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Abstract—Because the oversized, ultra short-range and arbitrary-
shape goals cannot be imaged by Fourier transform algorithm,
a Boundary Element Method (BEM) is presented for short-range
millimeter wave holographic imaging. Through the discrete boundary
integral equation, the discrete electromagnetic fields on the source
surface and holographic surface are obtained. They are linked by a
transfer matrix. Finally, the discrete electromagnetic fields obtain
target holographic image. Due to the complexity of the transfer
matrix, the Distributed Source Boundary Point Method (DSBPM)
is introduced to calculate it, which greatly simplifies the calculation
process. The simulation experiments of three-dimensional hemisphere
imaging show the sensitivity of the imaging algorithm to test error, and
regularization method has been proposed. The actual measurement of
the four small metal balls verifies the validity of the imaging algorithm
for large target imaging. The imaging results show that holographic
imaging of the boundary element method can obtain high resolution
and high amplitude accuracy.

1. INTRODUCTION

Holography technology arose in optical field and later was introduced
into the microwave and acoustic fields. The characters of microwave
and near-field acoustic holography were introduced into short-range
millimeter wave holographic imaging. McMakin et al. and Sheen et
al., who work in the Pacific Northwest National Laboratory, lead the
research in the world. They have developed a millimeter holographic
three-dimensional imaging system based on cylindrical scan [1–3]. The
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basic algorithm of short-range millimeter wave holographic imaging is
Fourier transform algorithm (FT), which was applied by the above-
mentioned imaging system. But FT algorithm has many limits, such
as the requirements of the source surface and the hologram surface
conformal, the hologram surface 2 times larger than the source surface,
etc. It is difficult to obtain a large size target imaging.

BEM is presented for short-range millimeter wave holographic
imaging, which can overcome the shortcomings of FT and achieve
analysis and reconstruction of arbitrary-shape targets [4, 5]. Due to
the complexity of the transfer matrix, the singularity and non-unique
solution of integration, etc., DSBPM is introduced to simplify the
calculation and improve the imaging efficiency. The basic principles
of BEM and DSBPM are introduced in this paper, and then their
characters are discussed in detail. Finally, different targets imaging
are simulated.

2. BEM IMAGING ALGORITHM

The Helmholtz equation is transformed into the boundary integral
equation by the Green theorem, the transfer relation about the source
surface, and the holographic surface is established. Known and
unknown quantities are concentrated on the boundary, and the imaging
dimension is reduced. Through discreting the integral equation,
the transfer matrix can be obtained, and arbitrary targets can be
reconstructed. It is the basic idea of BEM. Based on the scalar
diffraction theory, holographic imaging of quasi-monochromatic field is
discussed [6]. Assuming that electromagnetic wave λ propagates in a
homogeneous medium, the complex amplitude E meets the Helmholtz
equation: (∇2 + K2

)
E = 0 (1)

where ∇2 is the Laplace operator, K the wave number, and K = 2π/λ.
In the case of Sommerfeld radiation, the electromagnetic field E(p)
of any point p in space can be represented by E(q), which is the
electromagnetic wave on the arbitrarily closed surface S surrounding
p, which is shown in Fig. 1. Boundary integral equation can be written
as:

αE(p) =
1
4π

∫∫

S

[
G(p, q)

∂E(q)
∂n

−E(q)
∂G(p, q)

∂n

]
dS (2)

where G is Green function, n the outward normal vector on S, α the
coefficient of position, when the measuring surface is located outside
the source, and α = 1.
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Figure 1. Active radiation boundary integral.

Now S is divided into L subunits. Each unit is ∆Sl, and the
number of nodes is K (K is 6 or 8). Discreting Equation (2), the
following equation can be obtained:

E(p)=
L∑

l=1

1
4π

∫∫

∆Sl

[
G(p, qξ)

∂E(qξ)
∂n

−E(qξ)
∂G(p, qξ)

∂n

]
dS qξ ∈ ∆Sl (3)

where qξ is the local coordinate on the sub-unit. By introducing
the interpolation function Xm(qξ), the boundary value E(qξ) at any
position of the sub-unit can be expressed by the boundary value El,m

on the k node. That is:

E(p)=
L∑

l=1

1
4π

∫∫

∆Sl

[
G(p,qξ)

K∑

k=1

∂El,k

∂n
Xk(qξ)−

K∑

k=1

El,kXk(qξ)
∂G(p, qξ)

∂n

]
dS

=
L∑

l=1

K∑

k=1

∂El,k

∂n
1
4π

∫∫

∆Sl

G(p, qξ)Xk(qξ)dS

−
L∑

l=1

K∑

k=1

El,k
1
4π

∫∫

∆Sl

Xk(qξ)
∂G(p, qξ)

∂n
dS (4)

It is supposed that there are N nodes on S. To simplify the
expression, the boundary values of each node are re-composed of N×1
column vector eq. Its normal partial derivative is column vector en

q .
N measuring points on the holographic surface are composed of N×1
column vector ep. Then Equation (4) is discrete and expressed as:

ep = Aen
q −Beq (5)

where A and B are N×N matrices. There are two unknown quantities
in Equation (5), and a constraint equation must to be added.
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If the holographic surface is the source surface S, ep = eq and
α = 1. That is:

αep = Asen
q −Bseq (6)

Be simplified:
en

q = A−1
s (αI + Bs)eq (7)

where I is the unit matrix. According to Equations (5) and (7), we
obtain the following equation:

ep = [AA−1
s (αI + Bs)−B]eq = Geq (8)

where G is defined as the transfer matrix, which is the key of imaging.
The imaging formula is:

eq = G−1ep (9)

There is space shift invariance and linear characters about transfer
matrix G, but they do not guarantee its full rank. Its inverse matrix
cannot be obtained directly. In order to ensure the stability of imaging,
the singular value decomposition is often used. That is:

G = UΣVH (10)

where U and V are unitary matrices, and Σ is a diagonal matrix.

Σ = diag(σ1, σ2, σ3, . . . , σN ) σ1 ≥ σ2 ≥ σ3 . . . ≥ σN (11)

where σn is the singular value of the matrix. So the imaging formula
is:

eq = VΣUHep (12)

3. DSBPM IMAGING ALGORITHM

In this paper, DSBPM is used to calculate the transfer matrix.
Through default particular solution source, the particular solution
matrix is obtained, and the transfer matrix can be calculated
indirectly. These problems about variable interpolation, singular
integral treatment, non-unique solution and large calculation can be
avoided effectively in DSBPM [7].

The specific method is that the particular solution source is set in
the departure from the boundary nodes’ normal direction d. For each
particular solution source, a particular solution to meet the Helmholtz
boundary integral equation can be obtained in the source surface and
the holographic measurement surface nodes. Vectors e∗q and e∗p are
formed, and the following equation can be obtained:

e∗p = Ge∗q (13)
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The N×N particular solution matrices E∗q and E∗p are composed of the
particular solution vector, produced by all particular solution sources.
Each column in the particular solution matrix is a particular solution,
i.e.,

E∗p = GE∗q (14)

Further transfer function G can be obtained as follows:

G = E∗p
(
E∗q

)−1 (15)

If the test data ep is known in the holographic surface, the imaging
formula is:

eq = E∗q
(
E∗p

)−1 ep (16)

There are two key points in DSBPM. One is the choice of the particular
solution source and the other the choice of d. Generally, there are
three types of particular solution sources: point source; plane source
(such as metal circular plate); body source (such as spheres, triangular
body). The particular solution sources are located in a certain distance
away from the target surface boundary nodes’ normal direction. The
particular solution of transfer matrix on the boundary nodes can form
a particular solution matrix to meet the system equations. The choice
of d should be considered generally. If d is too small and near the nodes,
it will increase the singularity interference and reduce the accuracy. If
d is too big, it will bring instability in the particular solution matrix
calculation. The experience formula is as follows [8]:

d =
2lr√

l2 + βr2 ± l
(17)

where l is the distance between nodes, r the radius of curvature of the
boundary, β the experience coefficient, and β = 0.002 ∼ 0.02. If the
boundary is plane, r →∞, d = 2l/

√
β.

In the process of the target imaging, due to the interference of the
surrounding environment and the inherent defects of the transceiver
system, there are errors about the amplitude and phase of the
holographic surface measurement. If these data are directly used to the
target image reconstruction, there is a large deviation to the inversion
results. Further analysis of factors affecting the inversion image is
necessary. According to [9], the key parameter on the inversion results
is the condition number cond(G) = σ1/σN , in which σN is matrix
minimum singular value. If σN is small, the condition number is
very large. The measurement error of the holographic surface will be
increased in multiples of the condition number, and the final inversion
of the image loses authenticity. The analysis results are shown in
Fig. 2, which analyzes the impact of system parameter settings on
the condition number and chooses three groups of system parameters:
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Figure 2. Effect of various parameters on the transfer matrix
condition number.

the detection antenna array element spacing, target imaging distance,
and target boundary node distance.

It can be obtained from Fig. 2 that the impact of antenna
spacing and imaging distance is like random noise to condition number.
Imaging distance can make inversion errors increase 1,000 times, and
the inversion result has no value. If the detection target is going to be
imaged accurately, the inversion error must be suppressed. Suppression
methods will be discussed in the next section. Node spacing has almost
no effect on the condition number, which can guarantee the robustness
of the imaging when the target size is larger than the receiving antenna
array and reflects the superiority of the BEM for large target imaging.

4. SIMULATION AND EXPERIMENT

Next, the imaging simulation experiment is carried out. The simulation
conditions are: wavelength λ = 8 mm; narrow-band two-dimensional
plane imaging; the receiving antenna is a 50 × 50 plane array; the
minimum distance between array elements is 5 mm; the distance to
the target plane is 1 m. The target is a stereo hemisphere whose
radius is 0.2m. The division of the stereo hemispherical surface is
shown in Fig. 3. Azimuth and elevation angles are divided into same
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(a) (b)

Figure 3. Schematic diagram of BEM grid division about the target.
(a) Showed in plane. (b) Stereo hemispherical surface.

(a) (b)

Figure 4. Short-range millimeter-wave holographic image of the
stereo hemispherical surface. (a) The target inversion image.
(b) Simulated three-dimensional image.

interval within π radian, and the total is 2402 nodes. In order to
match the antenna array, the two nodes in north and south poles of
the hemisphere are viewed as a collection of 50 nodes.

According to the echo signal amplitude and phase receiving,
the transfer matrix is determined by the DSBPM, and the stereo
hemispherical target is imaged. The imaging results are shown in
Fig. 4.

In order to observe the details of the imaging clearly, the radius
100mm ring and radius 50 mm circle were added to the surface of
the hemisphere. Fig. 3 shows that DSBPM algorithm is effective to
short-range hemisphere surface target imaging. The inversion image
accurately restores the stereo hemispherical shape and surface detail.

The following will focus on analyzing the impact of measurement
error. To any point P in the target scattered field, the electromagnetic
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field inversion error is defined as follows:

ε =

∥∥∥E(p)− Ê(p)
∥∥∥

∥∥∥Ê(p)
∥∥∥

× 100% (18)

where E(p) is the true value of the inversion signal and Ê(p) the
theory value [10, 11]. Error analysis in the third section shows
that measurement error will increase in multiples of the condition
number. Fig. 2 shows the relationship between array element spacing
and target distance, and the condition number is random. The choice
of the parameters cannot avoid the impact of the condition number. A
regularization method is introduced to reduce the error. Some white
noise was added to the holographic measurement surface. It is observed
that the sensitivity of the inversion results in the measurement noise
and the treatment effect of the regularization method.

It is supposed that the holographic surface measurement data
SNR is 20 dB and that the simulation conditions remain unchanged.
The stereo hemispherical target is imaged. Fig. 5 shows the inversion
image without regularization.

Figure 5 shows that the inversion image is different from the
theoretical value. Hemisphere surface details diffuse seriously, and
the ring and circular plane are blurred. Singular value truncation
filtering method is proposed and used to deal with the inversion image.
Through the above analysis, the increase of condition number is due to
small singular value. Some of the smaller singular values assigned to
zero directly eliminate their influence on the inversion error. Assumed
that the filter model is:

fi =
{

1 σi ≥ ασ1

0 σi ≤ ασ1
(19)

(a) (b)

Figure 5. Short-range millimeter-wave holographic image affected
by noise. (a) The target inversion image. (b) Simulated three-
dimensional image.
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where α is truncated coefficient ratio. The choice of α is very critical.
If α is too small, it will reduce the imaging resolution, and if α is too
large, it will not filter out the noise. Generally, it is determined by the
actual measurement SNR. It is known that SNR of holographic surface
measurement data are 20 dB, and all singular values below this range
are filtered out. Assume that the singular value σk+1 to meet:

20 log (σK+1/σ1) < −20 (20)
The truncated coefficient ratio can be calculated, that is α = 0.1.
Fig. 6. shows the inversion image after filtering.

Figures 5 and 6 are compared: after regularization, the
measurement error has been suppressed effectively, and the image effect
has been improved significantly. The ring and the circular plane of
the hemisphere surface are also consistent with the theoretical values.
The results show that the singular value truncation filtering method is
simple and effective.

The BEM for short-range millimeter-wave holographic imaging is
verified by the imaging system experiment [8, 12]. The test system

(a) (b)

Figure 6. Short-range millimeter-wave holographic image after fil-
tering. (a) The target inversion image. (b) Simulated three-
dimensional image.

Figure 7. The picture of the
test prototype working.

Figure 8. The picture of the
actual target.
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uses two close small horn antennas, as the transmitting and receiving
antennas. The test prototype is fixed in the scanning frame and
moving with the scanning frame. The target frame is composed of
low reflectivity foam, and the height is 1.5m. Fig. 7 is a picture of the
test prototype.

The test parameters are as follows: the transmitting frequency
is 35 GHz; the transmitting power is 10 dBm; the scanning plane is
0.5m× 0.5 m and samples 50 data points in the horizontal X-axis and
vertical Y -axis; the sampling interval is 1 cm. The distance of the
target and measuring surface is 1 m along the z-axis. The targets are 4
small metal balls whose radius is 5 cm. Fig. 8 is a picture of the actual
target.

 

(a)

(b)

Figure 9. Inversion image of small metal balls. (a) Graphical
representation of three-dimensional pulse. (b) Graphical representa-
tion of two-dimensional plane.
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To simplify the algorithm, the target plane is divided into 49× 49
square grids. The total is 50× 50 nodes, which are consistent with the
sampling points. The transfer matrix is established using DSBPM,
and the target of the small balls is imaged. Regularization is used for
the imaging results. The processed image is shown in Fig. 8, including
three-dimensional pulse graphics and two-dimensional graphics.

It can be obtained from Fig. 9 that the side length of the
target plane is 2 times of the scanning plane and that the short-
range millimeter-wave holographic imaging using DSBPM obtains
good results. As the target size is greater than the measuring surface,
Gibbs effect and winding effect in Fourier transform algorithm have
been very well controlled. The positional relationship of the ball target
reflects the actual situation, and the intensity of the ball target image
is the same basically. Imaging algorithm was proved to have good
spatial resolution and high amplitude accuracy.

5. CONCLUSION

In this paper, BEM algorithm is presented firstly for short-range
millimeter wave holographic imaging. DSBPM algorithm is introduced
to calculate the transfer matrix and complete image inversion. This
method can avoid variable interpolation, singular integral processing,
non-uniqueness solution, etc., which greatly simplifies the computation
process and promotes the practical process of BEM algorithm. The
sensitivity of the measurement error to inversion image is analyzed.
Singular value truncation filtering method is used to ensure the reality
of the inversion image. Four small metal balls as the goal, the
actual test was done. The result shows that DSBPM is effective for
large target imaging and can obtain good spatial resolution and high
amplitude accuracy.
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