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Passive Millimeter Wave Image Denoising
Based on Adaptive Manifolds
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Abstract—Since the characters of poor inherent resolution and low signal-to-noise limit the application
of the passive millimeter wave (PMMW) image, it is particularly important to improve the resolution and
denoise the PMMW image. In this paper, the adaptive manifolds filtering algorithm based on non-local
means (AM-NLM) is illustrated in detail. And an improved version of AM-NLM filtering algorithm
is proposed for processing the PMMW image. The proposed algorithm firstly applies the AM-NLM
filtering to obtain the basic denoised PMMW image. Then the image enhancement based on Laplacian
of Gaussian operator is performed to enhance the edge of the target in PMMW image. Finally, the
hard-threshold filtering with different thresholds is adopted to filter each dimension to achieve the final
filtering response. Experimental results have shown that the proposed PMMW filtering algorithm has
better and more satisfactory performance compared to AM-NLM, both in subjective visual effect and
objective image quality metric. Additionally, our proposed algorithm is also available for real PMMW
images.

1. INTRODUCTION

PMMW imaging has numerous advantages over infa-red (IR) and optical imaging by being able to work
well under complex and adverse environment. PMMW has been widely used in earth remote sensing,
radio astronomy, cosmology, air sounding, and commercial applications [1]. For instance, during the
imaging of earth remote sensing, PMMW imaging system can pass through the cloud layer and dust
to achieve the image of the ground; during the forest fire detection it is also capable to detect the
fire source which is optically masked by obstacles [2]. Synthetic aperture imaging radiometer (SAIR),
which employs a number of identical antennas and receivers distributed in space to form sparse array,
can attain desirable spatial resolutions without scanning system [3]. Although the PMMW imaging
provides a lot of benefits compared to IR and optical imaging, there are several disadvantages. Due to
existence of the partial coherence between targets, the differences of antenna or lens position and other
imaging mechanism, the original PMMW image acquired from practical sensing operations is usually
seriously noised, low resolution and blurry compared to optical and infrared images.

The fundamental principle underlying the sensing operation is the low-pass filtering due to the
antenna lens’ finite size and also, the output image of the imaging system is a low-pass filtered version
of the original scene [4]. There is no useful signal beyond the cut-off frequency in the measured data
and the detail target information in the scene is submerged by noise in the produced PMMW image.
Thus PMMW image super-resolution technology grows inevitably important as the development of
PMMW imaging technology. Summarily image processing can be sorted into two levels: denoising,
to filter random elements unrelated to target in image, it usually does not consider point spread
function (PSF); deconvolution or super-resolution, to remove system impact, it generally refers to restore
inhibited frequency components above cut-off frequency by analytical continuation in frequency domain,
to expand image spectrum, so as to achieve interpolation in space domain, furthermore breakthrough
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to Rayleigh limit [5, 6]. Super-resolution algorithms can be classified into iterative and non-iterative
algorithms. Iterative algorithms are generally the preferred approach due to their numerous advantages
and also since the iteration can be terminated once a solution of a reasonable quality is achieved [7].

Some PMMW image super-resolution algorithms have been already proposed including: Lucy-
Richardson algorithm [8, 9], MAP algorithm [10], conjugate gradients [11] and projection on convex
set (POCS) method [12]. Wang resumes restoration of hidden target PMMW images by taking the
estimated PSF into restoration algorithm based on maximum likelihood (ML) estimation and blind
deconvolution techniques [5]. In paper [13], the authors apply Fourier-wavelet regularized deconvolution
which exploits the Fourier domain representation of the convolution operator and the spatially adaptive
wavelet domain representation of the signal to restore the PMMW image. And a PMMW image
denoising method based on adaptive sparse representation with a learned overcomplete dictionary is
proposed by Zhang in [14]. Recently, the adaptive manifolds filtering algorithm based on non-local
means technology (AM-NLM) is proposed in paper [15] which has been proved flexible and effective.
And we found that the AM-NLM filtering algorithm also works for PMMW images but cannot wipe
off noise around target completely. In this paper, an improved version of AM-NLM is proposed for
processing the simulated PMMW images by using Laplacian of Gaussian operator based enhancement
and hard-threshold filtering in each dimension. Experiments are given to show that the proposed method
can greatly improve the quality of PMMW image and avoid introducing blur to it.

2. ADAPTIVE MANIFOLDS FILTERING ALGORITHMS

2.1. Adaptive Manifolds Filtering Algorithm Based on Non-local Means

AM-NLM is the first high-dimensional filter for performing high-dimensional filtering of images and
videos in real time which is quite flexible, capable of producing responses that approximate either
standard Gaussian, bilateral, or non-local-means filters. The flowchart of AM-NLM filtering algorithm
is illustrated in Figure 1.
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Figure 1. Flowchart of AM-NLM filtering algorithm.

Let f : S ⊂ RdS → R ⊂ RdR be a signal associating each point from its dS-dimensional spatial
domain S to a value in its dR-dimensional range R. For grayscale images, dS = 2 and dR = 1, while for
RGB color images dS = 2 and dR = 3.

Given a noisy image with N pixels, a set of high-dimensional image data can be created by
performing joint filtering to the input image f [15]. Then, the number of manifolds K which is
independent of the filter dimensionality is computed with the function:

K = 2 + max(2, [HSLR]) (1)

where HS is a height computed from the spatial standard deviation of the filter, and LR is a linear
correction computed from the range standard deviation:

HS =
[
log2

(√
max(ΣS)

)]
− 1

LR = 1−
√

min(ΣR)
(2)
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By locally averaging pixel values to the created high-dimensional image data and performing low-
pass filtering, adaptive manifolds can be obtained and are guaranteed to be approximately linear in
all local neighborhoods [7]. The k-th dS-dimensional adaptive manifold can be described by a graph
(pi, ηki), and the manifold value ηki ∈ R associated with pixel pi ∈ S is defined by the evaluation of a
function ηk : S → R at pi : ηki = ηki(pi). The first manifold can be computed by low-pass filtering the
input signal:

η1(pi) = (hΣS
∗ f)(pi) (3)

where ∗ is convolution, and hΣS
is a low-pass filter in S with covariance matrix ΣS .

After the first manifold η1 is generated, perform a Gaussian distance-weighted projection of all
pixels pi onto the manifold. The sampling points η̂ki store the values of projection:

Ψ1(η̂ki) = φ∑
R
2

(ηki − fi)fi (4)

Perform Gaussian filtering over each manifold mixing the values Ψ1 from all sampling points η̂ki to
obtain the blurred values Ψ2(η̂ki).

Ψ2(η̂ki) =
∑

pj∈S

φΣη(η̂ki − p̂j)fj , Ση =
[
ΣS 0
0 ΣR/2

]
(5)

where p̂j = (pj , fj), Ψ2 defines a Gaussian filtering (a convolution) on a d-dimensional space.
Then, according to the direction v1 that describes the variations of pixel about manifold η1, pixels

are divided into two clusters C− (locally ‘above’) and C+ (locally ‘below’). Then a new manifold is
computed as follows:

η−(pi) =
N∑

pj∈C−

W−(pj)fj

/
N∑

pj∈C−

W−(pj) (6)

W−(pj) = θ(η1j − fj)hΣS
(pi − pj) (7)

hΣS
is the low-pass filter used to generate η1, and θ is a weight function that gives more weight to pixels

pj not well represented by the manifold η1:

θ(η1j − fj) = 1− φΣR
2

(η1j − fj) (8)

where fj is the color of pixel pj . The manifold η+ is generated similarly as above.
Whether more manifolds are needed is then decided by comparing the current number of manifolds

to the needed number of manifolds K. If the number of manifolds is insufficient, new manifolds η−−,
η−+ and η+−, η++ with η−, C− and η+, C+ respectively will be generated.

After all needed manifolds are generated, the final filter response gi for each pixel is computed by
interpolating blurred values Ψ2 gathered from all adaptive manifolds:

gi =
∑K

k=1 wkiΨ2(η̂ki)∑K
k=1 wkiΨ0

2
(η̂ki)

, wki = φΣR
2

(ηki − fi) (9)

where Ψ0
2
(η̂ki) is the blurred version of Ψ0

1(η̂ki):

Ψ0
1(η̂ki) = φ∑

R
2

(ηki − fi) (10)

2.2. Millimeter Wave Image Denoising Based on Adaptive Manifolds

It is true that the AM-NLM filtering algorithm does perform an excellent filtering result for the general
images. But for the special PMMW image, whether the AM-NLM is effective has not been proved in
the previous researches. In this section, AM-NLM filtering algorithm is tested to denoise our PMMW
image, and it is found workable when processing PMMW image. However, the AM-NLM denoised
result is a little blurry, and the noise around the target is still retained. Thus, an improved version of
AM-NLM is proposed by using Laplacian of Gaussian operator based enhancement and hard-threshold
filtering in each dimension to restore the PMMW image.
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The PMMW image filtering algorithm proposed in this paper firstly applies joint filtering to create
a set of high-dimensional PMMW image data fout ,i with the input PMMW image fi, in which fout ,i is
(2× r + 1)2 × 3 dimensions if the patch radius is set as r for RGB image [15]:

fout ,i =
∑

pj∈S

φ(Pi − Pj)fj

/ ∑

pj∈S

φ(Pi − Pj) (11)

where Pi = (pi1, pi2, . . . , pin), n = (2× r + 1)2 is the i-th pixel pi (pi = (xi, yi)) centered patch and φ
is an axis-aligned Gaussian function:

φΣ(Pi − Pj) = exp
(
−1

2
(Pi − Pj)T (Pi − Pj)

)
(12)

where Σ is a d×d diagonal covariance matrix that controls how fast the weights decrease with distance,
and (Pi − Pj)T is the transpose of matrix.

Perform AM-NLM filtering to high-dimensional PMMW image data to obtain the basic filtering
result gAM-NLM.

As the edge of target in the basic denoised image is still blurry, and some serious noise points
have not been removed completely, the image enhancement algorithm based on Laplacian of Gaussian
operator is applied:

glog,i = gAM-NLM,i + gAM-NLM,i ∗ ∇2Gi (13)

∇2Gi is the Laplacian of Gaussian operator:

∇2Gi =
∂2Gi

∂x2
i

+
∂2Gi

∂y2
i

=
−1

2πσ4

(
2− x2

i + y2
i

σ2

)
e−

x2
i +y2

i
σ2 (14)

The image enhancement algorithm based on Laplacian of Gaussian operator indeed enhances the
edge of target. However, the noise associated with the edge enhancement is also strengthened. Thus,
perform hard-threshold filtering to each dimension to denoise the enhancement PMMW image to achieve
the final filtering response gk,i:

gk,i =
{

glog,i, |glog,i| ≥ δk

0, |glog,i| < δk
(15)

where δk is the adopted threshold of hard-threshold filter in each dimension. For grayscale images, gi

is deemed as the final filtering response. g1,i, g2,i and g3,i can be gained for color images as the three
color channels.

The steps of the proposed algorithm in this paper can be concluded as follows:
1) Generate a set of high-dimensional PMMW image data fout ,i by joint filtering.
2) Perform adaptive manifolds filtering algorithm based on non-local means to high-dimensional

PMMW image data fout ,i to gain the basic filtering image gAM-NLM.
3) Apply image enhancement algorithm based on Laplacian of Gaussian operator to enhance the target

edge in image gAM-NLM.
4) The hard-threshold filtering to each dimension is adopted to further denoise the remaining noise.

By selecting suitable threshold, a satisfied result gfinal ,i can be reached.

2.3. The Analysis of Detail Implementation of Proposed PMMW Image Filtering
Algorithm

Our proposed PMMW image filtering algorithm applies AM-NLM filtering to denoise high dimension
image data and image enhancement algorithm based on Laplacian of Gaussian is adopted to enhance
the target edge. Finally the background and useless noise information are filtered with hard-threshold
filtering on each dimension. In this section, the analysis of the implementation of proposed algorithm
will be discussed.

As it has been proved, using 6 PCA-computed main dimensions can actually produce better
denoising results than working with the full space by Tasdizen in paper [16]. Thus, to make the
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result convictive, we use this rule with the default parameter defined in [15] when applying AM-NLM
filtering algorithm. The first several dimensions of image data are shown in Figure 2.

It is shown that the first dimensional image retains most information of the PMMW image, and as
the increase of the dimension the image retains less information than previous one which can demonstrate
the validity of the rule in [16].

Since the spherical wave has serious influence on near range millimeter wave radiometer imaging, the
bright temperature of imaging result has big error [17]. Thus the structural similarity index measurement
(SSIM) [18] which measures the similarity between two images is used as the main objective image
quality metric in this section:

SSIM(f, g) =
(2µfµg + C1)(σfg + C2)

(µ2
f + µ2

g + C1)(σ2
f + σ2

g + C2)
(16)

where µf , σ2
f and σfg represent the mean of f , the variance of f , and the covariance of image f and g,

respectively. C1 and C2 are small constants which eliminate unstable results when either (µ2
f + µ2

g) or
(σ2

f + σ2
g) is very close to zero. The value of SSIM is mainly controlled by the structure similarity and

varies from 0 to 1 which achieves its maximum value of 1 when the two images are exactly the same.
According to Eq. (11) and Eq. (12), the different choices of standard deviation σ of Gaussian

filter result in different enhancement degrees to the basic denoised image. Figure 3 shows the effect of
enhancement performances (without hard-threshold step) with different standard deviations in value of
SSIM and PSNR.

Figure 3(a) illustrates that the value of SSIM rises with the increase of standard deviation of Gassian
filter and becomes stable when standard deviation is larger than σ = 1.9. The performance of Figure 3(b)
evaluated by PSNR goes the same way as Figure 3(a) which performs stably after σ = 1.9. Adopting

   
(a) (b) (c)

   
(d) (e) (f)

Figure 2. The first several dimensions of image data. (a) The input PMMW image, (b) first high-
dimensional image data, (c) second high-dimensional image data (d) third high-dimensional image data
(e) fourth high-dimensional image data, and (f) fifth high-dimensional image data.
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small standard deviation (σ < 1.0), with enhancing the target edge comes an enhancement of the noise
information as well. This makes the enhanced image perform badly in SSIM and PSNR. Although
large standard deviation cannot bring strong enhancement to the target information, noise, as the main
factor resulting in bad performance, is not enhanced. In addition, since overlarge σ brings excessiveness
smooth phenomenon in Gaussian operator, the enhanced image becomes blurry (see Section 3) without
improving much in SSIM and PSNR performance when σ is too large. Taking this phenomenon into
account, we choose an acceptable default standard deviation parameter as: σ = 1.9.

The hard-threshold filtering step is used for filtering noise that had been enhanced in previous step,
and the choice of hard-threshold also affects the final denoising performance of our algorithm. Figure 4
is the three dimensions of enhanced PMMW image, whose first dimension (Figure 4(b)) contains the
main structure of the target, the second dimension (Figure 4(c)) describes the detail information, while
the third dimension (Figure 4(d)) is mostly the noise and background information. Therefore, different
hard-thresholds are adopted according to each dimension. To the first dimension, as it contains the
main structure, filtering with the smallest threshold is adopted, and to the second dimension, filtering
with the smaller one is applied and to the last dimension, zero operation to image data is performed
to remove the background and noise information. The performance of hard-threshold filtering to with
different hard-threshold δ is shown in Table 1.

According to Table 1, relatively large thresholds of first two dimensions bring better filtering
performance which wipes away the noise embedded in structure and detail information. It is clear
to see that the SSIM performances of three images leap suddenly when the first dimensional threshold
δ1 = 0.04 goes to δ1 = 0.05 and remains stable after that. This phenomenon can be explained that the
value of pixels (background noise) in the first dimension is too close that much noise can be filtered
by suitable threshold without filtering the target information, which leads to a great improvement.

(a) (b)

Figure 3. Enhancement performances (without hard-threshold step) in SSIM with different standard
deviations of three simulate PMMW images.

(a) (b) (c) (d)

Figure 4. The three dimensions of enhanced image. (a) The result of image enhancement, (b) first
dimension of enhanced image (c) second dimension of enhanced image, and (d) third dimension of
enhanced image.
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Table 1. Hard-threshold filtering performance with different hard-thresholds on two dimensions of
PMMW image.

SSIM 
Performance 

Threshold of filter δ   (2nd-D) 
2!

Tank Plane Ship 

0.04 0.08 0.12 0.28 0.04 0.08 0.12 0.28 0.04 0.08 0.12 0.28 

Threshold 

of filter δ  

(1st-D)

0.03 0.410 0.745 0.758 0.752 0.494 0.788 0.801 0.800 0.494 0.788 0.801 0.799 

0.04 0.410 0.745 0.758 0.752 0.494 0.788 0.801 0.800 0.494 0.788 0.801 0.799 

0.05 0.546 0.863 0.874 0.864 0.615 0.844 0.851 0.842 0.615 0.845 0.851 0.842 

0.06 0.546 0.863 0.873 0.864 0.615 0.844 0.851 0.842 0.615 0.844 0.851 0.842 

0.07 0.546 0.863 0.873 0.864 0.615 0.844 0.851 0.842 0.615 0.844 0.851 0.842 

 

2

1

For the second dimensional threshold, too large threshold (δ2 > 0.28) result in the loss of some detail
information, while smaller threshold (δ2 < 0.08) lower down the filtering efficiency. It is found in the
experiments that adopting threshold around δ2 = 0.24 are able to achieve a satisfactory performance
both in SSIM and visual effect. Therefore δ1 = 0.06 and δ2 = 0.24 are chosen as the default threshold
which works well and performs stably.

3. EXPERIMENTAL RESULTS AND DISCUSSIONS

In this section, the filtering results of adaptive manifolds filtering based on non-local means (AM-NLM)
algorithm and our proposed one are displayed. And they are tested with default parameters with
6 PCA-computed retained dimensions for AM-NLM, and the other parameters discussed in Section 2.3
are adopted for the proposed algorithm. As we had analyzed, due to the spherical wave has serious
influence on near range millimeter wave radiometer imaging, SSIM taking advantage of the comparison
of structure to judging the similarity of two images, is used as main image quality metric. PSNR, as
the supplementary one, is given as well. Table 2 presents the filtering performance of AM-NLM and
the proposed method in SSIM and PSNR.

It is shown in the Table 2 that our proposed filtering algorithm achieves a great improvement
in SSIM performance which looks unauthentic at first glance. As the value of SSIM mainly decided
by structure comparison, our proposed method removes the rectangular noise produced by partial
coherence between the point targets which affects the structure of the target in AM-NLM denoised

Table 2. Comparison of AM-NLM performance with the proposed method in terms of SSIM and
PSNR.

Method Tank Plane Ship

SSIM
Simulated PMMW 0.275 0.321 0.271

AM-NLM 0.280 0.326 0.273
Proposed 0.866 0.845 0.920

PSNR (dB)
Simulated PMMW 15.169 18.737 18.208

AM-NLM 15.612 19.663 18.734
Proposed 15.248 21.024 18.559
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image. The PSNR performance, as the supplementary objective image quality metric, stays at the same
level compared with AM-NLM.

Figures 5, 6 and 7 display the filtering results of AM-NLM algorithm and the proposed one. AM-
NLM works well on the PMMW image for which most of the noise can be filtered and the visual
effect of the result (Figures 5(c), 6(c), and 7(c)) is also acceptable. However, the results of AM-NLM
are a little bit blurry and the main target is not outstanding enough for some special engineering
practice, such as target identification, crack detection and medical test. The results of our proposed
algorithm (Figures 5(d), 6(d), and 7(d)) wipe off the useless background and noise information to
make it easy to identify the target. What’s more, the enhancement of the target edge makes it well
distinguished. Therefore, our proposed PMMW filtering algorithm represents more outstanding and
recognizable results, performing better in objective image quality metric and subjective visual effect.

(a) (b) (c) (d)

Figure 5. The comparison of filtering performance of AM-NLM and proposed algorithm of tank. (a)
Target scene. (b) Simulated PMMW image. (c) Filtered by AM-NLM algorithm. (d) Filtered by our
proposed algorithm.

(a) (b) (c) (d)

Figure 6. The comparison of filtering performance of AM-NLM and proposed algorithm of ship.
(a) Target scene. (b) Simulated PMMW image. (c) Filtered by AM-NLM algorithm. (d) Filtered by
our proposed algorithm.

(a) (b) (c) (d)

Figure 7. The comparison of filtering performance of AM-NLM and proposed algorithm of plane. (a)
Target scene. (b) Simulated PMMW image. (c) Filtered by AM-NLM algorithm. (d) Filtered by our
proposed algorithm.
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(a) (b)

Figure 8. Final filtering performances in SSIM and PSNR using different standard deviations for the
three simulated PMMW images.

(a) (b) (c) (d)

Figure 9. Enhancement performance of PMMW image with different standard deviations. (a)
Enhanced by σ = 0.2 (SSIM = 0.825). (b) Enhanced by σ = 0.5 (SSIM = 0.859). (c) Enhanced
by σ = 1.9 (SSIM = 0.866). (d) Enhanced by σ = 4.0 (SSIM = 0.867).

(a) (b) (c) (d)

Figure 10. The comparison of denoising performance with different thresholds in third dimension.
(a) Denoised by δ = 0.2 (SSIM = 0.283). (b) Denoised by δ = 0.5 (SSIM = 0.284). (c) Denoised by
δ = 0.8 (SSIM = 0.846). (d) Denoised by zero operation (SSIM = 0.866).

In order to test the correctness of the choice of parameters discussed in Section 2.3, adopting
different standard deviations of Gaussian filter to the PMMW images and the corresponding results are
shown in Figures 8, 9 and 10.

Figures 8(a) and (b) represent the final SSIM and PSNR performance affected by the various
standard deviations. Compared with Figure 3, SSIM and PSNR in Figure 8 improve enormously which
proves the effectiveness and necessity of hard-threshold filtering step. And it can also be seen from
Figure 8 that the values of SSIM and PSNR vary almost the same way as in Figure 3 with the value
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(a) (b) (c) (d)

Figure 11. The filtering performance of proposed algorithm for real PMMW image. (a) Reference
scene. (b) Target scene. (c) Real PMMW image. (d) Filtered by our proposed algorithm

growing gradually and arriving stable after σ = 1.9.
In addition, as shown in Figures 9(a) and (b), it is obvious that small standard deviation leads to

the strong enhancement of the useless noise information although the detailed information of the target
is enhanced as well. Meanwhile, the image with relatively large standard deviation (σ = 4.0) is more
blurry than the formers and may lose some important detail information. Consequently, employing
σ = 1.9 in image enhancement step is quite suitable in our proposed method which not only enhances
the edge information without much noise, but also avoids bringing the blur to the image.

Figure 10 shows the denoising performance of the hard-threshold filtering on the third dimension
with the default value of thresholds in other two dimensions that has been discussed in Section 2.3. As
the noise has been enhanced in the image enhancement step, the third dimensional threshold adopted
in Figures 10(a) and (b) can only filter mild noise. In Figure 10(c), most of the noise is filtered, but
the strong ones located around the target are still retained. Figure 10(d) displays the result of zero
operation which the background and noise information are almost completely wiped off. Consequently,
do zero operation to the third dimension is workable which makes the target well distinguished.

To test the feasibility and efficiency of our proposed algorithm, we apply this method in real image
system, and the filtering performance is displayed in Figure 11. It can be seen that our proposed
algorithm is workable and satisfactory for real PMMW image. The mental ring in Figure 11(d) can be
evidently extracted and well distinguished. Moreover, most of the noise and redundant information are
eliminated.

4. CONCLUSIONS

In this paper, the adaptive manifolds filtering algorithm based on non-local means has been illustrated
in detail, and an improved version of AM-NLM is proposed to denoise the simulate PMMW image.
Our proposed algorithm takes the advantage of AM-NLM to gain a basic denoised PMMW image,
and applies the image enhancement algorithm based on Laplacian of Gaussian operator to enhance the
target edge. The hard-threshold filtering is adopted to gain the final denoised PMMW image.

The proposed PMMW image filtering algorithm can outline the structure of target and filter the
disturbance, such as background and noise information. The parameters chosen in this paper can
achieve a satisfactory result. The experiments show that our method performs better than AM-NLM in
both objective image quality metric and objective visual effect. Meanwhile, we find that our proposed
algorithm is also feasible for real PMMW image.
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