA, with the main beam
pointing in the (θ0, φ0) direction, can be expressed as [7]

AFc(θ, φ) =
M∑

m=1

Nm∑

n=1

amnejkrm[sin θ cos(φ−φmn)−sin θ0 cos(φ0−φmn)]+jαmn (4)

where amn and αmn are the amplitude and phase, respectively, of the
nth element on the mth ring, k is the wavenumber, and φmn is angular
position of the nth element on the mth ring. The radius, rm, and the
phase, φmn, can be expressed as

krm =
2πrm

λ
=

Nm∑

α=1

dm
α

φmn =
2π

Nm∑

α=1

dm
α

n∑

α=1

dm
α =

2π

krm

n∑

α=1

dm
α

where dm
n is the arc spacing between elements n and n− 1 on the mth

ring.
If the amplitude of the feeding signal to the mnth element in the

pth CCAA layer is that of the mnth element in the first CCAA layer
multiplied by a constant, cp, the array pattern of the SCCAA can be
decomposed into

AF(θ, φ) = AFz(θ, φ)AFc(θ, φ) (5)
where AFz is the array pattern with P elements along the z direction,
at a uniform spacing `. Explicitly,

AFz(θ, φ) =
P∑

p=1

cpe
jk(p−1)` cos θ

3.1. Stacked Concentric Circular Taylor Array

The Taylor circular aperture distribution is designed to generate a sum
pattern [12], which is adopted as the initial guess before optimization.
If the main beam is pointing in (θ0, φ0) = (0◦, 0◦), the far-field pattern
has Nb−1 nulls over 0 < θ ≤ 90◦ in the x-z plane, and all the side-lobe
intensities are below a specified level.

The required circular aperture distribution can be represented
as [12]

ENb
(r) =

Nb−1∑

m=0

BmJ0(πδmr),
∣∣∣r
a

∣∣∣ ≤ 1 (6)
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where δm’s satisfy the condition J1(πδm) = 0 [12], B0 = 1, J0(α) and
J1(α) are Bessel functions of the zeroth and the first order, respectively,

Bm =

−
Nb−1∏

nb=1

[
1− δ2

m/Z2
nb

]

J0(πδm)
Nb−1∏

nb=0,nb 6=m

[
1− δ2

m/δ2
nb

]
, 1 ≤ m ≤ Nb − 1

and

Znb
= δNb

√
A2 + (nb − 0.5)2

A2 + (Nb − 0.5)2

with

A =
cosh−1

(
10SLL/20

)

π

in which the side-lobe level (SLL) is in unit of dB.
Before optimization, the amplitudes, amn’s, in (4) are sampled

from the Taylor circular aperture distribution [14], and the phases,
αmn’s, in (4) are set to zero. An example of the Taylor circular aperture
distribution, with Nb = 6 and SLL = 20 dB, is shown in Fig. 2.

Figure 2. Taylor aperture distribution with φ = 0, Nb = 6 and
SLL = 20 dB.

3.2. Stacked Concentric Circular Bayliss Array

The Bayliss circular aperture distribution is designed to generate a
null in the boresight direction [12]. If (θ0, φ0) = (0◦, 0◦), the far-field
pattern will have a null in the z direction, and also Nb − 1 nulls over
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0 < θ ≤ 90◦ in the x-z plane; and all the side-lobes are below a specified
level.

The required circular aperture distribution can be represented
as [12]

ENb
(r, φ) = cos φ

Nb−1∑

m=0

BmJ1(πσmr),
∣∣∣r
a

∣∣∣ ≤ 1 (7)

where σm’s are the zeros of the Bessel function, with J ′1(πσm) = 0 [12],

Bm =
σ2

m

J1(πσm)

Nb−1∏

nb=1

(
1− σ2

m/Z2
nb

)

Nb−1∏

nb=0,nb 6=m

(
1− σ2

m/σ2
nb

)

Znb
=





σNb

√
ξ2
nb

A2 + N2
b

, 1 ≤ nb ≤ 4

σNb

√
A2 + n2

b

A2 + N2
b

, 5 ≤ nb ≤ Nb − 1

The coefficients, ξn and A, are calculated as

ξnb
=

4∑

p=0

Cnb
p (SLL)p

A =
4∑

p=0

CA
p (SLL)p

Figure 3. Bayliss aperture distribution with φ = 0, Nb = 6 and
SLL = 20 dB.
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where SLL is in unit of dB, and the coefficients Cp’s are listed in [13].
Before optimization, the amplitudes, amn’s, in (4) are sampled

from the Bayliss circular aperture distribution [14], and the phases,
αmn’s, in (4) are set to zero. An example of the Bayliss circular
aperture distribution, with Nb = 6 and SLL = 20 dB, is shown in
Fig. 3.

3.3. Characteristics of Dual-mode Stacked Concentric
Circular Arrays
Consider a dual-mode CCAA, with M = 6, rM = 48.27λ, a ring
spacing of 0.9λ, and an approximate arc spacing of 1.25λ within
each ring. This CCAA is designated as Ar(0.9, 1.25, 0), where r
stands for regular. The first, the second, and the third arguments in
the parenthesis record the ring spacing, the approximate arc spacing
within each ring, and the uniform spacing between adjacent layers,
respectively. The SCCAA’s with uniform layer spacing of 0.5λ, 1λ and

Table 1. Simulated characteristics of SCCAA’s before optimization.

azimuth plane

Type M Nm P NT L (λ)

Ar(0.5, 0.5, 0) 10
40 46 52 58 65

71 77 83 90 96
1 678 0

Ar(0.9, 1.25, 0) 6
16 20 25

29 34 38
1 162 0

Ar(0.9, 1.25, 0.5) 6
16 20 25

29 34 38
3 486 1

Ar(0.9, 1.25, 1.0) 6
16 20 25

29 34 38
3 486 2

Ar(0.9, 1.25, 1.5) 6
16 20 25

29 34 38
3 486 3

Type
BWa

s

(◦)

SAa
d

(◦)

P a
s

(dB)

P a
d

(dB)

Dmax

(dB)

Ar(0.5, 0.5, 0) 8.40 6.00 −13.37 −14.26 19.40–20.76

Ar(0.9, 1.25, 0) 8.40 5.80 −14.31 −9.88 19.40–24.88

Ar(0.9, 1.25, 0.5) 8.40 5.80 −14.31 −9.88 19.40–25.56

Ar(0.9, 1.25, 1.0) 8.40 5.80 −14.31 −9.88 19.95–27.23

Ar(0.9, 1.25, 1.5) 8.4 5.80 −14.31 −9.88 21.76–28.82
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elevation plane

Type M Nm P NT L (λ)

Ar(0.5, 0.5, 0) 10
40 46 52 58 65

71 77 83 90 96
1 678 0

Ar(0.9, 1.25, 0) 6
16 20 25

29 34 38
1 162 0

Ar(0.9, 1.25, 0.5) 6
16 20 25

29 34 38
3 486 1

Ar(0.9, 1.25, 1.0) 6
16 20 25

29 34 38
3 486 2

Ar(0.9, 1.25, 1.5) 6
16 20 25

29 34 38
3 486 3

Type
BWe

s

(◦)
—

P e
s

(dB)
—

Dmax

(dB)

Ar(0.5, 0.5, 0) 44.20 – −13.37 — 19.40–20.76

Ar(0.9, 1.25, 0) 44.20 — −14.31 — 19.40–24.88

Ar(0.9, 1.25, 0.5) 44.20 — −21.26 — 19.40–25.56

Ar(0.9, 1.25, 1.0) 39.00 — −14.77 — 19.95–27.23

Ar(0.9, 1.25, 1.5) 25.60 — −16.90 — 21.76–28.82

rM = 48.27λ, P = 3 and (θ0, φ0) = (90◦, 0◦).

1.5λ, respectively, are also considered; labeled as Ar(0.9, 1.25, 0.5),
Ar(0.9, 1.25, 1) and Ar(0.9, 1.25, 1.5), respectively.

The characteristics of Ar(0.9, 1.25, 0), Ar(0.9, 1.25, 0.5), Ar(0.9,
1.25, 1) and Ar(0.9, 1.25, 1.5) with P = 3 and P = 5 are summarized
in Tables 1 and 2, respectively; where BWa

s (◦) is the beamwidth of
the sum pattern, and SAa

d (◦) is the squint angle of the difference
pattern, both in the azimuth plane; P a

s (dB) and P a
d (dB) are the

maximum side-lobe level of the sum pattern and the difference pattern,
respectively, in the azimuth plane. Similarly, BWe

s (◦) and P e
s (dB) are

the beamwidth and the maximum side-lobe level, respectively, of the
sum pattern in the elevation plane.

With the array pattern characterized in (5), the SCCAA will
have roughly the same beamwidth and side-lobe level in the azimuth
plane, as those of the CCAA. In the elevation plane, however,
the beamwidth and side-lobe level of the SCCAA becomes smaller
than their counterpart of the CCAA. With more layers stacked, the
maximum directivity of the SCCAA is also increased [15].
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4. OPTIMIZATION OF STACKED CONCENTRIC
CIRCULAR ANTENNA ARRAYS

The design goal is to enable the same SCCAA to radiate either the sum
pattern or the difference pattern, pending on the excitation signals.
The side-lobe level is minimized, while the beamwidth of the sum
pattern and the squint angle of the difference pattern are preserved.
To achieve these requirements, the fitness function is designed as

f
(
w̄s, w̄d, ψ̄s, ψ̄d

)
= fa

(
w̄s, w̄d, ψ̄s, ψ̄d

)
+ fe

(
w̄s, w̄d, ψ̄s, ψ̄d

)
(8)

where the first term and the second term on the right hand
side of (8) are used to specify the patterns in the azimuth plane
and the elevation plane, respectively; w̄s = [ws1, ws2, . . . , wsN ]t,
ψ̄s = [ψs1, ψs2, . . . , ψsN ]t, w̄d = [wd1, wd2, . . . , wdN ]td and ψ̄d =
[ψd1, ψd2, . . . , ψdN ]t; wsn and ψsn are the amplitude and the phase,
respectively, on the nth antenna element when the sum pattern is
generated; wdn and ψdn are the amplitude and the phase, respectively,
on the nth antenna element when the difference pattern is generated.
The amplitude and the phase on all the elements are allowed to vary

Table 2. Simulated characteristics of SCCAA’s before optimization.

azimuth plane

Type M Nm P NT L (λ)

Ar(0.5, 0.5, 0) 10
40 46 52 58 65

71 77 83 90 96
1 678 0

Ar(0.9, 1.25, 0) 6
16 20 25

29 34 38
1 162 0

Ar(0.9, 1.25, 0.5) 6
16 20 25

29 34 38
5 810 2

Ar(0.9, 1.25, 1.0) 6
16 20 25

29 34 38
5 810 4

Ar(0.9, 1.25, 1.5) 6
16 20 25

29 34 38
5 810 6

Type
BWa

s

(◦)

SAa
d

(◦)

P a
s

(dB)

P a
d

(dB)

Dmax

(dB)

Ar(0.5, 0.5, 0) 8.40 6.00 −13.37 −14.26 19.40–20.76

Ar(0.9, 1.25, 0) 8.40 5.80 −14.31 −9.88 19.40–24.88

Ar(0.9, 1.25, 0.5) 8.40 5.80 −14.31 −9.88 19.40–26.75

Ar(0.9, 1.25, 1.0) 8.40 5.80 −14.31 −9.88 22.40–29.37

Ar(0.9, 1.25, 1.5) 8.40 5.80 −14.31 −9.88 23.98–31.21
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elevation plane

Type M Nm P NT L (λ)

Ar(0.5, 0.5, 0) 10
40 46 52 58 65

71 77 83 90 96
1 678 0

Ar(0.9, 1.25, 0) 6
16 20 25

29 34 38
1 162 0

Ar(0.9, 1.25, 0.5) 6
16 20 25

29 34 38
5 810 2

Ar(0.9, 1.25, 1.0) 6
16 20 25

29 34 38
5 810 4

Ar(0.9, 1.25, 1.5) 6
16 20 25

29 34 38
5 810 6

Type
BWe

s

(◦)
—

P e
s

(dB)
—

Dmax

(dB)

Ar(0.5, 0.5, 0) 44.20 — −13.37 — 19.40–20.76

Ar(0.9, 1.25, 0) 44.20 — −14.31 — 19.40–24.88

Ar(0.9, 1.25, 0.5) 44.20 — −28.74 — 19.40–26.75

Ar(0.9, 1.25, 1.0) 23.00 — −14.77 — 22.40–29.37

Ar(0.9, 1.25, 1.5) 15.40 — −13.01 — 23.98–31.21

rM = 48.27λ, P = 5 and (θ0, φ0) = (90◦, 0◦).

in the range of (0, 1] and (−π, π], respectively.
The first term in (8) is further decomposed as

fa
(
w̄s, w̄d, ψ̄s, ψ̄d

)

= P a
s

(
Ωa

s

∣∣w̄s, ψ̄s

)
+P a

d

(
Ωa

d

∣∣w̄d, ψ̄d

)

+K|BWa
s

(
w̄s, ψ̄s

)−BWa
so|+K

∣∣SAa
d

(
w̄d, ψ̄d

)−SAa
do

∣∣ (9)

where K is an empirical weighting factor. The first term and the second
term on the right hand side of (9) are used to minimize the side-lobe
level of the sum pattern and the difference pattern, respectively; where
Ωa

s and Ωa
d indicate the angular locations of the maximum side-lobe

level of the sum pattern and the difference pattern, respectively, in the
azimuth plane. The third term on the right hand side of (9) is used to
achieve the desired beamwidth, BWa

so (◦), of the sum pattern in the
azimuth plane, measured from null to null. The last term on the right
hand side of (9) is used to achieve the desired squint angle, SAa

do (◦),
of the difference pattern in the azimuth plane.

Similarly, the second term in (8) is further decomposed as

fe
(
w̄s, w̄d, ψ̄s, ψ̄d

)
= P e

s (Ωe
s

∣∣w̄s, ψ̄s ) + K
∣∣BWe

s(w̄s, ψ̄s)− BWe
so

∣∣ (10)
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where the first term and the second term on the right hand side are used
to minimize the side-lobe level and to achieve the desired beamwidth,
BWe

so (◦), respectively, of the sum pattern in the elevation plane; Ωe
s

indicates the angular location of the maximum side-lobe level of the
sum pattern in the elevation plane.

For comparison, the particle swarm optimization (PSO) algorithm
is also applied [11]. In the PSO algorithm, a whole swarm of 20
particles fly through the search space, based on the instructions
of habit, self-knowledge and social-knowledge. Both the empirical
constants in the updating equation, C1 and C2, are set to 2 [11]. The
habit weight, w, decreases linearly, from 0.9 to 0.4, as the iteration
proceeds. The invisible boundary condition (IBC) is adopted, and the

Table 3. Parameters used in GABCA and ABCA [8].

P SN D trialmax K BWa
so(

◦) SAa
do (◦) BWe

so (◦)
3 20 324 200 106 8.00 6.00 25.60
5 20 324 200 106 8.00 6.00 15.40

Table 4. Simulated characteristics of SCCAA’s after optimization.

azimuth plane

Type M Nm P NT L (λ)

Ar(0.5, 0.5, 0) 10
40 46 52 58 65

71 77 83 90 96
1 678 0

Ar(0.9, 1.25, 1.5) 6
16 20 25

29 34 38
3 486 3

Ag(0.9, 1.25, 1.5) 6
16 20 25

29 34 38
3 486 3

Aa(0.9, 1.25, 1.5) 6
16 20 25

29 34 38
3 486 3

Ap(0.9, 1.25, 1.5) 6
16 20 25

29 34 38
3 486 3

Type
BWa

s

(◦)

SAa
d

(◦)

P a
s

(dB)

P a
d

(dB)

Dmax

(dB)

Ar(0.5, 0.5, 0) 8.40 6.00 −13.37 −14.26 19.40–20.76

Ar(0.9, 1.25, 1.5) 8.40 5.80 −14.31 −9.88 21.76–28.82

Ag(0.9, 1.25, 1.5) 8.40 6.00 −17.07 −15.09 21.76–28.82

Aa(0.9, 1.25, 1.5) 8.40 6.00 −14.35 −10.65 21.76–28.82

Ap(0.9, 1.25, 1.5) 8.40 6.00 −15.85 −13.48 21.76–28.82
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elevation plane

Type M Nm P NT L (λ)

Ar(0.5, 0.5, 0) 10
40 46 52 58 65

71 77 83 90 96
1 678 0

Ar(0.9, 1.25, 1.5) 6
16 20 25

29 34 38
3 486 3

Ag(0.9, 1.25, 1.5) 6
16 20 25

29 34 38
3 486 3

Aa(0.9, 1.25, 1.5) 6
16 20 25

29 34 38
3 486 3

Ap(0.9, 1.25, 1.5) 6
16 20 25

29 34 38
3 486 3

Type BWe
s (◦) — P e

s (dB) — Dmax (dB)

Ar(0.5, 0.5, 0) 44.20 — −13.37 — 19.40–20.76

Ar(0.9, 1.25, 1.5) 25.60 — −16.90 — 21.76–28.82

Ag(0.9, 1.25, 1.5) 25.60 — −24.41 — 21.76–28.82

Aa(0.9, 1.25, 1.5) 25.60 — −17.13 — 21.76–28.82

Ap(0.9, 1.25, 1.5) 25.60 — −19.51 — 21.76–28.82

rM = 48.27λ, P = 3 and (θ0, φ0) = (90◦, 0◦).

(a) (b)

Figure 4. Sum pattern of dual-mode SCCAA’s, (a) in the azimuth
plane, (b) in the elevation plane, (θ0, φ0) = (90◦, 0◦), M = 6,
rM = 48.27λ, P = 3, solid curve (—): Ag(0.9, 1.25, 1.5), dashed
curve (−−−): Ar(0.9, 1.25, 1.5).
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maximum velocity is set to 20% of the maximum coordinate in the
search space.

By optimizing the amplitude and phase of elements in
Ar(0.9, 1.25, 1.5), another array, labeled as Aα(0.9, 1.25, 1.5), is
obtained. The subscript, α, can be g, a or p, corresponding to the
algorithms of GABCA, ABCA or PSO. The parameters used in the
GABCA and the ABCA are listed in Table 3.

Other parameters related to Ar(0.9, 1.25, 1.5) are (θ0, φ0) =
(90◦, 0◦), M = 6, rM = 48.27λ and P = 3. The optimized arrays,
Ag(0.9, 1.25, 1.5), Aa(0.9, 1.25, 1.5) and Ap(0.9, 1.25, 1.5) are derived,
with their characteristics summarized in Tables 4 and 6. Figs. 4
and 5 show the field patterns in the azimuth and the elevation planes,
respectively, of Ar(0.9, 1.25, 1.5) and Ag(0.9, 1.25, 1.5).

The arrays Ar(0.5, 0.5, 0), Ar(0.9, 1.25, 1.5) and Ag(0.9, 1.25,
1.5) have similar BWa

s and SAa
s . The Ar(0.5, 0.5, 0) has a better

value of P a
s + P a

d + P e
s (in dB) than Ar(0.9, 1.25, 1.5); while Ar(0.9,

1.25, 1.5) outperforms Ar(0.5, 0.5, 0) in BWe
s and P e

s . The optimized
array, Ag(0.9, 1.25, 1.5), with the initial condition of Ar(0.9, 1.25,

Table 5. Simulated characteristics of SCCAA’s after optimization.

azimuth plane

Type M Nm P NT L (λ)

Ar(0.5, 0.5, 0) 10
40 46 52 58 65

71 77 83 90 96
1 678 0

Ar(0.9, 1.25, 1.5) 6
16 20 25

29 34 38
5 810 6

Ag(0.9, 1.25, 1.5) 6
16 20 25

29 34 38
5 810 6

Aa(0.9, 1.25, 1.5) 6
16 20 25

29 34 38
5 810 6

Ap(0.9, 1.25, 1.5) 6
16 20 25

29 34 38
5 810 6

Type
BWa

s

(◦)

SAa
d

(◦)

P a
s

(dB)

P a
d

(dB)

Dmax

(dB)

Ar(0.5, 0.5, 0) 8.40 6.00 −13.37 −14.26 19.40–20.76

Ar(0.9, 1.25, 1.5) 8.40 5.80 −14.31 −9.88 23.98–31.21

Ag(0.9, 1.25, 1.5) 8.40 6.00 −17.57 −17.20 23.98–31.21

Aa(0.9, 1.25, 1.5) 8.40 6.00 −13.79 −10.67 23.98–31.21

Ap(0.9, 1.25, 1.5) 8.40 6.00 −17.09 −14.64 23.98–31.21
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elevation plane

Type M Nm P NT L (λ)

Ar(0.5, 0.5, 0) 10
40 46 52 58 65

71 77 83 90 96
1 678 0

Ar(0.9, 1.25, 1.5) 6
16 20 25

29 34 38
5 810 6

Ag(0.9, 1.25, 1.5) 6
16 20 25

29 34 38
5 810 6

Aa(0.9, 1.25, 1.5) 6
16 20 25

29 34 38
5 810 6

Ap(0.9, 1.25, 1.5) 6
16 20 25

29 34 38
5 810 6

Type
BWe

s

(◦)
—

P e
s

(dB)
—

Dmax

(dB)

Ar(0.5, 0.5, 0) 44.20 — −13.37 — 19.40–20.76

Ar(0.9, 1.25, 1.5) 15.40 — −13.01 — 23.98–31.21

Ag(0.9, 1.25, 1.5) 15.40 — −13.75 — 23.98–31.21

Aa(0.9, 1.25, 1.5) 15.40 — −13.15 — 23.98–31.21

Ap(0.9, 1.25, 1.5) 15.40 — −13.21 — 23.98–31.21

rM = 48.27λ, P = 5 and (θ0, φ0) = (90◦, 0◦).

Figure 5. Difference pattern of dual-mode SCCAA’s in the azimuth
plane, (θ0, φ0) = (90◦, 0◦), M = 6, rM = 48.27λ, P = 3, solid curve
(—): Ag(0.9, 1.25, 1.5), dashed curve (−−−): Ar(0.9, 1.25, 1.5).

1.5), achieves a better fitness of −56.57 dB while maintaining the same
beamwidths, BWa

s , BWa
d and BWe

s, of Ar(0.9, 1.25, 1.5). As listed in
Table 6, the GABCA achieves better fitness than the ABCA and the
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PSO.
Next, consider Ar(0.9, 1.25, 1.5) of P = 5 layers, with (θ0, φ0) =

(90◦, 0◦), M = 6, rM = 48.27λ. The optimized arrays, Ag(0.9,
1.25, 1.5), Aa(0.9, 1.25, 1.5) and Ap(0.9, 1.25, 1.5), are derived and
summarized in Tables 5 and 7. Figs. 6 and 7 show the field patterns
in the azimuth plane and the elevation plane of Ar(0.9, 1.25, 1.5) and
Ag(0.9, 1.25, 1.5), respectively. The optimized array, Ag(0.9, 1.25, 1.5),
with the initial condition of Ar(0.9, 1.25, 1.5), achieves a better fitness
of −48.52 dB while maintaining the same beamwidths, BWa

s , BWa
d and

(a) (b)

Figure 6. Sum pattern of dual-mode SCCAA’s, (a) in the azimuth
plane, (b) in the elevation plane, (θ0, φ0) = (90◦, 0◦), M = 6,
rM = 48.27λ, P = 5, solid curve (—): Ag(0.9, 1.25, 1.5), dashed
curve (−−−): Ar(0.9, 1.25, 1.5).

Figure 7. Difference pattern of dual-mode SCCAA’s in the azimuth
plane, (θ0, φ0) = (90◦, 0◦), M = 6, rM = 48.27λ, P = 5, solid curve
(—): Ag(0.9, 1.25, 1.5), dashed curve (−−−): Ar(0.9, 1.25, 1.5).
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Table 6. Performance of GABCA, ABCA and PSO.

Algorithm P a
s (dB) P a

d (dB) P e
s (dB) fitness (dB) FI (times)

GABCA −17.07 −15.09 −24.21 −56.57 392 000
ABCA −14.35 −10.65 −17.13 −42.13 611 000
PSO −15.85 −13.48 −19.51 −48.84 328 000

Parameters are the same as in Table 4.

Table 7. Performance of GABCA, ABCA and PSO.

Algorithm P a
s (dB) P a

d (dB) P e
s (dB) fitness (dB) FI (times)

GABCA −17.57 −17.20 −13.75 −48.52 473 000
ABCA −13.79 −10.67 −13.15 −37.61 12 000
PSO −17.09 −14.64 −13.21 −44.94 523 000

Parameters are the same as in Table 5.

BWe
s. As listed in Table 7, Ag(0.9, 1.25, 1.5) has a better fitness than

Aa(0.9, 1.25, 1.5) and Ap(0.9, 1.25, 1.5).

5. CONCLUSION

A stacked concentric circular antenna array (SCCAA) is proposed
to provide dual-mode operation in the azimuth plane and narrower
beamwidth in the elevation plane than CCAA’s. A gbest-guided
artificial bee colony algorithm (GABCA) is applied to optimize thinned
SCCAA’s in terms of reducing the side-lobe level while maintaining the
beamwidth and the squint angle. The thinned SCCAA’s have wider
element spacings than regular SCCAA’s, with the latter as the initial
condition of optimization. The GABCA achieves better fitness than
conventional ABCA and PSO in this task.
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