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Lightning Responses on a Finite Cylindrical Enclosure

Kenneth C. Chen1, *, Larry K. Warne1, and Kelvin S. H. Lee2

Abstract—The voltage on a single-turn loop inside an enclosure characterizes the enclosure shielding
effectiveness against a lightning insult. In this paper, the maximum induced voltage on a single-turn
loop inside an enclosure from lightning coupling to a metal enclosure wall is expressed in terms of two
multiplicative factors: (A) the normalized enclosure wall peak penetration ratio (i.e., ratio of the peak
interior electric field multiplied by the sheet conductance to the exterior magnetic field) and (B) the
DC voltage on an ideal optimum coupling loop assuming the ideal penetration ratio of one. As a result
of the decomposition, the variation of the peak penetration ratio (A) for different coupling mechanisms
is found to be small; the difference in the maximum voltage hence arises from the DC voltage on the
optimum coupling loop (B). Maximum voltages on an optimum coupling loop inside a finite cylinder
enclosure for direct attachment and a lightning line source at different distances from the enclosure are
given in Table 3.

1. INTRODUCTION

Lightning coupling to the enclosure interior can occur in three distinct ways: (1) lightning can attach to
the enclosure, and the resulting lightning current flowing in the enclosure wall can cause voltage inside
the enclosure wall (an attachment); (2) lightning can strike a conductor close to the enclosure (but not
the enclosure), and the resulting magnetic flux can induce a voltage inside the enclosure (the distance
from the line source to the enclosure can vary theoretically from 0 (closest induction coupling) to some
distance (close coupling)); (3) lightning can strike further away from the enclosure (uniform field-drive
induction). A finite cylindrical enclosure geometry with end caps is considered a canonical enclosure for
aeronautical systems. Reference [1] solves such a canonical problem for a lightning attachment, and [2]
solves the general case for the lightning induction coupling by simplifying the enclosure to an infinite flat
enclosure wall and provides useful results for the closest induction coupling. References [3, 4] provide a
simple fit function for obtaining the decaying exponential peak responses from two limiting cases (the
unit step and impulse peaks) for the closest induction coupling and for a uniform field drive coupling.
This paper provides voltage bounds for all these couplings.

The lightning current along the axial direction of the cylinder is considered. In all these couplings,
mathematical expressions for the solution of the induced voltages are complicated and not intuitive.
However, the maximum voltage on an optimum coupling loop interior to the enclosure can be expressed
in terms of two multiplicative factors discussed in the abstract. The benefits of such decomposition
are simplicity of the physical interpretation, easy generalization of the result to other coupling
configurations, and results free from algebraic errors.

There is a major conceptual difference in the interior voltage for the attachment and induction case.
Consider the unit step current that is attached to the enclosure wall. The late-time voltage corresponds
to the DC voltage that reflects the effective enclosure resistance driven by the unit step current. For
induction, the late-time voltage for a unit step current always decays to zero. We shall artificially derive
a DC voltage that corresponds to the concentrated distribution of current in the conductor that exists
at the time of peak voltage (The detailed explanation is given in Appendix A).
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We study the decomposition in three steps: First, we discuss how the induced voltage for the
attachment case [1] is decomposed into two multiplicative factors. Second, we investigate the simplified
flat enclosure wall coupling to a lightning line source at an arbitrary distance from the enclosure.
Third, the transition from the line source induction coupling to a uniform field drive induction coupling
is addressed.

Application to enclosures other than a metal wall is discussed. Enclosures with graphite composite
are shown to provide considerably less shielding than enclosures with a metal wall.

2. PLANAR FIELD DIFFUSION

One-dimensional magnetic diffusion through a planar slab (with permeability µ and conductivity σ) of
thickness ∆ is illustrated in Figure 1, and the explicit solution relating the incident decaying magnetic
field H = Hx(0)e−αtu(t) to penetrant field Ez(∆, t) has been solved in Reference [1]. It is given as
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Here the diffusion time τd = ∆2µσ. Although (1) consists of an infinite series, the sum represents
multiplicative factor A as discussed in the Abstract for specific coupling geometries such as direct
attachment and distant coupling. For a unit step (α → 0), (1) becomes
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An asymptotic form of (2) for early time is
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which is twice the half-space solution (derived in (B16) for close induction) and more convenient for
numerical evaluation of early time.
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Figure 1. Flat enclosure wall.
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Figure 2. A symmetrical lightning strike applied
to the center of both end caps of a finite cylindrical
enclosure.



Progress In Electromagnetics Research B, Vol. 58, 2014 21

For an impulse (α →∞),[
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which can be obtained by taking the time derivative of (2).

3. INDUCED VOLTAGE FOR END-TO-END LIGHTNING ATTACHMENT ON A
CYLINDRICAL CAN

The interior enclosure wall voltage from the top end cap center to the bottom end cap center caused
by a lightning current attached to an enclosure shown in Figure 2 is determined in [1] to be

V ≈ I
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where [σ∆Ez
Hx

]epl given by (1) has been discussed in the previous section and γ ≈ 0.5772. Note that
in (5), the logarithmic term contributes from the voltage caused by lightning entering and exiting end
caps and b

a from the lightning current flowing axially on the cylindrical surface.
The induced voltage along the center dashed line in Figure 2 from the magnetic flux of the enclosure

lightning current is zero because there is no flux penetration. The right hand side of (1) consists of two
multiplicative factors: (A) [σ∆Ez

Hx
]epl or (1) that can be interpreted as the planar penetration ratio of

the interior electric field to the exterior magnetic field multiplied by the sheet conductance. (B) the
second multiplicative factor is the DC voltage coupled to an optimum coupling loop.

Note that the only time dependent function is the penetration ratio. Now if we are only interested
in the peak in (1), we can approximate the peak as a function of ατd by a fit function given next. Peaks
of (1) as a function of ατd (peak penetration ratio) are plotted against a fit function based on peaks of
unit step and impulse responses, (2) and (4), in Figure 3.

Previously in [3, 4], an approximate technique for calculating peak exponential response from the
unit step and impulse peaks for magnetic field and line source coupling has been introduced. Treating
the unit step and impulse components as independent because the unit step peak contributes to the low
frequencies and the impulse peak to high frequencies, a parallel “combination” of unit step coupling
and the impulse coupling for the attachment case gives
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Figure 3. Peak voltage bound for planar
penetration.
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Figure 4. Direct lightning strike to an insulated
cable parallel to (and adjacent to) the enclosure
wall and a maximum coupling loop.
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which is shown as “approximation” in Figure 3 and where P de
p , P s

p and P i
p are the uniform field drive

peak penetration ratio for a decaying exponential (1), a unit step (2), and an impulse (4), respectively.
Note that the superscripts “de”, “s” and “i” denote decaying exponential, step and impulse,

respectively; the subscript “p” denotes the planar or uniform field drive.
For a single-loop voltage bound, the worst-case coupling can be approached (the distance between

the line source and the flat plate is theoretically assumed to be zero) when lightning strikes a well-
insulated cable that is isolated from the enclosure, but their separation is sufficient to withstand the
high potential. For the worst-case coupling, the cable that is struck by lightning is shown in Figure 4.

Defining peak penetration ratios as in (6), the peak voltage as shown in Figure 4 can be expressed
as [3, 4]
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where P de
c , P s

c and P i
c are the peak penetration ratios for the closest induction case. Peak penetration

ratios normalized by π are plotted in Figure 5 for a decaying exponential, a unit step and an impulse,
respectively. Note that the superscripts “de”, “s” and “i” denote decaying exponential, step and impulse,
respectively; the subscript “c” denotes the closest induction.

Finally, the artificial DC voltage (the decomposition factor (B))† on an optimum coupling loop
I

σ∆( b
π∆) assuming the penetration ratio is one.
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Figure 5. Peak voltage bound for direct strikes.
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Figure 6. Direct lightning strike to an insulated
cable parallel to and d distance away from the
enclosure wall.

4. LINE SOURCE AT A DISTANCE

We observe that the planar peak penetration ratio for lightning attachment and the closest line source
induction peak penetration ratio as shown in Figure 3 and Figure 5 (Pc is normalized by π) are not
far apart numerically. The planar penetration should be applicable to the case where d À ∆. In
the attachment case, the voltage appears on the enclosure wall interior, while the line source induces a
voltage on an optimum coupling loop or equivalently on the enclosure wall interior (This is the maximum
voltage that can arc to an insulated wire adjacent to the enclosure wall.)

As shown in Figure 6, the optimum coupling voltage from a line source in the z-direction at a
distance d from the flat enclosure wall can be expressed as

V ≈ 1
σ∆

[
∆σEz

Hx

]⌉

pl

I2b

2πd
≈ I

σ∆

[
∆σEz

Hx

]⌉

pl

b

πd
(8)

† This voltage appears on a uniform enclosure wall conductor of length b and cross-section area π∆2.
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In the middle expression of (8), the incident magnetic field is I
2πd at the enclosure exterior surface, and

a factor of 2 in the numerator is due to the image. The ideal coupling factor for very close induction
is now b

πd . A uniformly valid coupling coefficient for the induction case can be taken as b
π(d+∆) , which

avoids the singularity as d → 0 and gives the right limiting value. Therefore, (8) is modified to

V ≈ I
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]⌉
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b

π (d + ∆)
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Note that we use the planar penetration ratio derived from the attachment case. In the induction case,
as t →∞, V → 0. This will be rigorously derived in Appendices A and B. Specifically, the exact residue
series for the penetration ratio for a unit step drive is derived in (A17), and the early-time expansion
that shows V → 0 as t →∞ is given in (B16). Since only the peak fit function is used in applications,
the waveform issue is not important.

5. ENCLOSURE MAGNETIC FIELD PENETRATIONS

When lightning return stroke location is far away from the enclosure, the nearby lightning magnetic
field is used as the incident field excitation. The maximum induced voltage on an optimum coupling
loop can be expressed in terms of the two multiplicative factors. We proceed to derive these two factors
for this case. The peak time derivative of the magnetic field inside the enclosure is (Figure 7)
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where the factor pde
f that was calculated in [4] is now defined as the enclosure penetration for a uniform

field drive. The subscript “f” denotes the field drive. For a non-magnetic enclosure case and a circular
cylinder, ξ ≈ a

2∆ .
We will show that for the peak induced voltage on an optimum coupling loop,

V = µ0Peak
dHe

in

dt
2ab (11)

can be expressed in terms of these two multiplicative factors.

6. TRANSITION FROM A LINE SOURCE TO A UNIFORM MAGNETIC FIELD
DRIVE

The idealized flat enclosure wall coupling configuration discussed (Figure 6) is accurate when the
distance between the lightning current and the enclosure wall (d) is small compared to the enclosure
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Figure 7. Penetration ratios for a field drive.
Note that HDOT = dH/dt.

 

Figure 8. Magnetic flux from a line source
pointing out of the paper is shown as red arrows
penetrating the enclosure wall.
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a 

Figure 9. Magnetic flux from a uniform field
drive is shown as red arrows penetrating the
enclosure wall.

a
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θ

Figure 10. A approximate transition between
the line source model and the uniform drive model
is d =

√
2a.

dimension. The magnetic flux coupling from the line source to a flat enclosure wall model is shown (on
the right of Figure 8) and to the enclosure (in the middle of Figure 8). The magnetic flux coupling from
a uniform field drive to a cylindrical enclosure is shown in Figure 9. The line source model does not
include the enclosure late-time decay feature described by the inductance and resistance of the enclosure
equivalent circuit as discussed in [4–7], and therefore the peak voltage on an optimum coupling loop for
a slender cylindrical enclosure is a factor of two lower. The transverse magnetic field coupling to the
cylinder is treated because it optimizes the voltage coupling.

For large d, the magnetic flux shown in Figure 9 should be used to drive the enclosure, and the
more accurate voltage is thus attained from a uniform field drive model.

The uniform field drive assumes that the magnetic field is uniform (i.e., d À a, where a is the
enclosure dimension shown in Figure 9); the line source flat enclosure wall model is applicable to d ¿ a.
The difference in the voltage calculated for the example of a finite cylindrical enclosure geometry using
the line source flat enclosure model is off by less than a factor of 2 for d → ∞. A possible dividing
line is illustrated in Figure 10: use the flat wall model for d ≤ √

2a and use the uniform field drive for
d >

√
2a. At d =

√
2a, the component of the magnetic field perpendicular to the enclosure is assumed to

be a uniform drive of the enclosure that gives the same DC voltage factor (A) on an optimum coupling
loop as the line source. The penetration ratio for the line flat enclosure model can differ from that for
a uniform field drive model by 10% (Table 1).

The magnetic field component normal to a cylindrical enclosure in Figure 10 is given by

Hext =
I

2π

d + a

(d + a)2 + a2
(12)

and thus the peak induced voltage is

V =
I

σ∆
2b (d + a)

π
[
(d + a)2 + a2

]pde
f , (13)

which is decomposed into two factors: the penetration ratio pde
f and the remaining multiplicative factor

on the right hand side of (13) (the DC voltage). In concluding this discussion, the voltage bound for
0 ≤ d ≤ √

2a is described by (9) and the voltage bound for
√

2a < d is described by (13).

7. NUMERICAL COMPARISONS

The planar penetration ratio is based on penetration through one flat enclosure plate; the field drive
enclosure penetration ratio is based on penetration through one enclosure plate with the presence of
another flat plate at an enclosure dimension distance [5]. Their numerical values are not very far apart.
Apart from the application of a planar penetration ratio to the attachment case, the penetration ratio
for coupling from an adjacent closest line source, to a line source at a distance, and finally to a uniform
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Table 1. Comparison of actual voltage peaks (penetration ratios) and their approximations for closest
line source, planar line source far field), and uniform field drive (enclosure penetration) diffusions.
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0.05 0.797 0.7983 (0.16%) 0.9732  0.9916 (1.89%) 0.873 0.8808 (0.89%)

0.066 0.7955 0.797 (0.19%)  0.9666  0.9889 (2.31%) 0.8688 0.8786 (1.13%)

0.1 0.7923 0.7948 (0.32%) 0.9536  0.9834 (3.13%) 0.8602 0.874 (1.6%) 

0.2 0.7829 0.7879 (0.64%) 0.922  0.9673 (4.91%) 0.8371 0.8608 (2.83%)

0.33 0.7713 0.7791 (1%) 0.8876  0.94729 (6.71%)
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20 0.2956 0.2915 (−1.4%) 0.2257  0.2285 (1.24%) 0.2157 0.2161 (−0.064%)

30 0.229 0.2212 (−3.41) 0.1673  0.1649 (−1.43%) 0.1603 0.1568 (−2.18%)
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field drive can cover the whole range of transition from near field to far field. Table 1 documents
numerical penetration ratio peaks for closest line coupling (after normalization by 1/π), for the planar
case (applicable to the intermediate distance and the enclosure lightning attachment), and for a uniform
field drive as a function of decaying exponential parameter ατd.

Table 1 also provides the comparison between the approximate fit functions and the actual peaks
previously shown in Figure 3, Figure 5 and Figure 7. The percentage deviation of the approximation
from the actual numerical value is given in parenthesis in the entries for approximate ratios. Because
of the assumption that the unit step peak contributes independently of the impulse peak the maximal
deviation occurs near ατd ∼ 3.3. Notice the difference between the planar penetration ratio and the
enclosure penetration ratio for a uniform field drive is approximately 10% for the thin enclosure thickness
limit and negligible for the thick enclosure limit. The planar penetration ratio is approximately 24.7%
greater than the closest induction penetration ratio for a unit step excitation (ατd = 0), while the planar
penetration ratio is approximately 35% less than the closest induction penetration ratio for an impulse
excitation (ατd = ∞) (Figure 3 and Figure 5). The crossover point appears to be (ατd ≈ 2) (Table 1).

Time-domain voltage waveforms for the closest induction penetration and the planar penetration
were given in [1, 4], respectively. Time-derivative waveforms of the magnetic field inside an enclosure
(which are identical to the voltage waveforms) are also discussed in [4]. The peak voltage for the impulse
closest induction penetration occurs approximately at t = 0.069τd; both peak voltages for the impulse
planar penetration [1] and the enclosure penetration [4] occur approximately at t = 0.09τd. We can
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assume the time for the flat plate penetration peak increases from t = 0.069τd to t = 0.09τd as d varies
from 0 to

√
2a. As discussed before, for the unit step case, the peak for the attachment case occurs

t → ∞. For the unit step closest induction penetration, the peak occurs at t = 0.215τd. For the unit
step enclosure uniform field penetration, the peak of the time-derivative of the magnetic field [4] (or
its penetration function) occurs approximately at t ≈ 0.5τd. We surmise that the time corresponding
to the peak occurrence of the unit step induction coupling for the flat plate penetration should also
increase from t = 0.215τd to t ≈ 0.5τd as d varies from 0 to

√
2a

From extensive numerical calculations given in [4], the impulse peak penetration time can be
used to approximate the peak penetration time for exponential decay excitation waveforms with ατd

approximately given by the intersection (Figure 5 and Figure 7) of the unit step penetration ratio and
the impulse penetration ratio. The unit step peak penetration time can be used when ατd is small.

Table 2 gives an equivalent DC voltage induced on an optimum coupling loop normalized by I
σ∆

(the ideal coupling coefficient) for the specific lightning attachment to the enclosure geometry shown in
Figure 2 and that for the lightning striking on an adjacent insulated cable as shown in Figure 4. The
ideal coupling coefficient for close induction is b

π(d+∆) rather than b
π∆ for the closest induction case.

As a numerical example, when lightning strikes a cable at a distance of approximately 10.16 in from
the closest enclosure wall and the enclosure is 6 ft in length, 2 ft in diameter and 1/2 in the enclosure
thickness, the maximum voltages received by a single-turn optimum coupling loop are approximately
the same as those for the attachment case.

Table 2. Ideal coupling factors (optimum coupling loop DC voltage normalized by 1
σ∆) for lightning

attachment versus lightning induction.

A Cylindrical Enclosure Dimension Ideal Coupling Factor

Length
(b in)

Thickness
(∆ in)

Radius
(a in)

Attachment to the
Center both End Caps

1
2π

(
2 ln

(
a

∆e−γ

)
+ b

a

)
Closest Induction

b/ (π∆)

72

1/2
6 2.885

45.83712 2.15
18 1.961

1/8
6 3.326

183.34712 2.592
18 2.402

8. MAXIMUM COUPLING VOLTAGES FOR TYPICAL ENCLOSURES

A useful enclosure example of aerospace systems is a cylindrical 6061 aluminum alloy enclosure (with
end caps) of 6 ft in length, with possible radii of 6 in, 12 in and 18 in, and an enclosure thickness of 1/2 in
or 1/8 in. (Table 2). The decomposition allows us to determine the maximum voltage on an optimum
coupling loop for a worst-case direct strike, for the closest magnetic coupling from a line source insulated
from the enclosure, and for a line source at any distance from the enclosure. In order to maximize the
voltage coupling, the line source is assumed to be parallel to the cylindrical axis of the enclosure. As a
worst-case calculation, the lightning peak return stroke of 200 kA is used. The other relevant parameter
is the decay constant α of the return stroke, where we use the 1% charge transfer of the return stroke
of 40 C [4] to give α = 3466 s−1.

The approximate fit functions for penetration ratios are adequate for most applications. We can
obtain more accurate penetration ratios by using Table 1. The conductivity for a 6061 aluminum alloy
enclosure case is σ = 2.6 × 107 S/m so that, for a 1/2 in thickness, ατd ≈ 18.37. The corresponding
ατd is approximately 1.142 for an enclosure thickness of 1/8 in. The approximate planar penetration
ratio for ατd = 18.37 is 0.2436 and for ατd = 1.142 is 0.8383. Using the difference between the
numerical and approximate planar penetration for ατd = 20 and ατd = 1 for correction, the more
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accurate planar penetration ratios are 0.2408 for ατd = 18.37 and 0.7214 for ατd = 1, respectively.
The approximate uniform field drive penetration ratios are 0.2303 for ατd = 18.37 and 0.7538 for
ατd = 1.142, respectively. After following a similar correction procedure, the more accurate uniform
field drive penetration functions are 0.2299 for ατd = 18.37 and 0.6967 for ατd = 1.142, respectively.

Notice the difference between the planar penetration ratio and the uniform field drive penetration
ratio for the same ατd is less than 10%. Assuming a 1% lightning peak current of I = 2 × 105 A, the
normalizing sheet factors (voltage) are I

σ∆ = 0.6057V for ∆ ≈ 1/2 in and I
σ∆ = 2.423 V for ∆ ≈ 1/8 in,

respectively. For d ≥ √
2a, a magnetic field drive coupling model is used to calculate the peak maximum

coupling voltage (10).
The results can now be summarized in Table 3. The maximum voltages on a gap of the center wire

of a finite cylinder are less than 0.5 V for a 1/2-in enclosure thickness and are approximately less than
6V for a 1/8-in enclosure thickness, respectively, for lightning attaching to the center of the end caps.
Moving on to the next column, we can verify easily (by setting d = 0 in the formula) that the closest
coupling maximum voltages are approximately 8.57 V for the 1/2-in case and 324 V for the 1/8-in case,
respectively [4]. The linear extrapolation function given in the footnote and the formulas in the relevant
entries of Table 3 allow an estimate of maximum voltages from a line source adjacent to the enclosure
to a line source up to a distance d =

√
2a. For d ≥ √

2a, formulas including field drive penetration
ratios are used to cover the remaining range. The slight discontinuity of 10% is introduced because of
the difference in the planar penetration ratio versus the field drive penetration ratio at d =

√
2a.

Table 3. Maximum voltages for different coupling configurations.

Cylindrical Enclosure

Dimension ( in)

Maximum Voltage on an

Optimum Coupling Loop (V)

Length

(b)

Thickness

(∆)

Radius

(a)

Attachment to the

Center of both End Caps

Line Source (d + a) from

the axis of the cylinder

(d and a in meters);

d and a are defined in Figure 10

d ≤ √
2a d ≥ √

2a

72

1/2

6 0.4024
0.3528pde∗

1.27× 10−2 + d

0.7056pde
f (d + a)

(d + a)2 + a2
12 0.3

18 0.274

1/8

6 6.075
1.41pde∗

3.2× 10−3 + d

2.82pde
f (d + a)

(d + a)2 + a2
12 4.734

18 4.387

*pde(d) = [P de
c (
√

2a− d) + P de
p d]/(

√
2a)

9. GRAPHITE COMPOSITE PANEL

Graphite composite materials have been used for aircraft and other aeronautical systems. The low
conductivity value of the graphite composite causes a significant reduction in shielding effectiveness. A
typical graphite composite panel has a thickness on the order of 3 mm (1/8 in) and the conductivity
of the composite along the panel is typically 1 × 104 S/m. The penetration ratios obtained from the
metallic layer are applicable to this case. The peak voltage inside the enclosure is inversely proportional
to the conductivity of the enclosure case and the peak voltage of a composite enclosure is thus more
than three orders of magnitude greater than that for an aluminum enclosure of identical dimensions.

Assuming a thickness of 3 mm of composite panel, the diffusion time is τd = 0.113µs. The aluminum
conductivity is 3.5 × 107 S/m, and an aluminum foil of 2mils thickness has the same diffusion time.
Note that the only major difference in the multiplicative factors for the voltage induced on an optimum
coupling loop (B) is the scaling factor (the DC square sheet Factor). The composite has a DC square
sheet resistance of 1

σ∆ ≈ 33mΩ; the aluminum foil has a DC square sheet resistance of 0.56mΩ.
Therefore, aluminum foils provide considerably more shielding than a much thicker composite panel.
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10. CONCLUSIONS

Interior voltage bounds on a single-turn optimum coupling loop inside a metallic enclosure for various
coupling configurations are expressed in terms of two multiplicative factors: (A) the penetration ratio
of interior electric field to the exterior magnetic field multiplied by the sheet conductance and (B) the
DC voltage that is coupled to the optimum coupling loop when the penetration ratio is one. The
lightning coupling configurations include (1) direct attachment and (2) a lightning strike on an insulated
cable immediately adjacent to the enclosure; (3) a lightning strike at any distance from the enclosure.
Although the methodology is applicable to enclosures of a general shape, we limit the numerical example
to a representative aerospace enclosure of a finite cylinder with end caps.

The line source coupling to a flat enclosure wall is used as a canonical problem for describing very
close coupling and used to describe the transition to a uniform field drive enclosure model.Therefore
coupling configuration (3) is subdivided into (a) a close-in coupling model and (b) a uniform field drive
model.

The voltage bound for an optimum coupling loop is calculated for all these coupling configurations
so that it is possible to determine the necessary enclosure thickness and material conductivity to mitigate
the lightning diffusion insult.

APPENDIX A. RIGOROUS TREATMENT OF LINE SOURCE AT DISTANCE FROM
THE ENCLOSURE

For a direct-strike coupling, the maximum internal fields and pin-level voltages are induced when the
lightning channel is inclined at an acute angle with respect to the enclosure wall or for a direct strike
to an insulated conductor that is parallel and at a distance d close to the outer surface of the wall
(Figure 6).

Consider the problem of calculating the transverse magnetic fields on the opposite side of an
electrically thick wall (of thickness ∆) due to a parallel current filament with time dependence
i(t) = Ie−αtu(t). According to Reference [2], the exact magnetic vector potential in the transformed
domain is

Atot
z =

µ0I

2π

∫ ∞

0

(ξ/ν) eζ(∆
2

+y−d) cos (ζx)
[ζ cosh (ξ∆/2) + (ξ/ν) sinh (ξ∆/2)] [ζ sinh (ξ∆/2) + (ξ/ν) cosh (ξ∆/2)]

1
(s + α)

dζ (A1)

where ν = µ/µ0 and ξ =
√

ζ2 − iωµσ =
√

ζ2 + sµσ.
The early-time integral used for obtaining results given in Figure 5 is not used here because we

are interested in deriving the penetration ratio valid for any value of d. Note that solution (2) valid for
d →∞ already exists in residue series. The early-time integral is discussed in Appendix B.

The voltage induced on an optimum coupling loop is given by [2]

V = b
d

dt

1
2πi

∫ r+i∞

r−i∞
Atot

z

∣∣x=0,y=∞
x=0,y=−∆/2

estds = b
d

dt

1
2πi

∫ r+i∞

r−i∞

µ0I

2π

∫ ∞

0

(ξ/ν)e−ζdest

(s + α) [ζ cosh(ξ∆/2) + (ξ/ν) sinh(ξ∆/2)] [ζ sinh(ξ∆/2) + (ξ/ν) cosh(ξ∆/2)]
dζds (A2)

First, the total voltage is the sum of the contribution from the source pole, Vα, and that from the
remaining poles, Vr

V = Vα + Vr (A3)
The exact residue expansion for the induced voltage on an optimum coupling loop for d = 0 is given
in [2]. For d 6= 0, the corresponding voltage is contributed to (A3) from the source pole s = −α and
the poles given by

qn tan (qn − nπ/2) = η =
1
2
νζ∆,

nπ

2
< qn <

(n + 1)π

2
(A4)

ξn = i2qn/∆ (A5)

−iωn = sn = − 4
τd

(
q2
n + ζ2∆2/4

)
(A6)
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The contribution from the source pole is

Vα = −αb
µ0I

2π

ν∆
2

e−αt

[∫ √
ατd
∆

0

qαe−ζd

[η cos (qα)− qα sin (qα)] [η sin (qα) + (qα) cos (qα)]
dζ

+
∫ ∞
√

ατd
∆

qαe−ζd

[η cosh (qα) + qα sinh (qα)] [η sinh (qα) + (qα) cosh (qα)]
dζ

]
(A7)

with

qα =
1
2

√
ατd − ζ2∆2 and qα = iqα (A8)

The remaining voltage contribution from poles given in (A4) is

Vr =
∑∞

n=0
(−1)n b

d

dt

[
4µ0I

πτd

∫ (n+1)π/2

nπ/2

e−ζdesnt

(sn + α)
qndqn

]
(A9)

or

Vr =
∑∞

n=0
(−1)n b

d

dt




4µ0I

π

∫ (n+1)π/2

nπ/2

e−
d
∆

2qn
ν

tan(qn−nπ/2)e
− 4t

τd
q2
n

[
1+ 1

ν2 tan(qn−nπ/2)
]

{
−4q2

n

[
1 +

1
ν2

tan (qn − nπ/2)
]

+ ατd

} qndqn
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In the limiting case for α → 0, (A7) does not contribute to the voltage, thus the total voltage for this
case is

V =
I

∆σ

b

∆

∑∞
n=0

(−1)n

[
4
πν

∫ (n+1)π/2

nπ/2
e−

d
∆

2qn
ν

tan(qn−nπ/2)e
− 4t

τd
q2
n

[
1+ 1

ν2 tan(qn−nπ/2)
]
qndqn

]
(A11)

The limiting case for α →∞ is

V (ατd) =
∞∑

n=0

(−1)n b
d

dt

[
4µ0I

π

∫ (n+1)π/2

nπ/2
e−

d
∆

2qn
ν

tan(qn−nπ/2)e
− 4t

τd
q2
n

[
1+ 1

ν2 tan(qn−nπ/2)
]
qndqn

]
(A12)

A.1. Voltage on an Optimum Coupling Loop for d→∞
For convenience, we evaluate (A2) asymptotically for d → ∞ (resulting in the penetration ratio for
α = 0 approaches 1 as t → ∞), and therefore the result is not valid for α = 0 and d/∆ ¿ 4t

τd
→ ∞.

As can be seen from (A11), V → 0 as t → ∞. For d 6= 0 case, the V (t) waveform is not very different
from that for d = 0 [2]. We can use the asymptotic series for the higher order terms and obtain the
correction to the leading term and obtain the induced voltage as a function of time. However, because
the peak of the induced voltage occurs early in time, typically 4t

τd
< 1 and, at that time, the leading

term of the asymptotic expansion for α = 0 already approaches the value (A17) for t →∞. Thus, the
peak penetration ratio obtained from the leading term of the expansion is sufficiently accurate.

We seek an asymptotic expansion for (A2) as follows: (1) An integration by parts is used in the
ζ-integration with dU = e−ζddζ and W as the remaining multiplicative factor in (A2). (2) The resulting
leading term of the expansion (ζ = 0 and ξ =

√
sµσ) for d →∞ is

V ∼ UW |∞0 =
I

∆
b

d

1
π

1
2πi

∫ r+i∞

r−i∞

√
sµσ∆est

(s + α) sinh
(√

sµσ∆
)ds =

I

∆
b

πd

[
σ∆Ez

Hx

]⌉

pl

(A13)

where (2) is used to replace the inverse Laplace transform by the penetration ratio.
The peak induced voltage of (A13) or (7) can thus be expressed in terms of the two multiplicative

factors first discussed in the abstract.
Next, how the source pole contribution and the remaining pole contribution behave as d → ∞ is

discussed.
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First, integrating (A7) by parts gives

Vα ∼ I

∆σ

b

πd
e−αt

√
ατd

sin
√

ατd
(A14)

Similarly, the asymptotic limit (d/∆ → ∞) for the unit step case (α → 0), (A11) can be obtained by
integrating by parts as follows:

Let

dU =
2
ν

[
tan (qn − nπ/2) + qnsec2 (qn − nπ/2)

]
e
− d

∆
2qn

ν
tan(qn−nπ/2)

dqn (A15)

and

W =
e
− 4t

τd
q2
n

[
1+ 1

ν2 tan(qn−nπ/2)
]
qn

2
ν

[
tan (qn − nπ/2) + qnsec2 (qn − nπ/2)

] (A16)

Then

V =
∞∑

n=0

(−1)n 4bµ0I

πτd

∫ (n+1)π
2

nπ
2

e−
d
∆

2qn
ν

tan(qn−nπ
2 )e−

4t
τd

q2
n

[
1+ 1

ν2 tan(qn−nπ
2 )

]
qndqn

∼
∑∞

n=0
(−1)n 4bµ0I

πτd
UW

∣∣∣∣
(n+1)π

2

nπ
2

∼ I

σ∆
b

πd

∑∞
n=0

(−1)n (2− δn0)e
− 4t

τd
(nπ

2 )2

(A17)

where δn0 is Kronecker delta (δ00 = 1, δn0 = 0 for n 6= 0). Equation (A17) agrees with (8) and (2).
The contribution from the remaining poles (A10) for α 6= 0 can also be evaluated as

Vr =
∑∞

n=0
(−1)n b

d

dt




4µ0I

π

∫ (n+1)π/2

nπ/2

e−
d
∆

2qn
ν

tan(qn−nπ/2)e
− 4t

τd
q2
n

[
1+ 1

ν2 tan(qn−nπ/2)
]

{
−4q2

n

[
1 +

1
ν2

tan (qn − nπ/2)
]

+ ατd

} qndqn


 (A18)

Vr =
∑∞

n=0
(−1)n 4bµ0I

π

d

dt

∫ (n+1)π
2

nπ
2

e−
d
∆

2qn
ν

tan(qn−nπ
2 )e−

4t
τd

q2
n

[
1+ 1

ν2 tan(qn−nπ
2 )

]

{
−4q2

n

[
1 +

1
ν2

tan
(
qn − nπ

2

)]
+ ατd

} qndqn

=
d

dt

∞∑

n=0

(−1)n 2bµ0I

π
(2− δn0)

UW{
−4q2

n

[
1 +

1
ν2

tan
(
qn − nπ

2

)]
+ ατd

}

∣∣∣∣∣∣∣∣

(n+1)π
2

nπ
2

(A19)

Vr ∼ I

σ∆
b

πd

∑∞
n=1

(−1)n (2− δn0)
(nπ)2 e

− 4t
τd

(nπ
2 )2

(nπ)2 − ατd

(A20)

Equation (A20) with (A14) and (A20) agrees with (7) and (2).

APPENDIX B. VOLTAGE ON AN OPTIMUM COUPLING LOOP USING AN
EARLY-TIME INTEGRAL

The magnetic vector potential can be simplified as [2, 4]

Atot
z ∼ 2µ0I

π

∞∫

1

(
β2/ν

)
(√

β2 − 1 + β/ν
)2 √

β2 − 1

1
2πi

∫ r+i∞

r−i∞

est−Fd(β)
√

sτd

S + α
dsdβ (B1)
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where ν = µ
µ0

and Fd(β) = β + (ρ+d
∆ − 1)

√
β2 − 1.

Equation (B1) is obtained from (A1) by first taking cosh ξ∆ ∼ sinh ξ∆ ∼ eξ∆/2 and x = 0
(Figure 4) and then taking the inverse Laplace transform.

For a unit step α → 0 [8]

Atot
z ∼ 2µ0I

πα

∞∫

1

(
β2/ν

)
(√

β2 − 1 + β/ν
)2 √

β2 − 1
erfc

[
Fd(β)

√
τd

2
√

t

]
dβ (B2)

Referring to [2], the magnetic flux passing through the loop in the ϕ-direction (that is normal to the
loop) shown in [4] is calculated below using ~B = ∇× ~A in a cylindrical coordinate:

Bϕ = −∂Atot
z

∂ρ
; φ > −b

∫ ∞

∆

∂Atot
z

∂ρ
dρ = b Atot

z

∣∣
ρ=∆

We can define V as the voltage bound [2] for decaying exponential as

V =
∂φ

∂t
= µ0bI

∫ ∞

1

β2/ν(√
β2 − 1 + β/ν

)2 √
β2 − 1

1
2πi

∫ r+i∞

r−i∞

sest−G(β)
√

sτd

s + α
dsdβ (B3)

G (β) = β +
d

∆

√
β2 − 1 (B4)

V τd

µ0Ib
∼ 2

π





∫ ∞

1

(
β2/ν

)
G(β)

(√
β2 − 1 + β/ν

)2 √
β2 − 1

e−[G(β)]2
τd
4t

2
√

π (t/τd)
3
dβ

−
∫ ∞

1

ατdβ
2/ν(√

β2 − 1 + β/ν
)2 √

β2 − 1
e−

[G(β)]2τd
4t Re

[
w

(√
αt +

i [G(β)]
2
√

t/τd

)]
dβ





(B5)

or

V τd

µ0Ib
∼ 2

π
τd

d

dt

∫ ∞

1

β2/ν(√
β2 − 1 + β/ν

)2 √
β2 − 1

e−
[G(β)]2τd

4t Re

[
w

(√
αt +

i [G(β)]
2
√

t/τd

)]
dβ (B6)

For ατd → 0 (the unit step limit),

V τd

µ0Ib
=

2
π

∫ ∞

1

(
β2/ν

)
G(β)

(√
β2 − 1 + β/ν

)2 √
β2 − 1

e−[G(β)]2
τd
4t

2
√

π (t/τd)
3
dβ (B7)

For ατd →∞ (the impulse limit)

V (ατd)
µ0Ib

=
2
π

∫ ∞

1

τdβ
2/ν(√

β2 − 1 + β/ν
)2 √

β2 − 1

1
2πi

∫ r+i∞

r−i∞
sest−G(β)

√
sτddsdβ,

which can be reduced to

V τd (ατd)
µ0Ib

=
2
π

∫ ∞

1

β2

ν [G(β)](√
β2 − 1 + β/ν

)2 √
β2 − 1

τd
d

dt





e−[G(β)]2τd/(4t)

2
√

π (t/τd)
3



 dβ (B8)

where

τd
d

dt





e−[G(β)]2τd/(4t)

2
√

π (t/τd)
3



 = e−[G(β)]2τd/(4t)





[G(β)]2

8
√

π (t/τd)
7
− 3

4
√

π (t/τd)
5



 (B9)
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In order to take ατd →∞ of (B6) we use

ατde
− [G(β)]2τd

4t Re


w



√

αt +
i [G(β)]

2
√

t

τd







= ατd
1
2

[
eiG(β)

√
ατde−αterfc

(
i
√

αt +
G (β)

√
τd

2
√

t

)
+ e−iG(β)

√
ατde−αterfc

(
−i
√

αt +
G (β)

√
τd

2
√

t

)]

∼ 1
2
√

π
e−

[G(β)]2τd
4t




1

−i
√

αt +
[G(β)]

√
τd

2
√

t

+
1

i
√

αt +
[G(β)]

√
τd

2
√

t


 →

[G(β)]

2
√

π (t/τd)
3
e−

[G(β)]2τd
4t

Therefore, as ατd →∞, (B6) becomes (B8).
As ατd → 0, (B6) becomes (B7) because

e−
[G(β)]2τd

4t Re


w



√

αt+
iG(β)

2
√

t

τd





→erfc

(
G(β)

√
τd

2
√

t

)
and τd

d

dt
erfc

(
G(β)

√
τd

2
√

t

)
=

G(β)

2
√

π (t/τd)
3
.

Letting u =
√

β2 − 1, (B7) (α → 0), becomes

V τd

µ0Ib
=

2
π

∞∫

0

(
1 + u2

)
G(u)/ν

(
u +

√
1 + u2/ν

)2√
1 + u2

e−[G(u)]2
τd
4t

2
√

π (t/τd)
3
du (B10)

where

G (u) =
√

u2 + 1 +
d

∆
u (B11)

Equation (B8) becomes

V τd (ατd)
µ0Ib

=
2
π

∫ ∞

0

(
1 + u2

)
G(u)/ν

(
u +

√
1 + u2/ν

)2√
1 + u2

τd
d

dt





e−[G(u)]2τd/(4t)

2
√

π (t/τd)
3



 du (B12)

Equation (B6) becomes

V τd

µ0Ib
∼ 2

π





τd
d

dt

∫ ∞

0

(
1 + u2

)
/ν

(
u +

√
1 + u2/ν

)2√
1 + u2

e−
[G(u)]2τd

4t Re

[
w

(√
αt +

i [G(u)]
2
√

t/τd

)]
du





(B13)

B.1. Early-Time Integral for d → ∞
(B7) can be evaluated for d →∞ by integration by parts

dU = 2
τd

4t

(
u√

u2 + 1
+

d

∆

)
G(u)e−[G(u)]2τd/(4t)du; U = e−[G(u)]2τd/(4t) (B14)

W =
2
π

(
1 + u2

)
/ν

2
τd

4t

(
u√

u2 + 1
+

d

∆

) (
u +

√
1 + u2/ν

)2 √
1 + u22

√
π (t/τd)

3
(B15)

V =
µ0Ib

τd
UW

∣∣∣
∞

0
=

I

σ∆
b

πd

2√
πt/τd

e−
τd
4t (B16)
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Thus, the voltage on an optimum coupling loop is decomposed into two factors discussed in the abstract.
Penetration ratio (A) is 2√

πt/τd

e−
τd
4t , that is the early-time expansion corresponding to (2) with [1].

Differentiating (B16) with respect to t/τd gives the impulse response (α →∞):

V =
I

σ∆
b

πd

2√
π

e−
τd
4t

[
− 1

2 (t/τd)
3/2

+
1

4 (t/τd)
5/2

]
(B17)

The unit step early-time peak for the planar penetration ratio P s
p is found to be P s

p /π ≈ 0.3081,
which is 3.21% lower than the value in Table 1 obtained from (2). On the other hand, the impulse
early-time peak for the planar penetration ratio P i

p agrees with the value obtained from (4) to six digits.
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