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Abstract—In this paper, we introduce a high order finite element
(FEM) implementation using perfectly matched layer (PML) for the
scattering by plasmonic structures inside layered media. The PML
is proven to be very accurate and efficient by a comparative analysis
with a commercial FEM software and the Multiple Multipole Program
(MMP). A convergence analysis using hp-adaptive refinement inside
the PML layer shows that adaptive mesh refinement inside the PML
layer is most efficient. Based on this convergence analysis an hp-
strategy is proposed, which shows a remarkable error reduction for
small additional computational costs.

1. INTRODUCTION

The advancing fabrication techniques in nano-technology make them
more and more popular in studying structures with the size of
optical wavelengths or even less. Many applications, such as nano
antennas [1, 2], photonic crystals [3], and chemical and biological
sensors [4–6], are usually mounted on or embedded in layered media.
For reasons of simplicity, the impact of the substrate or multilayer
structure on optical antennas is often ignored in simulations — as it
had been traditionally done for radio frequency (RF) antennas. While
RF antennas often are surrounded in air using holder that have almost
no impact on the antenna, optical antennas may be strongly affected
by the underlying substrate or multilayer structures.
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In such structures we find guided and leaky waves [7] which
are not present in homogeneous exterior of scattering objects. The
Sommerfeld radiation condition [8, 9] decides, in homogeneous exterior,
if a wave is outgoing or incoming, and guarantees, in this way, a unique
definition of purely outgoing scattered fields. Several conditions have
been proposed to replace or extend the Sommerfeld radiation condition
to multilayer structures (see, e.g., [10–15]).

For the numerical analysis of scattering problem in unbounded
multilayer structures, the most important issue is the truncation of the
domain. Boundary integral methods [16], which are based on Green’s
functions for each piecewise constant subdomain, are most powerful
for the handling of the scattering in homogeneous unbounded domains.
The direct application to layered structures has to face the problem of
infinite interfaces. With the development of integration techniques for
the evaluation of multilayer Green’s functions [15, 17], formulations on
only the boundary of the scatterer are possible, and such a formulation
has been successfully used with MMP [18]. For homogeneous exterior,
there are a variety of local absorbing boundary conditions [8, 9] which
can be used with volume discretization methods such as FEM or the
finite difference time domain method (FDTD). The perfectly matched
layers (PML), which is the most popular truncation technique, was first
proposed in [19] and later introduced to FEM [20]. The introduction of
PML can be considered as a complex coordinate stretching [21], which
leads to exponentially decaying solutions. In FDTD, the geometry of
the PML is naturally rectangular due to the structured mesh of FDTD.
In 2D FEM, the typical shapes of PML blocks are rectangles and
circular shells, which correspond to Cartesian [22] and radial PML [23],
respectively. Motivated by the pole condition, PML have also been
proposed for more general layered media [24]. To reduce the error, the
thickness and mesh widths in the PML can be a-posteriori adapted [25–
28]. The Hardy space infinite elements [29] and the pole condition
method [30, 31] are alternative methods for multilayer structures.

In this article, the modeling of multilayer scattering in the presence
of guided modes is studied using FEM with an hp-adaptive PML
discretization. The possibility to refine the mesh (h-refinement), to
increase the polynomial order (p-refinement) or both (hp-refinement)
even only in certain parts of the mesh (adaptive refinement) allows
well-adapted refinement strategies [32]. Using those strategies, an error
level can be reached with much lower number of degrees of freedom
(DOF) than with uniform mesh refinement and constant polynomial
degree. For wave propagation, it is known that p-refinement is
superior to h-refinement, at least away from material corners [33–35].
Close to material corners, the use of geometric meshes and a linear
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increase of the polynomial orders away from these corners lead to
exponential convergence [36], see also [37] in the application of photonic
devices. Using error estimators adaptive refinement strategies has
been proposed [38–45]. To the best of our knowledge, an hp-adaptive
refinement strategy in the presence of PML has been proposed only
in [27]. In this work, we study the hp-adaptive PML discretization
of an anisotropic mesh refinement towards the PML interface or an
increase of the polynomial orders.

In Section 2, we provide a variational formulation for the scattered
field in multilayer structures using PML. The FEM discretization of
the method is shown to be efficient to handle the scattering problem
of plasmonic particles in the layered media (see Section 3). The error
analysis for the hp-adaptive refinement of the FEM is performed in
Section 4.

2. FINITE ELEMENT FORMULATION AND
IMPLEMENTATION

2.1. Finite Element Variational Formulation Using PML

In this paper, we focus on two-dimensional scattering problems, where
the electromagnetic waves propagate in a non-magnetic material,
with the relative permittivity ε(x, y) = ε(x̄). Here x̄ denotes the
2D coordinates (x, y) since the problem is independent of the third
coordinate z.

As usual, the electromagnetic wave (E, H) is decomposed into
transverse electric (TE) waves (Ex, Ey, 0, 0, 0, Hz) and transverse
magnetic (TM) polarized waves (0, 0, Ez, Hx, Hy, 0) [7, 46]. This
decomposition leads to scalar 2D Helmholtz equations in Hz and in
Ez. In the optical regime, a surface plasmon resonance can be excited
if a noble metal is illuminated by a TE wave [47]. It should also be
noted that according to recent research, another low-energy collective
mode can be excited as well [48–53]. We consider TE waves with
magnetic polarization H̄(x̄) = (0, 0, utot), where utot denotes the total
magnetic field, and we denote by k0 the wave number of the impinging
wave H̄imp(x̄) = (0, 0, uimp) from above.

For reasons of simplicity, we consider a plasmonic object within
a multilayer structure as test case, which is illustrated in Figure 1.
The multilayer structure is defined in R2 through its piecewise
constant relative permittivity εmul(x̄) only varying in y direction. The
permittivity εmul takes the values εlay in the substrate, εcoat in coatings
of the substrate to the top and bottom and 1.0 in the air region above
and below the coatings. Inside the substrate lies the scatterer Ωsc with
relative permittivity εsc and boundary Γ, and we define the overall
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permittivity ε(x̄) to coincides with εmul(x̄) outside the scatterer and
with εsc inside the scatterer.

We are going to use a scattered field formulation, in which the
scattered field usc in the decomposition utot = usc+uinc is the unknown.
For this we have to define a generalized incoming field H̄inc = (0, 0, uinc)
which solves

−∇ ·
(

1
εmul(x̄)

∇uinc

)
− k2

0u
inc = 0 (1)

in the whole space R2. Its incoming part from above is the impinging
wave H̄imp, and it is purely outgoing to the bottom. This generalized
incoming field uinc consists of the reflected and transmitted wave in
each layer and can be computed analytically [7].

Then, the scattered field usc solves

−∇ ·
(

1
εmul(x̄)

∇usc

)
− k2

0u
sc = 0 in R2 \ Ωsc (2a)

−∇ ·
(

1
εsc
∇usc

)
− k2

0u
sc =

(
1− εlay

εsc

)
k2

0u
inc in Ωsc (2b)

[
usc

]
Γ

= 0 (2c)[
1

ε(x̄)
∇usc · n

]

Γ

=
(
ε−1
sc − ε−1

lay

)
∂nuinc, (2d)

and is purely outgoing to all sides. Here, [·]Γ stands for the jump
between field values outside and inside the scatterer. As the multilayers
approach infinity and the scattered field may incorporate outgoing
guided modes to the left and right, which do not decay, the Sommerfeld
radiation condition [8, Chap. 1, 9, Chap. 3] does not apply. On its
place the outgoing nature of u can be enforced by a more general
radiation conditions [10–13], the pole condition [14] or by means
of the multilayer Greens functions [15, 17]. For applying the pole
condition and the PML, one has to exclude guided waves with different
directions of group and phase velocities, which have, however, to our
best knowledge, never been found in dielectric multilayer structures.

We are interested in obtaining the scatterer field in a rectangle
region of interest Ω around the scatterer Ωsc (see Figure 1).

Following the standard procedure for the Galerkin method,
Equation (2a) is multiplied with a test function v and integrated over
Ω. After integration by parts, we obtain the equation∫

Ω

1
ε(x̄)

∇usc · ∇v dx̄− k2
0

∫

Ω
uscv dx̄−

∫

∂Ω

1
ε(x̄)

∂nuscv ds̄

= k2
0

∫

Ωsc

(
1− εlay

εsc

)
uincv dx̄ +

∫

Γ

(
ε−1
lay − ε−1

sc

)
∂nuincv ds̄. (3)
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Figure 1. Scattering from the multi-layered test structure,
illuminated by a plane wave from top. Scattered and guided waves
can be excited. The physical domain is surrounded by a PML.

This equation is not complete, since no boundary conditions are
specified. Therefore, we enlarge the computational domain by a PML
layer. By applying the PML coordinate transformation, one can
obtain the variational formulation in the whole computational domain
Ω0 := Ω∪ΩPML, which is a box-shaped domain for the Cartesian PML.
The details of the transformation can be found in [22].

The transformation leads to a transformed scattered field outside
Ω, which exponentially decays away from the PML interface ∂Ω and
is almost zero on ∂Ω0, if the PML layer is thick enough. Therefore,
we neglect the corresponding boundary term on ∂Ω0 corresponding
to homogeneous Neumann boundary conditions. The unknown of the
resulting variational formulation u shall be an approximation to usc in
Ω and exponentially decaying in ΩPML. Then, the problem reads:

find u ∈ H1(Ω0), s.t. Φ0(u, v) = f(v), for all v ∈ H1(Ω0), (4)
where

Φ0(u, v) =
∫

Ω0

∇uT A(x̄)∇v dx̄− k2
0

∫

Ω0

b(x̄)uv dx̄

f(v) =
∫

Ωsc

(
1− εlay

εsc

)
k2

0u
incv dx̄ +

∫

Γ

(
ε−1
lay − ε−1

sc

)
∂nuincv ds̄,

and

A(x̄) =

(
γy(y)
γx(x)

1
ε(x̄) 0

0 γx(x)
γy(y)

1
ε(x̄)

)

b(x̄) = γx(x)γy(y)
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γx(x) = 1 + iσx(x)/ω

γy(y) = 1 + iσy(y)/ω

σx(x) =
{

0, if |x− x0| − xd 6 0,
Sx (|x− x0| − xd)

αx , if |x− x0| − xd > 0,

σy(y) =
{

0, if |y − y0| − yd 6 0,
Sy (|y − y0| − yd)

αy , if |y − y0| − yd > 0.

Note that the boundary term
∫
∂Ω

1
ε(x̄)∂nuv ds̄ disappears due to the

continuity at the PML interface ∂Ω.
In the formulation, (x0, y0) is the center of the computational

domain, and xd, yd are the distances of the PMLs from the center
in x and y directions. The geometrical configuration of the PML is
shown in Figure 1. The functions σx and σy describe the profile of
the PML. They are monotonic polynomial functions in x and y inside
the PML region, where the constants Sx, Sy are the amplitudes, and
αx, αy are the polynomial orders of the profiles. The profiles play a
key role for the performance of PML. Nowadays it is accepted that
the profile functions σx and σx should be continuous over the PML
interface, which leads to the continuity of the first derivative of u, as
well as their first derivative such that the second derivative of u is
continuous as well. Hence, we choose αx, αy ≥ 2.

Furthermore, the combination of Sx, Sy and αx, αy must be
chosen carefully. Greater Sx, Sy provides better absorption and
decreases the modeling error but also leads to more rapid decay of
the field in the PML and needs more effort for the discretization.
The stronger the PML absorption is, the more computational effort
is required.

2.2. CONCEPTs Implementation

For the discretization of (4), we use the C++ library CONCEPTs [37, 54, 55].
The CONCEPTs package uses high polynomial basis functions and curved
quadrilateral elements. In CONCEPTs, the polynomial order can be
chosen independently in each cell. Hence, we can use the library for
adaptivity in the mesh width as well as the polynomial order. All the
integrals in the formulation can be implemented in CONCEPTs, and the
corresponding relationships are shown in Table 1.

CONCEPTs requires quadrilateral curvilinear elements. For
obtaining an appropriate mesh of the structure, we applied the mesh
generator EZ4U [56, 57] for a small rectangular box including the
scatterer, which generates quadrilateral curvilinear elements with good
quality, as shown in Figure 2(a). This mesh describes the details of
the curved scatterer. Difference from FE methods based on straight
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Table 1. The implementation of the integrals in CONCEPTs.

integral CONCEPTs class symbol type∫
Ω∇uT A(x̄)∇v dx̄ hp2D::Laplace S stiffness matrix∫

Ω b(x̄)uv dx̄ hp2D::Identity M mass matrix∫
Γ fv ds̄ hp1D::Riesz fΓ load vector∫

Ωsc
gv dx̄ hp2D::Riesz fΩsc load vector

(a) (b)

Figure 2. CONCEPTs and COMSOL meshes near the scatterer. (a) The
CONCEPTs mesh using quadrilateral elements generated by EZ4U.
(b) The COMSOL mesh using triangular elements.

triangular or quadrilateral cells where a fine mesh is required to resolve
the material interface, we may use coarse cells as the circular curved
obstacle is exactly resolved by the mesh.

3. NUMERICAL SIMULATIONS

In this section, we aim to apply the introduced FE formulation with
PML to two examples and to verify the accuracy of the simulation
by a comparison with results using a MMP code with multilayer
Greens’s functions. To show the efficiency of using high-order finite
elements for multilayer scattering problems using PML, we compare
our implementation in the high-order FEM library CONCEPTs with the
commercial FE program COMSOL.
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3.1. Testing Problems

As shown in Figure 1, we compute the scattering of a plane wave
at a silver scatterer embedded in a three-layer medium. All the
layers extend towards infinity in horizontal direction. The center
layer, with thickness 350 nm and relative permittivity εlay, is coated
with two 50 nm-thick layers with relative permittivity εcoat. A TE-
polarized plane wave impinges from top with a 45 degree angle of
incidence. The wavelength of the plane wave is 600 nm, at which
the relative permittivity of silver εAg is −15.855 + 0.432i [46]. With
certain combinations of εlay and εcoat, guided wave modes can be
excited in the coating layers. As our test problem, we choose the
relative permittivities εlay = 4 and εcoat = 9. It should be noted
that the geometry analyzed here has three guided waves observed for
TE polarization, with the following wave numbers: kgw1 = 1.21k0,
kgw2 = 1.77k0 and kgw3 = 1.97k0, where k0 = ω

c is the wave number in
vacuum.

We simulate two shapes of scatterers. One is a disk of radius
100 nm, and the other is an isosceles triangle with bottom length of
160 nm and height of 160 nm. The triangle has curved corners with
radii of 30 nm and is shown in Figure 2. Both scatterers are embedded
in the middle of the center layer.

3.2. Modelling Parameters and Numerical Results

For the simulations with the proposed formulation and using CONCEPTs,
we choose the box with xd = 800 nm and yd = 550 nm as domain of
interest and add a PML layer of 100 nm thickness in both x and y
directions. The PML profiles are parabolic curves with parameters
Sx = Sy = 0.2, and αx = αy = 2.

Coarse meshes around the scatterers are generated by EZ4U.
This mesh has 27 cells for the disk and 49 cells for the triangle (see
Figure 2(a)). For the multilayers and PML layer, a Cartesian mesh is
added to obtain combined mesh with 191 cells for the disk and with
205 cells for the triangle. We use a uniform polynomial degree of 14
resulting in 22,741 DOFs for the circular scatterer and 21,876 DOFs for
the triangular one. The absolute values of the total magnetic fields are
shown in Figure 3(a) for the disk and in Figure 3(b) for the triangle.
The excited guided waves are observed in the layers. With the used
simulation parameters, one observes almost no artificial reflection by
the PML layer. The PML has very good absorption when truncating
the layers containing strong guided waves.

To verify the simulation with the proposed formulation,
OpenMaX, an open source electromagnetic simulation tool that
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(a)

(c) (d)

(e) (f)

(b)

Figure 3. Simulation results for the absolute value of the total
magnetic field. In (a), (c) and (e) the results for circular scatterer
are shown, and (b), (d) and (f) the results for triangular scatterer.
The results with CONCEPTs are in (a), (b), where we use a polynomial
degree of 14 resulting in 22,741 DOFs for the disk, and 21,876 DOFs
for the triangle. (c), (d) show the MMP results. For the disk, 64
layered expansions and a Bessel expansion with the maximum order of
30 are used. For the triangle, 51 multilayer expansions are used inside
the scatterer and 23 homogeneous media multipoles are used outside
the scatter. (e), (f) COMSOL results using quadratic elements, where
155,798 DOFs are used for the disk and 177,477 DOFs for the triangle.
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includes the Multiple Multipole Program (MMP), is used. MMP
is a boundary discretization method that uses a set of fundamental
solutions of Maxwell’s equations (multipole expansions) in order to
obtain the fields scattered by objects [18, 58–60]. Inside the scatterer,
an expansion with Bessel functions or multipoles of different centers
is used, whereas in the multiple layers the solution is expanded in
multilayer Green’s functions with different centers. For the circular
scatterer, 64 multilayer Green’s functions and a Bessel expansion
with the maximum order of 30 are used. Solutions are obtained
with the average field mismatch error criterion of 0.001% checked
in 256 matching points distributed linearly on the scatterer. For
the triangular scatterer, 51 multilayer Green’s functions and 23
homogeneous media multipoles with the maximum order 3 are used.
The problem is solved by using 150 matching points with the average
mismatch error of 0.02%. The absolute values of the total magnetic
fields are shown in Figure 3(c) for the disk and in Figure 3(d) for the
triangle.

We also simulated the test problem with COMSOL Multiphysics
version 4.3a [61]. Under the graphical interface of COMSOL, linear,
quadratic and cubic elements are available, which correspond to the
1st, 2nd and 3rd order elements, respectively. We choose quadratic
and cubic elements for computation. The geometrical approximation is
chosen to be ‘Quintic’ (5th order). Since the polynomial order two and
three are rather low, we choose a very finer mesh (see Figure 2(b)) with
16,288 cells for the disk for p = 2, and 7,172 cells for p = 3, while with
9,506 cells for the triangle for both p = 2 and p = 3. For the circular
scatterer, the simulation consumes 155,798 DOFs when using quadratic
elements. In the simulation using cubic elements, for which a coarser
mesh is applied, 141,791 DOFs are consumed. For the triangular
scatterer, the simulations consume 177,477 DOFs when using quadratic
elements and 229,827 DOFs when using cubic elements. Finally, the
PML is configured by the default settings. The absolute values of
the total magnetic fields for the performed simulations are shown in
Figure 3(e) for the disk and in Figure 3(f) for the triangle, where both
of the simulations use quadratic elements.

3.3. Comparisons

We compare the accuracy of the simulations with CONCEPTs and
COMSOL in terms of the normalized absolute value of the total
magnetic field |Htot|/max(|Htot|) along the interface of the silver disk Γ.
For MMP, it is known that the accuracy is at the order of the field
mismatch, so about 10−5. Hence, we use the result obtained with
MMP as reference. The computed fields and the differences of the
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Figure 4. Comparisons for the normalized absolute value of the total
magnetic field along the trace of the silver disk Γ (in logarithmic
scale). The red curve represents the MMP result. The black dots
represent the CONCEPTs result. The black dashed curve represents
the difference between CONCEPTs and MMP results; the blue dashed
curve represents the difference between MMP result and COMSOL
result using quadratic elements, and the red dashed curve represents
the difference between MMP result and COMSOL result using cubic
elements.

CONCEPTs solution, the COMSOL solutions using quadratic and cubic
elements to the reference solutions are shown in Figure 4. We obtain
maximal errors of 1.5×10−3 for the CONCEPTs solution, and 1.4×10−2

and 2.4 × 10−3 for the COMSOL solutions with quadratic and cubic
elements, respectively.

From the comparison, one can see the advantage of using high
order elements. Compared to the quadratic elements, the cubic
elements use a coarser mesh and less DOFs, while they achieve even
higher accuracy. CONCEPTs simulation using polynomial degree 14 uses
an even coarser mesh and much lower number of DOFs, where an even
higher accuracy is achieved. From the comparison, one can draw the
conclusion that high order FEM is more efficient for our problem.

4. HP -FEM ANALYSIS

Finite element methods are based on piecewise polynomial approxima-
tions of the solution of a partial differential equation, which is based
on a partition of the computational domain in curvilinear cells. The
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accuracy of the solution can be improved either by h-refinement, i.e.,
for a fixed polynomial degree p, the mesh size h is decreased, or by p-
refinement, i.e., the polynomial degree p is increased for a fixed mesh
size h, or a combination of both, the hp-refinement [32]. We speak
about hp-adaptive FEM [32] for refinement strategies where each cell
may be refined independently, and the polynomial order in each cell
may be raised independently.

For the studied formulation with PML, the solutions in the domain
of interest Ω and in the PML layer ΩPML have different properties.
We study the test example of a silver disk which was described in
Section 3.2, for which we start with a coarse mesh resolving the
scatterer, the interfaces of the multiple layers and the PML interface.

For this example, the solution is primarily smooth in each
subdomain of different materials in the physical domain Ω. Therefore,
we apply only uniform p-refinement in Ω and call pint the polynomial
order in these cells. For the given mesh, the polynomial order has
to exceed a particular value such that the wave form can be at least
coarsely resolved and that the solution converges [33–35].

The complex coordinate transformation of PML leads to
exponentially decaying solutions inside the PML layer, which results
in very high gradients close to the PML interface, whereas vanishing
close to the outer boundary. This behavior of the solution may
lead to a locking phenomena when using a uniform mesh refinement,
which means that a convergence of the solution may start only for
a very small mesh width. This phenomenon is weakened by the
standard way of using continuous profile functions and optimized PML
parameters. Motivated by the exponentially decaying solution, we are
going to study a geometric mesh refinement towards the PML interface.
Figure 5 illustrates this refinement strategy. The mesh in Figure 5(a)
is the original mesh, which we call h0. To obtain the refined mesh h1

(see Figure 5(b)) from h0, we subdivide all cells having one edge on the
PML interface or its extension in the respective outer direction. In the
same way, mesh h2 (see Figure 5(c)) is obtained by another geometric
refinement of mesh h1. In general, we have a mesh h`, ` ∈ N.

The study of this adaptive mesh refinement will be in comparison
to a uniform p-refinement in the PML layer, which is motivated by the
fact that the decaying solution is piecewise smooth. We call pext the
polynomial order of the cells in the PML layer, which may be different
from pint.

Hence, we characterize the hp-adaptive FEM strategy as an array
of numbers (pint, pext, `). For example, (10, 8, 2) means the polynomial
degrees are 10 in the physical domain and 8 in the external PML
domain, and two steps of h-refinement are applied in the PML domain
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(a) (b)

(c)

Figure 5. Adaptive h-refinement. (a) The original mesh h0. (b) Mesh
h1, obtained by one step of h-refinement from mesh h0. (c) Mesh h2,
obtained by one more step of h-refinement from mesh h1.

towards the PML interface.
We start the study with pint = 8 and pext = 4 on the coarse mesh

h0, for which the relative L2 error in the domain of interest is below
1. The relative L2 error is defined as the ratio between the L2 norm
of the discretization error uhp − uref and the reference solution uref in
the domain of interest, which reads√∫

Ω |uhp − uref|2dx̄
√∫

Ω |uref|2dx̄
.

As reference solution we use a very fine CONCEPTs solution with
an hp combination of (24, 24, 4). For fixed pint = 8 we vary pext and
` from a combination of [4, 6, 8, 10]× [0, 1, 2, 3, 4]. For each instance
of simulation, we compute the relative L2 error and record the degrees
of freedom. To see also the influence of p-refinement in the physical
domain we repeat a similar set of simulations with pint = 10 and a
combination of pext and ` in [6, 8, 10, 12]× [0, 1, 2, 3, 4]. The results
of the convergence study are illustrated in Figure 6, where the first
group of simulations are shown in Figure 6(a), while the second group
in Figure 6(b). In each figure, there are 20 points obtained from 20
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Figure 6. The hp-convergence analysis for the scattering problem of a
silver disk. Each node represents a simulation with an hp combination
of (pint, pext, `). (a) A group of 20 simulations with pint = 8,
pext ∈ [4, 6, 8, 10], and ` ∈ [0, 1, 2, 3, 4]. (b) A group of simulations
with pint = 10, pext ∈ [6, 8, 10, 12], and ` ∈ [0, 1, 2, 3, 4]. The solid lines
connect the nodes with the same mesh and show the convergence with
respect to pext. And the dashed lines connect the nodes with the same
pext and show the convergence with respect to the mesh refinement.

instances of FEM simulations. We connect the points with the same
h-refinement by solid lines, while the points with the same pext by
dashed lines. The solid lines represent the p-convergence of pext, while
the dashed lines represent the adaptive h-convergence.

One observes in both diagrams that the error decays if either pext

is increased or the mesh refinement towards the PML interface, until
a saturation level is reached, where further refinement inside the PML
layer has no effect on the error. For pint = 8 the relative error can be
reduced to 9.00×10−6 which is reached for the hp combination (8, 6, 4)
and with 12, 259 DOFs. When the saturation level is approached,
the error inside the physical domain becomes dominant, and further
error reduction is only possible by increasing pint. By increasing
pint from 8 to 10 the level of error saturation reduces by a factor
of 20. An relative L2 error of 4.16 × 10−7 is obtained for the hp
combination (10, 8, 4) with 22, 465 DOFs. Before the saturation level
is reached, the error inside the PML domain dominates, therefore hp-
refinement in the PML domain will lead to convergence to the exact
solution. We observe exponential convergence above the saturation
level for both p-refinement in the PML layer and the adaptive mesh
refinement, whereas the mesh refinement towards the PML interface
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is computationally more efficient than increasing pext — the dashed
lines in Figure 6 are more steep than the solid lines. We observe that
mesh refinement towards the PML interface is more adapted to the
exponential decay of the solution inside the PML layer than increasing
polynomial orders. For instance, starting with the hp combination
(8, 4, 0), an error level of about 10−4 is reached by four steps of the
adaptive mesh refinement, i.e., at (8, 4, 4), with 7, 503 DOFs, whereas
increasing the polynomial degree pext to 10 only leads to an error of
about 6×10−2 with 8, 432 DOFs at (8, 10, 0). If we start increasing pext

from hp combination (8, 4, 2), i.e., after two steps of mesh refinement
from (8, 4, 0), the error drops below 10−4 at hp combination of (8, 10, 2),
with 17, 243 number of DOFs, which is more than two times as that
for hp combination of (8, 4, 4). Nevertheless, we expect that at a
certain point it is necessary to increase pext to obtain very low error
levels. It should also be noted that in case the mesh is too coarse and
the polynomial orders too low, there is no error reduction by mesh
refinement or by increasing the polynomial degree. For example, we
also observed in our experiments that the error does not reduce if
starting with hp combination (8, 4, 0), no matter if pext is increased to
6 or one step of the adaptive mesh refinement is applied. This is due to
the fact that the hp combination is not entering the asymptotic regime
of convergence.

Having many numerical solutions with their different hp
combinations computed, we can answer the question of optimal
refinement strategies for this example, which is assured to be also
applied to similar problems. We assume three refinement options:

a. increasing pint by 2,
b. increasing pext by 2, and
c. one step of adaptive mesh refinement, so increasing ` by 1.

To expose an optimal strategy we start with an hp combination of
(8, 6, 0), which is in the asymptotic regime of convergence. Then, we
compare the error reductions for the three options, and choose that
with the highest error reduction for least increase of degrees of freedom
and repeat the steps for this choice. In Figure 7 the optimal refinement
strategy is illustrated. For the starting combination (8, 6, 0) with 5, 979
DOFs an relative error of 4.05× 10−1 is obtained. Option c is the best
choice for the first four steps. Therefore, four times of h-refinement are
performed and lead to hp combination of (8, 6, 4). In the fifth step, the
saturation is reached. Therefore, neither option b nor c will improve the
solution anymore; however, option a will surpass the saturation level
of pint and leads to a further improvement. Thus, option a is applied,
and the strategy ends at hp combination of (10, 6, 4) with 15, 389 DOFs
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Figure 7. The hp-convergence strategy. Three options are represented
by a, b, and c, where a means increasing pint by 2, b means increasing
pext by 2, and c means increasing ` by 1. The experiment starts at an
hp combination of (8, 6, 0) with 5,979 DOFs and an error of 4.05×10−1,
and stops at an hp combination of (10, 6, 4) with 15,389 DOFs and an
error of 2.83× 10−6.

and an error of 2.83 × 10−6. At each step, the best choice is plotted
as solid line, while the unchosen ones as dashed lines. All the steps
generate a decision tree, where each node represents the optimal choice
in each step, whereas dashed branches show the non-optimal choices.

5. CONCLUSIONS

In this paper, we have formulated perfectly matched layers (PML) with
finite element method (FEM), for the scattering by plasmonic objects
embedded in layered media. The formulation is realized using the high
order FEM package CONCEPTs. We observe that the PML has very
good absorptive behavior even in the presence of strong guided waves
inside the layers. The accuracy of the simulation was validated by
Multiple Multipole Program (MMP).

CONCEPTs provides high order FEM, which is very helpful. This
advantage is proven by a comparative analysis between commercial
FEM solver COMSOL, which does not support high order FEM. We
perform high order CONCEPTs simulation and compare with COMSOL
simulation using second and third order elements. The CONCEPTs
simulation achieves better results with much less consumption of
number of DOFs. It should also be noted that the COMSOL
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simulations using third order elements are more efficient than that
using second order elements. The comparisons show that for the FEM
simulation of the plasmonic scattering problem in layered media, high
order elements are more efficient, and therefore should be applied.

The solution is primarily smooth inside the physical domain,
but exponentially decaying in the PML domain. Therefore, hp-
refinement is applied to enhance the computational efficiency. In
this paper, we apply non-uniform polynomial orders, and an adaptive
mesh refinement towards the PML interface. We have performed
intensive simulations by varying the polynomial degrees and level of
mesh refinement to study their influence. We observe that the error
decays exponentially by increasing the polynomial degrees inside the
PML domain or by refining the mesh inside the PML domain towards
the PML interface. Moreover, the adaptive mesh refinement is more
efficient than increasing the polynomial degrees.

We also learn that there is a saturation level of error, if one only
applies mesh refinement or raises polynomial degrees inside the PML.
When the saturation level is reached, one can only reduce it further
by increasing the polynomial degrees in the physical domain. This
phenomenon shows that the saturation level is decided by pint, which
corresponds to the modeling error inside the physical domain. The
solution is exponential decaying inside the PML domain, therefore
adaptive mesh refinement gives better convergence in general. Based
on the analysis, an hp strategy is developed. The strategy can converge
to very high accuracy within very few steps and with a small additional
cost of DOFs. We are sure that this strategy can also be applied to
more general problems involving PML.
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finite element realization of the perfectly matched layer method
for Helmholtz scattering problems on polygonal domains in two
dimensions,” Journal of Computational and Applied Mathematics,
Vol. 188, No. 1, 12–32, 2006.

25. Chen, Z. and H. Wu, “An adaptive finite element method with
perfectly matched absorbing layers for the wave scattering by
periodic structures,” SIAM J. Numer. Anal., Vol. 41, No. 3, 799–
826, 2003.

26. Bao, G., Z. Chen, and H. Wu, “Adaptive finite-element method
for diffraction gratings,” JOSA A, Vol. 22, No. 6, 1106–1114, 2005.

27. Michler, C., L. Demkowicz, J. Kurtz, and D. Pardo, “Improving
the performance of perfectly matched layers by means of hp-
adaptivity,” Numerical Methods for Partial Differential Equations,



542 Wang et al.

Vol. 23, No. 4, 832–858, 2007.
28. Zschiedrich, L., “Transparent boundary conditions for Maxwell’s

equations,” Ph.D. Thesis, FU Berlin, Berlin, Germany, Nov. 2009.
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