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Abstract—We investigate radiation of a dipole at or below the
interface of (an)isotropic Epsilon Near Zero (ENZ) media, akin to
the classic problem of a dipole above a dielectric half-space. To
this end, the radiation patterns of dipoles at the interface of air and
a general anisotropic medium (or immersed inside the medium) are
derived using the Lorentz reciprocity method. By using an ENZ
half-space, air takes on the role of the denser medium. Thus we
obtain shaped radiation patterns in air which were only previously
attainable inside the dielectric half-space. We then follow the early
work of Collin on anisotropic artificial dielectrics which readily enables
the implementation of practical anisotropic ENZs by simply stacking
sub-wavelength periodic bi-layers of metal and dielectric at optical
frequencies. We show that when such a realistic anisotropic ENZ has
a low longitudinal permittivity, the desired shaped radiation patterns
are achieved in air. In such cases the radiation is also much stronger
in air than in the ENZ media, as air is the denser medium. Moreover,
we investigate the subtle differences of the dipolar patterns when the
anisotropic ENZ dispersion is either elliptic or hyperbolic.

1. INTRODUCTION

The radiation of antennas at the interface of media has been the subject
of numerous studies to date [1–13]. The scenario of interest is a classic
problem in electromagnetics dating back to the work of Sommerfeld
in 1909, investigating the radiation of a source above a lossy half-
space [1]. For instance in [12] the radiation of dipoles placed on an
air-dielectric interface was studied and it was found that the radiation
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mainly occurs inside the dielectric with interesting radiation pattern
shapes. The radiation pattern in the air-side primarily had a single
lobe, and more importantly, it was much weaker than the radiation
in the dielectric, with an approximate power ratio of 1 : ε3/2 [9].
Ref. [3] studied the problem of a dipole at the interface of an anisotropic
plasma interface. Ref. [11] investigated the radiation patterns of both
horizontal and vertical interfacial dipoles, deducing the location of the
nulls and power ratios in either half-spaces. Other effects such as
subsurface peaking was also explored by the same authors in [14]. Such
studies have been intended for various applications such as Ground
Penetrating Radar [15, 16], antennas for communication above earth or
under water [2, 13], antennas on semiconductors [9] or above dielectrics
for imaging [12], to only name a few.

Different techniques have been used thus far for analyzing this
problem, mainly developing the Green’s function and using asymptotic
approximations to find the far-field radiation patterns inside the air
or the dielectric regions. A great body of literature to date has
been dedicated to solving the Sommerfeld type integrals that arise
in these problems, (e.g., see [10] for a review of various works). The
poor convergence of Sommerfeld type integrals has been an important
reason for devising various efficient techniques for solving these types
of problems as done in [17] and using integral equations solved with the
Method of Moments [18, 19], and exact solutions such as [20]. Finite
Difference Time Domain (FDTD) methods have also been used to
analyze radiation patterns of such scenarios [16, 21], analyzing both the
near-field [21] and the far-field [16, 21], pointing out some ripple effects
on the patterns obtained due to finite observation distances. Effects
of lateral waves were also explored in works such as [16, 22, 23]. Other
time domain techniques have also been used for solving the problem of
a source above a lossy half-space as in [24]. Furthermore, a few studies
have investigated radiation from anisotropic media [3, 4, 25, 26] mainly
through developing the Green’s function of their scenario of interest.

Metamaterials (MTMs) — materials with constitutive parameters
not usually found in nature — have received significant attention
for more than a decade now and have found various applications in
optics and electromagnetics. One type of MTMs relevant to this
study are the Epsilon Near Zero (ENZ) media, which have shown
interesting properties such as tailoring the phase of the radiation
pattern of arbitrary sources [27]. Such materials are in contrast to
normal dielectrics, which have permittivity values above the free space
permittivity ε0.

In almost all the work to date such as [9, 11, 12], the study has
been on dipoles at the interfaces of dielectrics, which have permittivity
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greater than vacuum, εr > 1. In this work and our related work [28]
however, we aim to systematically study the radiation pattern of a
dipole at the interface of an air-metamaterial (MTM), in which the
metamaterial is a homogenized medium with an effective permittivity
lower than free space, ε < ε0. Such materials would be classified as
Epsilon Near Zero (ENZ) media. One motivation here is to obtain
the interesting dielectric-side radiation patterns of [9, 11, 12] in air.
The argument for using ENZ is simple. By using an ENZ instead of
the dielectric, air plays the role of the dielectric in [12]. Therefore
those patterns obtained inside the dielectric in [9, 11, 12], should be
attainable now in the air side, as air now acts as the higher permittivity
medium compared to the MTM. Aside from the shape, the intensity
of the radiation is also stronger in air, rather than in the ENZ. This
is for instance very desirable in telecommunication applications. We
further generalize the problem to that of a dipole above an ‘anisotropic
medium’, with potentially low value(s) in the permittivity tensor.
Since most ENZ media are realized with layered or wire medium type
structures, the resulting effective medium is inherently anisotropic and
typically similar to a uniaxial crystal with a well defined optical axis.

A simple approach for determining the radiation pattern is using
the Lorentz Reciprocity Theorem, which has usually been used for
finding the radiation pattern of dipoles on isotropic dielectrics [12]. In
this work and [28] we utilize the reciprocity method for systematically
studying the dipole radiation above an anisotropic half-space, which is
potentially an ENZ medium. We expand the theory to solve for dipoles
immersed inside an ENZ medium. Realizations of ENZs are usually
anisotropic, that is the near zero permittivity is achieved only along
one axis, e.g., using layered media. Based on the pioneering work of
Collin on artificial dielectrics [29, 30], the ENZs in this work are realized
by interleaving layers of metal and dielectric with a sub-wavelength
period. In [29] Collin showed that such a periodic structure can be
homogenized into an effective medium with an anisotropic (uniaxial)
permittivity tensor and derived simple expressions which have been
rediscovered and used extensively to date. In this work, the ENZ
realizations are tailored for optical frequencies where it can enable
various applications for better light emission, such as shaping the
radiation of optical antennas or enhancing the radiation of fluorescent
molecules. Both elliptic and hyperbolic anisotropic ENZ media are
considered and the subtle differences between the corresponding far
field patterns are highlighted.

A related scenario to our problem of interest is the work of [31],
which utilizes a source immersed in a low permittivity MTM to achieve
highly directive emission at microwaves. The structure was realized
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using a mesh grid, operating just above the plasma frequency resulting
in 0 < εr < 1. In [31] however the source was fully immersed in the
MTM. The propagating waves from the source inside the ENZ reach
the interface and refract close to normal in air due to Snell’s law.
Therefore a highly directive beam is emitted in air. The work in [31]
was demonstrated at microwaves, but such a scenario has potential at
optical frequencies. Our work extends to the case of fully immersed
sources such as the scenario in [31] and shows potential realizations at
optical frequencies that enhances the radiation of the source in air. In
this effort, the distinct difference between the patterns from interfacial
and immersed dipoles is investigated.

2. THEORY

Consider Figure 1, where a dipole is radiating at the interface of air
and a medium with an arbitrary permittivity tensor. We utilize the
Lorentz reciprocity method as done in [12], showing that such analysis
is applicable to general anisotropic media as well. According to the
reciprocity method, in order to find the radiated field E1 due to the
dipole current I1, one can find the field E2 due to the far zone dipole
current I2. As long as the two currents are equal, so will be the
tangential components of the field.
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Figure 1. Dipole at the interface of air and anisotropic metamaterial.

We are therefore solving the reciprocal problem, that is finding
E2 which is the total field at the interface when I2 is radiating. The
field from I2 is a spherical wave of the form e−jkr/4πr. For a source
I2 in the far-zone, the wave from I2 incident on the interface can
be approximated as a plane wave Ei(θ). As shown in Figure 2(a),
under plane-wave illumination the field at the interface is equal to
the field just below the interface. The total field just below the
interface is equal to τ(θ)Ei(θ), i.e., the incident field multiplied by
the transmission coefficient going from air to the MTM. The problem
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Figure 2. Transmission and reflection from an MTM half-space, (a) at
the interface, (b) at a distance z0 below the interface.

therefore reduces to finding the Fresnel transmission coefficient τ(θ) of
an oblique incident plane wave on the interface of a general anisotropic
medium, under both polarizations. This is arguably an easier problem
to solve than other techniques, hence the reason the reciprocity method
is a powerful and simple method especially for finding far-zone radiated
fields. Once E2(θ) is found from this reciprocal scenario, we have
essentially determined the desired radiation pattern of I1 in transmit
mode. We only need to multiply by the free space angular pattern of
the radiating element I1 (if any) to find out the overall transmit mode
pattern we originally desired.

2.1. Plane-wave Incidence

The Fresnel reflection and transmission coefficients for an interface
between air and a uniaxial crystal is found by enforcing the boundary
condition for the continuity of the tangential fields at the interface.
One can formulate the expressions based only on the incident angle
from air, θ. For example in the x-z plane of incidence, the reflection
coefficient for the TM (Transverse Magnetic) or p-polarization is

rTM =
cos θ −

√
(µr/εxr − sin2 θ/εzr εxr )

cos θ +
√

(µr/εxr − sin2 θ/εzr εxr )
(1)

and for the TE (Transverse Electric) or s-polarization is

rTE =
cos θ −

√
µrεyr − sin2 θ

cos θ +
√

µrεyr − sin2 θ
(2)

The expressions presented in this form are applicable to any half-space
that is an anisotropic medium, with arbitrary permittivity along its
different axes.
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The main cases of interest in this work are anisotropic ENZs,
i.e., media where the permittivity is close to zero, at least along
one axis. For TE polarization, the out-of-plane permittivity is only
relevant and can be close to zero. In TM polarization, two permittivity
values (longitudinal and transverse) are relevant. Either of these two
permittivity values can be close to zero, and either can be positive or
negative, in general. Therefore there are eight dispersion cases for this
polarization, with {εxr → 0±, εzr = ±1} or {εxr → ±1, εzr → 0±}.
As will be explained later, in this work we are primarily interested in
the scenarios with low longitudinal permittivity (εzr → 0±). Three of
these scenarios lead to propagation inside the ENZ which will be used
here.

Figure 3(a) shows the magnitude of the TM reflection coefficient
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Figure 3. (a) Iso-frequency contours for refraction at the interface of
an ENZ with εxr = 0.1, εzr = 1 and air. (b) Reflection coefficient at
the interface of air and an anisotropic ENZ with εzr = 0.1, εxr = 1
compared to the reflection from an isotropic MTM with εr = 0.1.
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at the interface of an anisotropic ENZ with εzr = 0.1, εxr = 1 (black
curve). It also compares it to the reflection from an isotropic ENZ
with εr = 0.1 (red curve). The figure shows that the reflection is
lower in the anisotropic case, for all angles below 15◦, compared to the
isotropic ENZ of the same low permittivity. It also shows that the two
media only accept plane waves that are incident up to a critical angle
equal to sin−1√εzr . Beyond the critical angle the reflection coefficient
going from air (dense medium) to the ENZ is 1 as the incident wave
experiences Total Internal Reflection (TIR) back into air. Hence for
any angle beyond the critical angle up to 90◦ the transmitted wave into
the ENZ is an evanescent wave (only showing up to 30◦ for illustration
purposes). There is also no Brewster’s angle (angle at which reflection
is zero) for the anisotropic case, while in the isotropic ENZ case there
exists a zero reflection angle of incidence close to the critical angle
under the TM (p-polarization). For comparison, reflection from a
typical dielectric such as glass (blue curve) is also shown.

Figure 4(a) shows the corresponding iso-frequency contour and
refraction at the interface of air and the anisotropic ENZ with {εxr = 1,
εzr = 0.1}. Such a medium has an elliptic iso-frequency curve as
shown in the figure. An incident wave from air, phase matches at
the interface to another wave with equal lateral wave-number kx in the
ENZ. The wave-vector in the ENZ is the vector joining the origin to
the corresponding point on the elliptical iso-frequency contour. The
direction of power flow (Poynting vector) is normal to the iso-frequency
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Figure 4. Iso-frequency contour showing wave-vectors and Poynting
vector for the interface of air and half-space ENZ with (a) elliptic
{εxr = +1, εxr = +0.1}, (b) hyperbolic {εxr = +1, εxr = −0.1}, and
(c) hyperbolic {εxr = −1, εxr = +0.1} characteristic.
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contour at any given point as indicated in Figure 3(a). Although
the power flows in the direction of the wave-vector (and hence phase
velocity) in air, the power flow inside the ENZ is at an angle with
respect to the phase velocity due to the anisotropy.

If the signs of the two in-plane permittivity values agree, the
iso-frequency contour is elliptic and if they are of opposite signs,
the iso-frequency contour is hyperbolic giving rise to a hyperbolic
metamaterial (as in the hyperlens [32–34]). Two additional hyperbolic
cases with low longitudinal permittivity {εxr → ±1, εzr → 0∓} are
shown in Figures 4(b) and (c), showing refraction in each case. In
the case of Figure 4(b), {εxr = +1, εzr = −0.1}, the medium is an
indefinite medium. The magnitude of the reflection coefficient from
this medium as a function of the incident angle is shown in Figure 3(b).
We see that there is no critical angle in this case for all incident angles
from air such that the wave never experiences TIR back into air. The
amount of reflection coefficient increases gradually with the incident
angle in an almost linear trend. Reflection from a typical dielectric
such as glass (blue curve) is also shown which has a Brewester’s angle
at 56.3◦ in this polarization.

In the case of Figure 4(c), {εxr = −1, εzr = +0.1}, we have another
hyperbolic ENZ with low longitudinal permittivity where the medium
acts somewhat strangely in terms of Total Internal Reflection. What
is surprising in this case is that for all incident angles from broadside
up to a critical angle θ′c = sin−1√εzr , the wave experiences TIR back
into air because there is no allowed propagation in the ENZ. For all
incident angles beyond that critical angle the wave phase matches to
a propagating wave in the ENZ. This type of operation is quite the
opposite of typical TIR in dielectrics (and even the elliptic ENZ), where
in fact the TIR occurs for angles beyond the critical angle. This is
also evident when inspecting the reflection coefficient in Figure 3(c).
We see that the reflection magnitude for this ENZ (black curve) is 1
for all angles up to θ′c (i.e., there is TIR back into air for angles
close to broadside), while there is transmission into the ENZ for all
angles above the critical angle with gradual increase in the reflection
coefficient magnitude.

2.2. Interfacial Dipoles

Using the expressions obtained thus far we can find the radiation
patterns of a horizontal dipole placed at the interface of the two media.
Depending on the orientation of the dipole relative to the anisotropic
MTM, different polarization planes are realized. Here we are primarily
interested in the principal planes which are the planes containing the
principal axes of the MTM. Moreover, we are interested in the cases
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where the dipole is oriented along one of these major axes. Figure 5
shows the four primary polarization planes for the horizontal dipole
above the anisotropic MTM.
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Figure 5. Four principal polarization planes for a dipole oriented
along the principal axes of an anisotropic MTM.

Given the chosen geometry of Figure 1 and the previously
discussed reciprocity method, the radiation pattern for an interfacial
x-directed dipole in the x-z plane is found to be

SE-plane(θ) =

[
cos θ

√
µr − sin2 θ/εzr

cos θ
√

εxr +
√

µr − sin2 θ/εzr

]2

(3)

for the E-plane (E field in the x-z plane). The cos θ term in the
numerator is due to the element pattern of a horizontal dipole in free
space. The H-plane of such scenario is the y-z plane and the pattern
is:

SH-plane(θ) =

[
µr cos θ

µr cos θ +
√

µrεxr − sin2 θ

]2

. (4)

For a y-directed dipole (i.e., current out of x-z plane), the x-z
plane is the H-plane and the radiation pattern (Ey only) is

SH-plane(θ) =


 µr cos θ

µr cos θ +
√

µrεyr − sin2 θ




2

. (5)

whereas the y-z plane is the E-plane and the radiation pattern is

SE-plane(θ) =


 cos θ

√
µr − sin2 θ/εzr

cos θ
√

εyr +
√

µr − sin2 θ/εyr




2

(6)
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This formulation now allows for the relative permittivity εxr , εyr
or εzr to be of different values and potentially less than 1. A similar
analysis may be applied to media with an anisotropic permeability
tensor.

The theory assumes that the homogeneous MTM medium is an
infinite half space with no bounds and reflections. Such a scenario may
be attainable in practice by using a large enough medium, terminated
with another matched medium or with absorbers.

2.3. Immersed Dipole in an ENZ

We can also extend the theory to account for the source buried below
the interface of the MTM at a distance z0 below the surface. Revisiting
the reciprocity solution, in the reciprocal problem, the transmitted
wave τ(θ)Ei(θ) now travels an extra longitudinal distance of z0 before
reaching the source plane, as depicted in Figure 2(b). Hence this wave
needs to be multiplied by an e−jkzz0 propagation factor. Moreover,
this propagation occurs inside the anisotropic MTM. For instance in
the x-z plane, the propagation inside an anisotropic crystal for the TM
case is described by

k2
x/εzr + k2

z/εxr = k2
0 (7)

and for the TE case it is governed by

k2
x + k2

z = εyrk
2
0 (8)

The transmitted wave just below the interface phase matches such
that it has a transverse wave-number component equal to that of the
incident wave, kx = k0 sin θ. Therefore the longitudinal component of
the wavenumber is found from (7) or (8). The overall pattern of the
immersed dipole can be therefore approximated as

SE-plane(θ)|z0 = e−jkz(θ)z0SE-plane(θ)|0 (9)

in the x-z plane for the x-directed dipole and

SH-plane(θ)|z0 = e−jkz(θ)z0SH-plane(θ)|0 (10)

in the x-z plane for the y-directed dipole.
A note of interest is that this additional exponential phase term

can become an attenuation factor. In fact, for all angles of incidence
from air above the critical angle, the wave phase matches to an
evanescent wave in the ENZ (due to TIR in air) which is characterized
by an exponentially decaying factor, e−|kz |z0 . As we shall see, in the
transmit mode where the dipole is radiating from within the ENZ, a
sufficiently distant source from the interface can lead to directive single
lobe radiation explaining the observations reported in [31].
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3. RADIATION PATTERNS

3.1. Dipole on an Isotropic ENZ

Using the derived radiation patterns for general anisotropic half-space,
we can inspect radiation from both isotropic and anisotropic ENZ half-
spaces. As a first example we inspect the radiation pattern of a dipole
at the interface of an isotropic ENZ as shown in Figure 6. The ENZ
is chosen to have a relative permittivity of εxr = εyr = εzr = 0.1.
It can be seen that these radiation patterns closely resemble the
radiation patterns that are typically attained inside dielectrics reported
in various works such as [9, 11–13]. However, these radiation patterns
behave oppositely to the dielectric half-space scenario, as air is now
the denser medium compared to the ENZ. This means that a critical
angle occurs in air relative to the ENZ. We are primarily interested in
the radiation pattern in the air-side.
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Figure 6. (a) E-plane pattern and (b) H-plane pattern of a dipole at
the interface of an isotropic MTM with εr = 0.1, from [28].

The E-plane pattern has three lobes, a broadside lobe and
two side-lobes beyond the critical angle of air. Another important
consequence of air being the denser medium is that that the amount of
radiated power is also much stronger in the air-side. This is the reverse
of the case of the dielectric half-space, where most power radiates into
the dielectric side. The H-plane pattern also exhibits the pointed
radiation patterns that are typically attained in the H-plane pattern
of the dielectric half-space (e.g., see [9, 11–13]). The radiation in the
ENZ side is significantly weaker than in air as seen in the H-plane
pattern.
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3.2. Interfacial Dipole on an Anisotropic ENZ

As stated earlier, ENZs are usually anisotropic in practice. The derived
radiation patterns can handle such anisotropy for different orientations
of the dipole.

In H-plane, only the out-of-plane permittivity is relevant. Figure 7
shows the H-plane radiation patterns for four values of 0 < εyr < 1,
for a y-directed dipole. It can be seen that the angles at which the two
peaks occur in the pattern (which is determined by the critical angle
in air), separate further for larger permittivity values.
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Figure 7. H-plane radiation pattern in air. (a) εyr = 0.01, (b) εyr =
0.2, (c) εyr = 0.5, (d) εyr = 0.7, from [28].

In the E-plane the anisotropy affects the patterns with two
permittivity values (transverse and longitudinal), as apparent in the
pattern expressions (3) and (6). The four cases of low transverse
permittivity, i.e., {εxr → ±0 and εzr = ±1}, do not lead to similarly
shaped E-plane radiation patterns but they rather yield a single lobe.
The requirement is then to have a low longitudinal permittivity in order
to achieve the E-plane dielectric-side radiation patterns of [9, 11–13] in
air, using an ENZ. Therefore for the scope of this paper, we primarily
investigate low transverse permittivity cases.

Figure 8 (solid blue curves) shows the E-plane radiation patterns
for four values of the longitudinal permittivity 0 < εzr < 1, while the
transverse permittivity is εxr = εyr = 1, for a x-directed dipole. Each
plot also contains a second trace (dashed red) showing the E-plane
radiation pattern if the ENZ were isotropic with the corresponding
relative permittivity εr = εzr . We can see from these results that
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Figure 8. E-plane radiation pattern in air for a dipole above an
anisotropic ENZ (solid blue curve) with εxr = εyr = 1, (a) εzr = 0.01,
(b) εzr = 0.2, (c) εzr = 0.5, (d) εzr = 0.7, and (dashed red curve) for
the corresponding isotropic ENZ εr = εzr , from [28].

similarly shaped radiation patterns can be attained in air even in the
presence of this large anisotropy. This is particularly applicable to
practical ENZ scenarios that exhibit large anisotropy, as shown later.

The E-plane radiation patterns for the hyperbolic ENZ case of
Figure 4(b) are shown in Figure 9, for varying values of −1 < εzr < 0,
while εxr = 1. The patterns in this case do not have three lobes and
nulls as in Figure 8, rather two merged lobes (without separating nulls)
exist in the pattern and there is no main broadside lobe. The lack of
nulls (and hence lack of distinct lobes) is due to the absence of a critical
angle and no TIR into air for this type of hyperbolic ENZ (in order
for the incident and reflected waves to cancel at the interface in the
reciprocal problem). The two lobes merge further together into a single
lobe as εzr → −1.

The E-plane radiation patterns for the hyperbolic ENZ case of
Figure 4(c) are shown in Figure 10, for varying values of 0 < εzr < 1,
while εxr = −1. A narrow broadside lobe and two prominent side-
lobes exist in the pattern for εzr = 0.01 of Figure 10(a), with distinct
separating nulls due to TIR. The two side-lobes reduce in strength
relative to the main lobe as εzr → +1, and the broadside lobe becomes
dominant. The two side-lobes diminish more abruptly in this case
compared to the corresponding isotropic ENZ case of εr = εzr (dashed
red curve).
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Figure 9. E-plane radiation pattern in air for a dipole above an
anisotropic ENZ (solid blue curve) with εxr = 1, (a) εzr = −0.01,
(b) εzr = −0.2, (c) εzr = −0.5, (d) εzr = −0.7, and (dashed red curve)
for the corresponding isotropic ENZ εr = |εzr |.
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Figure 10. E-plane radiation pattern in air for a dipole above an
anisotropic ENZ (solid blue curve) with εxr = −1, (a) εzr = 0.01,
(b) εzr = 0.2, (c) εzr = 0.5, (d) εzr = 0.7, and (dashed red curve) for
the corresponding isotropic ENZ εr = εzr .
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3.3. Dipole Immersed in an Anisotropic ENZ

Figure 11 shows the evolution of the radiation pattern in air as an
immersed dipole is moved towards the interface (in the case of an
elliptical ENZ). Figure 11(a) shows the H-plane pattern of an in-plane
dipole, while Figure 11(b) shows the case of E-plane pattern for an
out of plane dipole. For the H-plane pattern, it can be seen that
when the dipole is fully immersed, a single directive lobe is primarily
noticeable in the radiation pattern. As the dipole is moved closer
to the interface, the two side-lobes start to emerge. In the case of
an interfacial dipole the pattern has two prominent side-lobes and a
smaller broadside lobe. The emergence of the side-lobes for interfacial
dipoles, as well as those close to the interface, can be attributed to the
evanescent near-field waves of the dipole. In such cases, the evanescent
waves of the dipole can couple to propagating waves beyond the critical
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Figure 11. Effect of interfacial versus immersed source in a ENZ
MTM. (a) E-plane pattern of an in-plane dipole. (b) H-plane pattern
of an out-of-plane dipole. Each graph shows the theoretical far-field
pattern using the presented theory (solid curves) and the pattern from
fullwave simulation (dashed curves) at a finite observation distance.
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angle of air. This is while such evanescent waves become significantly
attenuated for larger distances from the interface. Hence in the case
of z0 = −λ0/2, there is almost no radiation beyond the critical angle
of air with no noticeable side lobes. A similar scenario exists for the
E-plane pattern. The pattern for the case of z0 = −λ0/2 has little
radiation strength beyond the critical angle with an almost flat-top
type radiation pattern. The pattern widens as the dipole moves closer
to the interface, such that the familiar pointed radiation patterns of
the interfacial case develops. The cases of z0 = −λ0/2 for the two
planes essentially recover and explain the scenario of directive emission
using ENZs as proposed by [31]. Only the propagating waves of the
immersed source reach the surface, all refracting close to normal due
to the Snell’s law, resulting in a directive broadside lobe.

The two figures also show a secondary dashed curve which is the
result of fullwave simulations using a finite size domain for validation
purposes. The slight discrepancy and ringing effects in the patterns
are well known for finite size simulations and have previously been
demonstrated and studied for the dielectric half-space problem [16, 21].
The fullwave simulation results in fact converge to the ideal far-field
results for larger observation spheres around the dipole. For instance
the results in the two figures are obtained for a radial observation
distance of robs = 50λ0. Despite this simulation aberration, it can
be seen that the fullwave results confirm the predicted interfacial and
immersed far-field patterns.

The immersed dipole results presented here closely resemble the
patterns of a dipole above a dielectric [13]. Such patterns were obtained
in [13] for the dielectric-side radiation patterns, for varying heights of
a source above an isotropic dielectric. The same patterns and trends
are now obtained in the air-side, by immersing the dipole inside an
elliptic ENZ at different heights.

4. REALIZATION USING ANISOTROPIC ARTIFICIAL
DIELECTRICS

The expressions and pattern results presented so far are applicable
to general anisotropic media using only the permittivity tensor,
independent of the realization of the MTM. Depending on the
realization of the MTM, the permittivity tensor may be effectively
related to the geometry and material parameters of the underlying
unit cells of the actual MTM. The interest in this work has primarily
been on ENZs, which may be realized with unit cells such as bi-layers,
mesh grids, or wire media depending on the frequency of operation,
typically showing some sort of anisotropy. Here we utilize the bi-layer
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media at optical frequencies.
Collin showed in [29] that periodic sub-wavelength layers of two

dielectrics can be effectively homogenized as one dielectric with an
anisotropic uniaxial permittivity tensor, in the investigations related
to artificial dielectrics [29, 30]. Such artificial dielectrics were the fore-
runners to what is now known as a type of Metamaterials.

To date this stacked bi-layer medium has been used in many
studies, especially at optical frequencies in the past decade [32–42],
primarily due to their simple nature and ease of fabrication. The bi-
layer concept has been particularly useful for the realization of Epsilon
Near Zero MTMs [36] where the desired “close to zero permittivity”
is typically achieved by interleaving sub-wavelength layers of a
material with positive permittivity and a material with negative
permittivity, such that the effective medium is zero. This was the
key for realizing the highly anisotropic ENZs of the hyperlens [32–34],
where the effective medium has a hyperbolic dispersion characteristic.
Ref. [43] utilized such layered MTMs to propose extreme boundary
conditions such as perfect electric and magnetic conductors at optical
frequencies and determined the radiation pattern of a dipole near a
layered structure that is operating in the theoretical extreme limit
{εtangential →∞, εnormal → 0}.

The desired anisotropic low permittivity MTMs in this work can
also be realized with sub-wavelength layers of a metal (negative real
permittivity) and a dielectric at the optical frequency of interest. Two
orientations of the layered structure are possible as shown in Figure 12.
Primarily, horizontal stacks as in Figure 12(b) have been used in
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E
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Figure 12. TM light incident on stacked periodic layers realizing an
anisotropic medium with two different principal axes having its optical
axis oriented along (a) x-axis and (b) z-axis.
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the past [32–34] as transverse zero permittivity was required. Here
we utilize vertical layers as shown in Figure 12(a), as they offer an
advantageous capability for our purposes. The effective permittivity
along the two principal axes of such a structure can be found using the
following first order Effective Medium Theory (EMT) formulas [29]:

εaxis =
εmεd

(1− p)εm + (p)εd
(11)

ε⊥axis = pεm + (1− p)εd (12)

where εm and εd are the permittivity values of the metal and dielectric
layers respectively and ‘p’ is the filling ratio of the metal layer
(thickness of the metal layer divided by the sum of the thickness
of metal and dielectric layers). A second order effective medium
approximation was also presented in [29], however we use the first order
formulas to obtain initial values. The period used here is deeply sub-
wavelength (L = λ0/22) and therefore the second order effects were
found not to cause noticeable difference in the effective permittivity
values.

We utilize the case of vertical layers to realize zero longitudinal
(z-axis) permittivity, mainly due to the fact that close to zero response
can be easily achieved along the axis normal to the optical axis with
readily available optical materials. A trend of the variation of the
complex permittivity as a function of the filling ratio of the metal is
shown in Figure 13, utilizing the first order Effective Medium Theory
formulas as in [29]. The operation region of interest has been magnified
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Figure 13. (a) Variation of complex permittivity as a function of
metal filling ratio “p” according to EMT expression, using bi-layers
of Ag and PMMA at λ0 = 365 nm. (b) Operation region of interest
yielding close to zero anisotropic permittivity with low losses.
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in Figure 13(b). The variation is dependent on the choice of the two
materials. Here we have used Ag (εm = −2.4012 + 0.2488j) [34] and
PMMA (Polymethyl methacrylate −εd = 2.301) at λ0 = 365 nm.

One drawback with using the EMT formulas of [29] is the lack
of incorporating additional modes which can arise from rapid field
variations compared to the scale of the layers, especially in the optical
regime where the metal layer has negative permittivity [37–42]. For
example, Surface Plasmon Polaritons can exist when a metal layer
with negative permittivity is next to a dielectric [38], creating a non-
local response. Such non-local effects are known to give rise to spatial
dispersion and have sparked research into providing corrections to the
simple EMT model [37–40, 42]. Depending on how sub-wavelength the
period is, especially relative to the plasma wavelength, the effective
permittivity values obtained from EMT can be significantly different
and also dependent on the direction of propagation. This can be better
seen by referring to the accurate dispersion equations governing the
layered media obtained using the transfer-matrix method for photonic
crystals (e.g., see [37, 38, 42]). However, the EMT formulas hold for
a variety of angles when the period is sufficiently sub-wavelength
(especially when well below the plasma wavelength of the metal
layer) and are a good approximate first step when designing layered
structures. A benefit of the general pattern expressions presented
earlier is that they can be used along with more refined effective
permittivity expressions that incorporate nonlocal effects such as [38–
40, 42] to arrive at more accurate radiation pattern expressions, if
required.

4.1. Radiation from a Finite Slab

The bi-layer structure of Ag and PMMA is tailored at λ0 = 365 nm
with a filling ratio of p = 0.43, and period L = λ0/22, which
leads to an effective permittivity of εxr = 13.27654 + 3.45504j and
εzr = 0.27905+0.10698j using the EMT expressions. Figures 14 and 15
show the radiation of a horizontal dipole placed at the interface of a
finite slab made of such layered structure. The 2D fullwave simulation
results presented here are for a ‘finite’ slab (6λ0× 6λ0× 2λ0) as it is a
more practical case to both simulate and potentially fabricate instead
of the infinite half-space case.

The inset in Figure 14(a) shows the vertical stacked layers as well
as the orientation of the dipole normal to the layers at the interface.
The far-field radiation pattern in Figure 14(b) is an E-plane pattern.
Three radiation patterns are shown in the figure. The blue curve marks
the theoretical patterns for the dipole at the infinite half-space using
the theory presented earlier, with the permittivity values obtained from
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Figure 14. (a) Power density color map of an interfacial horizontal
dipole on a slab made of stacked bi-layer of Ag and PMMA at
λ0 = 365 nm. Inset shows the layered slab, dipole orientation normal
to the layers, and pattern plane. (b) E-plane radiation pattern for
three cases: infinite half-space from theory (blue curve), an EMT
homogenized finite slab (red curve) from fullwave simulations, and the
vertically layered finite slab (black curve) from fullwave simulations.

the EMT expressions. The black curve shows the radiation pattern
of the actual finite slab made of layers of Ag and PMMA obtained
from fullwave simulations using the COMSOL 4.3a software package.
The dashed red curve shows the pattern from fullwave simulation of a
finite slab of the same size, filled with a homogeneous material having
permittivity values from the EMT expressions. For the latter two
cases, the dipole is placed at a slight distance above the interface in
air (z0 = 0.009λ0) due to numerical issues with simulating a fully
interfacial case. The discrepancy between the black and red curves
is most likely due to a combination of simulation inaccuracies and
non-local/spatial dispersion effects. Inaccuracies in simulation of the
layered slab (black curve) arise from simulating a large domain with
extremely fine plasmonic features, which poses particular challenges as
also reported in [38], requiring dense meshing of a large domain. Aside
from simulation inaccuracies, a contribution to this discrepancy may be
due to non-local effects such that the EMT homogenized slab does not
fully capture the complete behavior of the actual layered slab. It should
be noted that the slab is illuminated with an adjacent source that has
a wide range of spatial frequency components, including propagating
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Figure 15. (a) Power density color map of an interfacial horizontal
dipole on a slab made of stacked bi-layer of Ag and PMMA at
λ0 = 365 nm. Inset shows the layered slab, dipole orientation parallel
to the layers, and pattern plane. (b) H-plane radiation pattern for
three cases: infinite half-space from theory (blue curve), an EMT
homogenized finite slab (red curve) from fullwave simulations, and the
vertically layered finite slab (black curve) from fullwave simulations.

and evanescent waves, exemplifying the potential influence of non-local
effects and spatial dispersion (e.g., the excitation of TM SPPs).

Figure 15 shows the scenario of the interfacial dipole parallel to
the layers as shown in the inset of power intensity plot of Figure 15(a).
Three H-plane radiation patterns are now presented in Figure 15(b).
The patterns resemble the H-plane patterns of dielectric with two
pointed peaks, with some roundening of the peaks due to losses. This
time we see better agreement between the three cases, which shows
that the EMT expressions provide a more reliable description of the
behavior of the layered slab in the TE polarization than the TM
polarization where nonlocal effects are stronger.

From these results, it can be seen that shaped radiation patterns
can be achieved in air, by placing the radiator on top of a finite
slab of an ENZ realized using the stacked bi-layer structure of [29]
at optical frequencies. Such a scenario can enhance the radiated power
and tailor the radiation pattern of an optical radiator, e.g., an optical
antenna or a florescent molecule for better radiation into far-zone in air.
Realizations of the ENZ concept using wire media and mesh grids [31]
are also possible for microwave applications.
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5. CONCLUSIONS

The radiation of a source at the interface of, or immersed in an
anisotropic Epsilon Near Zero (ENZ) Metamaterial is systematically
studied. To this end, the radiation patterns of a dipole at or below
the interface of air and a general anisotropic MTM half-space are
derived using the Lorentz Reciprocity method. It is observed that
shaped radiation patterns, which were previously only attained inside
dielectrics of high permittivity, are achieved in air by using an ENZ
half-space. The intensity of radiation is also much stronger in the
air-side, due to role reversal of air as the denser medium. Isotropic
ENZs as well as anisotropic ENZs with low longitudinal permittivity
were studied for their effect on the radiation pattern in the relevant
polarization planes.

In the H-plane, two pointed peaks were observed in the air-side
radiation pattern, similar to those obtained in the H-plane patterns
of dielectrics. In the E-plane, a dipole on either an isotropic ENZ,
an anisotropic elliptic ENZ, or an anisotropic hyperbolic ENZ has
two clear nulls in the air-side radiation pattern, as long as the ENZ
has low and positive longitudinal permittivity. The nulls give rise
to a broadside lobe and two side-lobes in air, resembling the E-
plane radiation patterns of dielectrics. These pattern features were
explained via the reciprocal problem and studying the iso-frequency
contours and reflection properties of the ENZ interface under plane
wave incidence. It was seen that as long as there is positive low
longitudinal permittivity, a critical angle exists in air such that Total
Internal Reflection (TIR) occurs back into air for some range of incident
angles. The incident field and the totally reflected field cancel out
at the interface for an incident angle corresponding to the angle of
the null in the pattern of the dipole. The hyperbolic ENZ with low
positive longitudinal permittivity showed a peculiar case of TIR below
the critical angle, which is opposite to that of regular dielectrics. It was
also shown that a dipole on a hyperbolic ENZ with low and negative
longitudinal permittivity has no nulls in the E-plane and only two
merged side-lobes. This is because with such an ENZ there is no critical
angle in air and TIR does not occur back into air for any incident angle.

The effect of varying the permittivity was shown to affect the
critical angle and therefore the patterns in both planes. The effect of
immersing the source inside the ENZ was also shown to increase the
directivity of the radiation and dampening of off-broadside radiation,
both in the H-plane as well as in the E-plane for the isotropic and
elliptic ENZ with low longitudinal permittivity. This was due to the
occurrence of TIR for all angles above the critical angle in the reciprocal
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problem, attenuating the waves that reach the source plane in the ENZ.
Following the pioneering work of Collin, sub-wavelength periodic

alternating layers of metals and dielectrics were used for the realization
of an anisotropic elliptic ENZ at optical frequencies. It was observed
that radiation patterns from a finite slab of such medium in air
provides similarly shaped radiation patterns previously only attainable
in dielectrics. The presented scenarios have applications in enhancing
and shaping the radiation patterns of optical radiators such as optical
antennas and fluorescent molecules.
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