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Abstract—The propagation properties of a Lorentz-Gauss vortex
beam in a turbulent atmosphere are investigated. Based on the
extended Huygens-Fresnel integral, the Hermite-Gaussian expansion
of a Lorentz function, etc., analytical expressions of the average
intensity, effective beam size, and kurtosis parameter of a Lorentz-
Gauss vortex beam are derived in the turbulent atmosphere. The
spreading properties of a Lorentz-Gauss vortex beam in the turbulent
atmosphere are numerically calculated and analyzed. The influences
of the beam parameters on the propagation of a Lorentz-Gauss vortex
beam in the turbulent atmosphere are examined in details. Upon
propagation in the turbulent atmosphere, the vale in the normalized
intensity distribution of a Lorentz-Gauss vortex beam gradually rises.
The rising speed of the vale is opposite to the spreading of the
beam spot. When the propagation distance reaches to a certain
value, the Lorentz-Gauss vortex beam in the turbulent atmosphere
becomes a flattened beam spot. When the propagation distance is
large enough, the beam spot of the Lorentz-Gauss vortex beam tends
to be a Gaussian-like distribution. This research is beneficial to optical
communications and remote sensing that are involved in the single
mode diode laser devices.

1. INTRODUCTION

Due to the highly angular spreading, Lorentz-Gauss beams provide
a better beam model than Gaussian beams to describe the radiation
emitted by a single mode diode laser [1, 2]. A special case of Lorentz-
Gauss beams is the Lorentz beam. The relation between Lorentz
beams and relativistic Hermite polynomials has been investigated [3].
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The focusing properties of the linearly polarized Lorentz beam with
sine-azimuthal variation of wavefront have been studied [4]. A super-
Lorentzian beam can be constructed using Lorentz beams as a basis [5].
The effect of Kerr nonlinearity on the Lorentz beam has been examined
using the nonlinear Schröinger equation [6]. The beam propagation
factor [7] and the Wigner distribution function [8] of Lorentz-Gauss
beams have been derived. Propagation of Lorentz-Gauss beams in
free space [9], in uniaxial crystals orthogonal to the optical axis [10],
and through an apertured fractional Fourier transformation optical
system [11] has also been examined, respectively. The virtual source
for generation of the rotationally symmetric Lorentz-Gauss beam has
been identified [12]. The Lorentz-Gauss beam can be used to trap
the particles of refractive index larger than that of the ambient [13].
Recently, Lorentz-Gauss beams have been extended to the partially
coherent case [14].

When the radiation emitted by a single mode diode laser goes
through a spiral phase plate, it becomes a Lorentz-Gauss vortex beam.
The phase of the Lorentz-Gauss vortex beam can be easily modulated
by the spiral phase plate. The advantage of the Lorentz-Gauss vortex
beam over the Loretnz-Gauss beam is that the former has a twisted
phase front and zero intensity in the center region of the beam profile.
Owing to carrying the orbital angular momentum, the Lorentz-Gauss
vortex beam has potential application in the fields of optical trapping,
optical guiding, optical micro-manipulation, nonlinear optics, quantum
information processing, etc. [15–23]. Analytical expressions for the
three components of the nonparaxial propagation of a Lorentz-Gauss
vortex beam in uniaxial crystals orthogonal to the optical axis have
been derived, and the intensity and the phase distributions of the three
components have been shown by numerical examples [24]. Focusing
properties of the linearly polarized Lorentz-Gauss beam with one
on-axis optical vortex has been investigated by means of the vector
diffraction theory [25]. Due to the crucial applications in optical
communications and remote sensing, the average intensity and the
spreading properties of various kinds of laser beams including the
Lorentz and the Lorentz-Gauss beams in the turbulent atmosphere
have been extensively investigated [26–35]. However, to the best of
our knowledge the propagation of a Lorentz-Gauss vortex beam in the
turbulent atmosphere has not been reported. In the remainder of this
paper, therefore, the propagation of a Lorentz-Gauss vortex beam is
examined in the turbulent atmosphere. Analytical formulae of the
average intensity, the effective beam size, and the kurtosis parameter
are derived by means of the mathematical techniques.
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2. PROPAGATION OF A LORENTZ-GAUSS VORTEX
BEAM IN A TURBULENT ATMOSPHERE

In the Cartesian coordinate system, the z-axis is taken to be the
propagation axis. The Lorentz-Gauss vortex beam in the source plane
z = 0 takes the form of

E(r0, 0) =
w0xw0y(x0 + iy0)M

(w2
0x + x2

0)(w
2
0y + y2

0)
exp
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where r0 = x0ex + y0ey. ex and ey are the two transverse unit vectors
in the Cartesian coordinate system, respectively. w0x and w0y are the
parameters related to the beam widths of the Lorentz part in the x-
and y-directions, respectively. w0 is the waist of the Gaussian part.
M denotes the topological charge and is assumed to be positive. The
time dependent factor exp(−iωt) is omitted in the Eq. (1), and ω
is the angular frequency. Here, we consider the simplest case of the
Lorentz-Gauss vortex beam namely M = 1. The Lorentz distribution
can be expanded into the linear superposition of Hermite-Gaussian
functions [36]:
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where N is the number of the expansion. H2m(.) and H2n(.) are the
2mth- and 2nth-order Hermite polynomials, respectively. a2m and a2n

are the expansion coefficients and are given by [36]
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where erfc(.) is the complementary error function. The Lorentz-Gauss
vortex beam with M = 1 in the source plane can be rewritten as:
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where
1
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=
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, (5)

and j = x or y (hereafter). The propagation of a Lorentz-Gauss vortex
beam in a turbulent atmosphere can be calculated by the following
extended Huygens-Fresnel integral:

E(r, z)

= − ik

2πz
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where r = xex+yey. (r, z) is the receiver plane. ψ(r0, r) is the solution
to the Rytov method that represents the random part of the complex
phase. k = 2π/λ is the wave number. λ is the wavelength. The average
intensity of a Lorentz-Gauss vortex beam in the receiver plane is given
by
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where the angle brackets indicate the ensemble average over the
medium statistics, and the asterisk denotes the complex conjugation.
The last ensemble average term in the above equation can be expressed
as follows [37]:

〈exp[ψ(r01, r) + ψ∗(r02, r)]〉 = exp[−0.5Dψ(r01 − r02)]

= exp
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−(r01 − r02)2
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0
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where Dψ(r01−r02) is the phase function in Rytov’s representation and
ρ0 = (0.545C2

nk2z)−3/5 is the spherical wave lateral coherence length.
C2

n is the structure constant of the atmospheric turbulence. Using the
following mathematical formulae [38]
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where [n/2] gives the greatest integer less than or equal to n/2, one
can obtain the analytical average intensity of a Lorentz-Gauss vortex
beam in the receiver plane

〈I(r, z)〉 = [β1(x, z) + β2(x, z) + β3(x, z) + β4(x, z)]β0(y, z)
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+β7(x, z)][β5(y, z) + β8(y, z)], (14)

with β0(j, z), β1(j, z), β2(j, z), β3(j, z), β4(j, z), β5(j, z), β6(j, z),
β7(j, z), and β8(j, z) being given by
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The effective beam size of the Lorentz-Gauss vortex beam in the
j-direction of the receiver plane is defined as [39]
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Substituting Eq. (14) into Eq. (29), the analytical effective beam size
of the Lorentz-Gauss vortex beam yields
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with A0 and A1j being given by

A0 = [B1x(1.5)+B2x(0.5)+B3x(0.5)+B4x(−0.5)]B0y(0.5)
+B0x(0.5)[B1y(1.5)+B2y(0.5)+B3y(0.5)+B4y(−0.5)], (31)

A1x = [B1x(2.5) + B2x(1.5) + B3x(1.5) + B4x(0.5)]B0y(0.5)
+B0x(1.5)[B1y(1.5)+B2y(0.5)+B3y(0.5)+B4y(−0.5)], (32)

A1y = [B1x(1.5) + B2x(0.5) + B3x(0.5) + B4x(−0.5)]B0y(1.5)
+B0x(0.5)[B1y(2.5)+B2y(1.5)+B3y(1.5)+B4y(0.5)], (33)
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where B0j(v0), B1j(v1), B2j(v0), B3j(v0), and B4j(v2) are found to be
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l1!(2m1+1−2l1)!

[(2m2+1)/2]∑

l2=0

(−1)l2(2m2+1)!
l2!(2m2+1−2l2)!

2m2+1−2l2∑

l3=0

(
2m2 + 1− 2l2

l3

)
22(m1+m2+1−l1−l2)

γl3
j η2m2+1−2l2−l3

j (2m1 + l3 + 1− 2l1)!
[(2m1+l3+1−2l1)/2]∑

s=0

α2l1+s−2m1−l3−1
2j ξ2n+l3+1−2l1−2s

j

4ss!(2m1 + l3 + 1− 2l1 − 2s)!

Γ(m1 + m2 − l1 − l2 − s + v1)δl1+l2+s−m1−m2−v1
j ,

v1 = 15, 2.5, 3.5, (35)

B2j(v0) =
w2

0j

4

N∑

m1=0

N∑

m2=1

m2a2m1a2m2

(
1− 1

αj

)(2m2−1)/2

[(2m1+1)/2]∑

l1=0

(−1)l1(2m1+1)!
l1!(2m1+1−2l1)!

[(2m2−1)/2]∑

l2=0

(−1)l2(2m2−1)!
l2!(2m2−2l2−1)!

2m2−2l2−1∑

l3=0

(
2m2 − 2l2 − 1

l3

)
22(m1+m2−l1−l2)
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γl3
j η2m2−2l2−l3−1

j (2m1 + l3 + 1− 2l1)!

[(2m1+l3+1−2l1)/2]∑

s=0

α2l1+s−2m1−l3−1
2j ξ2m1+l3+1−2l1−2s

j

4ss!(2m1 + l3 + 1− 2l1 − 2s)!

Γ(m1 + m2 − l1 − l2 − s + v0)δl1+l2+s−m1−m2−v0
j , (36)

B3j(v0) =
w2

0j

4

N∑

m1=1

N∑

m2=0

m1a2m1a2m2

(
1− 1

α1j

)(2m2+1)/2

[(2m1−1)/2]∑

l1=0

(−1)l1(2m1− 1)!
l1!(2m1 − 2l1−1)!

[(2m2+1)/2]∑

l2=0

(−1)l2(2m2+ 1)!
l2!(2m2+1−2l2)!

2m2+1−2l2∑

l3=0

(
2m2 + 1− 2l2

l3

)
22(m1+m2−l1−l2)

γl3
j η2m2+1−2l2−l3

j (2m1 + l3 − 2l1 − 1)!

[(2m1+l3−2l1−1)/2]∑

s=0

α2l1+s+1−2m1−l3
2j ξ2m1+l3−1−2l1−2s

j

4ss!(2m1 + l3 − 2l1 − 2s− 1)!

Γ(m1 + m2 − l1 − l2 − s + v0)δl1+l2+s−m1−m2−v0
j , (37)

B4j(v2) = w2
0j

N∑

m1=1

N∑

m2=1

m1m2a2m1a2m2

(
1− 1

α1j

)(2m2−1)/2

[(2m1−1)/2]∑

l1=0

(−1)l1(2m1 − 1)!
l1!(2m1 − 2l1 − 1)!

[(2m2−1)/2]∑

l2=0

(−1)l2(2m2 − 1)!
l2!(2m2 − 2l2 − 1)!

2m2−2l2−1∑

l3=0

(
2m2 − 2l2 − 1

l3

)
22(m1+m2−1−l1−l2)

γl3
j η2m2−2l2−l3−1

j (2m1 + l3 − 2l1 − 1)!

[(2m1+l3−2l1−1)/2]∑

s=0

α2l1+s+1−2m1−l3
2j ξ2m1+l3−2l1−2s−1

j

4ss!(2m1 + l3 − 2l1 − 2s− 1)!

Γ(m1 + m2 − l1 − l2 − s + v2)δl1+l2+s−m1−m2−v2
j ,

v2 = −0.5, 0.5, 1.5. (38)
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Γ(·) is a Gamma function. The auxiliary parameter δj is defined by

δj =
k2w2

0j

4α1jz2
− ξ2

j

α2j
. (39)

In the above derivation, the following integral formula is used [38]
∫ ∞

−∞
xn exp(−cxn) =

1 + (−1)n

2
c−(n+1)/2Γ

(
n + 1

2

)
. (40)

The kurtosis parameter, which is employed to describe the degree
of flatness of the laser beams, is an important parameter to evaluate
the beam propagation. The kurtosis parameter in one transversal
dimension, e.g., the x-direction, is defined as [40]

Kx =

〈
x4

〉

〈x2〉2 , (41)

where 〈x2〉 and 〈x4〉 are given by

〈xs〉 =

∫∞
−∞

∫∞
−∞ xs〈I(r, z)〉dxdy∫∞

−∞
∫∞
−∞ 〈I(r, z)〉dxdy

, s = 2, 4. (42)

Therefore, the kurtosis parameter of the Lorentz-Gauss vortex beam
in the j-direction of the receiver plane is found to be

Kj =
A2jA0

(A1j)2
. (43)

with A2j being given by

A2x = [B1x(3.5) + B2x(2.5) + B3x(2.5) + B4x(1.5)]B0y(0.5)
+B0x(2.5)[B1y(1.5)+B2y(0.5)+B3y(0.5)+B4y(−0.5)], (44)

A2y = [B1x(1.5) + B2x(0.5) + B3x(0.5) + B4x(−0.5)]B0y(2.5)
+B0x(0.5)[B1y(3.5)+B2y(2.5)+B3y(2.5)+B4y(1.5)]. (45)

The analytical formulae of the average intensity, the effective beam
size, and the kurtosis parameter of a Lorentz-Gauss vortex beam in the
turbulent atmosphere are complicated. However, with increasing the
even number 2m, the value of a2m decreases dramatically compared to
a0 = 0.7399 and a2 = 0.9298×10−2. When m = 5, a10 = 0.3008×10−6.
Therefore, N will not be large in the calculations with acceptable
accuracy. Therefore, the calculations of the average intensity, the
effective beam size, and the kurtosis parameter are convenient and
fast using software like Mathematica.
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3. NUMERICAL CALCULATIONS AND ANALYSES

The spreading properties of a Lorentz-Gauss vortex beam in the
turbulent atmosphere are numerically calculated using the formulae
derived above. Figs. 1–3 represent the normalized average intensity
distribution of a Lorentz-Gauss vortex beam at several different
propagation distances in the turbulent atmosphere. The parameters
chosen in calculations are: λ = 0.8µm and C2

n = 10−14 m−2/3. The
reference planes are z = 0.2 km, 1 km, 2 km, and 5 km, respectively.
The beam parameters of the Lorentz-Gauss vortex beam can be divided
into three following cases: the waist of the Gaussian part being
larger than the beam widths of the Lorentz part, the waist of the
Gaussian part being smaller than the beam widths of the Lorentz
part, and the waist of the Gaussian part being equal to the beam
widths of the Lorentz part. Therefore, Figs. 1–3 correspond to the

(a) (b)

(c) (d)

Figure 1. (Color online) Normalized average intensity distribution
of a Lorentz-Gauss vortex beam at different propagation distances
in the turbulent atmosphere. w0 = 2 cm and w0x = w0y = 1 cm.
(a) z = 0.2 km. (b) z = 1 km. (c) z = 2 km. (d) z = 5 km.
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above three cases. Due to the isotropic influence of the atmosphere
turbulence, the normalized average intensity in the central region
gradually increases and finally becomes the maximum value with
increasing the propagation distance z. When the propagation distance
z is an appropriate value, the Lorentz-Gauss vortex beam in the
turbulent atmosphere will become a flattened beam spot. When the
propagation distance z is large enough, the beam spot of the Lorentz-
Gauss vortex beam tends to be a Gaussian-like distribution. Among
the three cases the spreading of the Lorentz-Gauss vortex beam with
w0 = w0x = w0y = 1 cm is the largest, and the spreading of the
Lorentz-Gauss vortex beam with w0 = 2 cm and w0x = w0y = 1 cm is
the smallest. The spreading of the Lorentz-Gauss vortex beam with
w0 = 1 cm and w0x = w0y = 2 cm is moderate. The reason is that the
spreading of the Lorentz distribution in the turbulent atmosphere is
higher than that of the Gaussian distribution.

(a) (b)

(c) (d)

Figure 2. (Color online) Normalized average intensity distribution
of a Lorentz-Gauss vortex beam at different propagation distances
in the turbulent atmosphere. w0 = 1 cm and w0x = w0y = 2 cm.
(a) z = 0.2 km. (b) z = 1 km. (c) z = 2 km. (d) z = 5 km.
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(a) (b)

(c) (d)

Figure 3. (Color online) Normalized average intensity distribution
of a Lorentz-Gauss vortex beam at different propagation distances in
the turbulent atmosphere. w0 = w0x = w0y = 1 cm. (a) z = 0.2 km.
(b) z = 1km. (c) z = 2km. (d) z = 5km.

Figure 4 shows the normalized intensity distributions in the y-
direction of Lorentz-Gauss vortex beams at different propagation
distances in the turbulent atmosphere. The solid, the short dashed,
and the dotted curves correspond to w0 = 2 cm and w0x = w0y = 1 cm,
w0 = 1 cm and w0x = w0y = 2 cm, and w0 = w0x = w0y = 1 cm,
respectively. With increasing the propagation distance z, the vale in
the normalized intensity distribution in the y-direction of a Lorentz-
Gauss vortex beam gradually rises and finally disappears. The rising
speed of the vale in the case of w0 = 2 cm and w0x = w0y = 1 cm is
the fastest, and the rising speed of the vale in the case of w0 = w0x =
w0y = 1 cm is the slowest. It seems that the rising speed of the vale is
opposite to the spreading of the beam spot. It exhibits similar behavior
in the x-direction to the y-direction. To further explore the spreading
property of a Lorentz-Gauss vortex beam in the turbulent atmosphere,
the effective beam size in the x-direction of a Lorentz-Gauss vortex



158 Zhou and Ru

 

Figure 4. (Color online) Normalized intensity distributions in the
y-direction of Lorentz-Gauss vortex beams at different propagation
distances in the turbulent atmosphere.

beam versus the propagation distance z in the turbulent atmosphere is
depicted in Fig. 5. As we consider the most common case of w0x = w0y,
the effective beam size in the x-direction is equal to that in the y-
direction. Therefore, only the effective beam size in the x-direction is
taken into account. With the same w0, the Lorentz-Gauss vortex beam
with the smaller w0x spreads more rapidly. With the same w0x, the
Lorentz-Gauss vortex beam with the smaller w0 spreads more quickly.
The kurtosis parameter in the x-direction of a Lorentz-Gauss vortex
beam versus the propagation distance z in the turbulent atmosphere is
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shown in Fig. 6. The kurtosis parameter in the x-direction undergoes
the following process: with increasing the propagation distance z, the
kurtosis parameter in the x-direction first decreases to the minimum
value, then increases, and finally tends to be a saturated value. Under
the condition of having the same w0, Kx in the reference plane close to
the source plane decreases by increasing the beam widths of the Lorentz
part. There exists a small range of the propagation distance, in which
Kx increases by increasing the beam widths of the Lorentz part. When

(a) (b)

Figure 5. (Color online) The effective beam size in the x-direction
of a Lorentz-Gauss vortex beam versus the propagation distance z in
the turbulent atmosphere. (a) w0 = 2 cm and w0x = w0y. (b) w0x =
w0y = 1 cm.

(b)(a)

Figure 6. (Color online) The kurtosis parameter in the x-direction
of a Lorentz-Gauss vortex beam versus the propagation distance z in
the turbulent atmosphere. (a) w0 = 2 cm and w0x = w0y. (b) w0x =
w0y = 1 cm.
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the propagation distance is relatively large, Kx first decreases and then
increases by increasing the beam widths of the Lorentz part. Under
the condition of having the same w0x and w0y, Kx in the reference
plane close to the source plane increases by increasing the waist of the
Gaussian part. When the propagation distance is relatively large, Kx

also increases by increasing the waist of the Gaussian part.

4. CONCLUSIONS

Based on the extended Huygens-Fresnel integral and the expansion of
Lorentz distribution into Hermite-Gaussian functions, the analytical
expressions of the average intensity, the effective beam size, and the
kurtosis parameter of a Lorentz-Gauss vortex beam are derived in
the turbulent atmosphere, respectively. The spreading properties
of a Lorentz-Gauss vortex beam in the turbulent atmosphere are
numerically calculated and analyzed. Upon propagation in the
turbulent atmosphere, the normalized average intensity in the central
region of the Lorentz-Gauss vortex beam gradually increases. At
certain value of the propagation distance z, the Lorentz-Gauss vortex
beam in the turbulent atmosphere becomes a flattened beam spot.
When the propagation distance z is large enough, the beam spot of the
Lorentz-Gauss vortex beam tends to be a Gaussian-like distribution.
The rising speed of the vale in the normalized average intensity
distribution is opposite to the spreading of the beam spot in three
different cases of beam widths of Gaussian part and Lorentz part.
With the same w0, the Lorentz-Gauss vortex beam with the smaller
w0x spreads more rapidly. With the same w0x, the Lorentz-Gauss
vortex beam with the smaller w0 spreads more quickly. The kurtosis
parameter undergoes the following process: with increasing the
propagation distance z, the kurtosis parameter first decreases to the
minimum value, then increases, and finally tends to be a saturated
value. This research is beneficial to optical communications and remote
sensing that are involved in the single mode diode laser devices.
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