
Progress In Electromagnetics Research, Vol. 144, 11–21, 2014

Range-Spread Target Detection in Compound Gaussian Clutter with
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Abstract—In this paper, the range-spread target detection in compound Gaussian clutter with
reciprocal of the square root of gamma (RSRG) texture is investigated. The RSRG distribution has
been proved to be a good model for texture component of extremely heterogeneous radar clutter. Taking
this compound Gaussian model as a spherically invariant random process (SIRP), the Neyman-Pearson
optimal detector for the range-spread target detection with known target amplitude is derived firstly.
By replacing the ideal target amplitude with its maximum likelihood estimate (MLE), the generalized
likelihood ratio test (GLRT) is then obtained. The statistical property of the texture component is taken
into account in both of these two detectors, which makes the detectors computationally complicated. A
suboptimal generalized likelihood ratio test based on order statistics (OS-GLRT) is finally proposed by
substituting the texture component with its MLE. The OS-GLRT makes use of some largest observations
from the range cells occupied by the most likely target scatters. The performance assessment conducted
by Monte Carlo simulation validates the effectiveness of the proposed detectors.

1. INTRODUCTION

The adaptive detection of point-like target against different kinds of clutter for the low-resolution radar
has been studied for several decades, and some strategies were addressed partly in [1–9]. However,
the application of the modern pulse compression techniques makes the high-resolution radar capable
of resolving a target into a number of discrete scattering centers. These discrete scattering centers of
a so-called range-spread target always occupy several range cells in the radar returns, and it could be
referred to as multiple dominant scattering (MDS) centers [10]. It has been pointed out that increasing
the radar range resolution can reduce the amount of energy per range cell backscattered by distributed
clutter, and the radar detection performance, therefore, could be enhanced largely by making use of
appropriate detection strategies [11]. However, the detection strategies for the point-like target may
have poor performance for the range-spread target because they are not able to take full advantage of
the backscattered energy of a target in the discrete range cells.

The detection of range-spread target embedded in different kinds of clutter background has received
considerable attentions in the recent years. The detection strategies in Gaussian-distributed clutter
have been investigated in [11–15]. The N out of M (N/M) detector and the integration detector are
proposed in [11]. It is pointed out that the latter performs better than the former except that the
target is composed of a single strong point. In [12], the optimal and suboptimal receiver frameworks are
designed in the white Gaussian clutter background, which is considered as the theoretical basis of range-
spread target detection. In [13], a reasonable distribution for the target scatterer density is employed
in the range-spread target detection, and the scatterer density dependent generalized likelihood ratio
test (SDD-GLRT) is proposed. For the singular covariance matrix, a modified generalized likelihood
ratio test (MGLRT) is designed in [14]. Moreover, an orthogonal rejection MGLRT (OR-MGLRT) is
introduced in [15] for range-spread target detection in correlated Gaussian noise and used as the second
stage of a double threshold receiving structure.
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In the situations such as low grazing angles and/or high-resolution radar, the background clutter
may no longer be modeled accurately as a Gaussian random variable [16]. Some heavy-tailed radar
clutter models, such as K distribution [16–18], Pareto distribution [19, 20], KK distribution [21, 22],
are utilized in the target detection scheme design. In [16], the K-distribution is expressed as spherically
invariant random process and then two CFAR detectors, i.e., scatterer density dependent GLRT (SDD-
GLRT) and non-scatterer density dependent GLRT (NSDD-GLRT), are proposed. For the case when
the target scattering centers occupy only a fraction of the range cells under test, it is pointed out
that the amplitudes of the so-called “hot spots” on a target are significantly greater than the other
range cells. Two detectors, i.e., generalized likelihood ratio test based on order statistics (OS-GLRT)
and OS-GLRT with dynamic threshold (DOS-GLRT), are discussed in [17] to overcome the “collapsing
loss”. In [18], a robust detector with CFAR property is proposed, which cascades a detector based on
the GLRT and two binary integrators. Validation of the resultant Pareto clutter intensity model for
X-band radar returns has been included in [23, 24]. The target detectors based on Pareto distribution,
i.e., the optimal detector, the GLRT detector and the whitening matched filter (WMF), are compared
in [19, 20]. The optimal decision rules for the totally known constant target based on Neyman-Pearson
criterion in KK-distributed radar clutter is derived in [21]. Additionally, the GLRT detector is proposed,
which makes use of the MLE of the target amplitude. Both these two detectors are dependent on the
modified Bessel-function of the second kind. A computationally simpler suboptimal detection scheme,
using a well-known Bessel identity to eliminate the Bessel function dependence, is derived in [22]. The
simulation results show that small detection losses are possible if an appropriate number of looks are
chosen.

The RSRG texture model is proposed in [25] as a particular case of the square root of generalized
inverse Gaussian distribution. It is capable of modeling texture component of radar clutter with different
degrees of heterogeneity and has been widely applied in heavy-tailed radar clutter modeling, such as
SAR clutter [26, 27], C-band scanning radar [28], etc.. In this paper, the range-spread target detection
in compound Gaussian clutter with RSRG texture is investigated. The optimal detector based on
Neyman-Pearson criterion with known constant target amplitude is introduced firstly. However, in a
real application, the target is unknown and hence it must be estimated. By replacing the uncertain target
amplitude with its MLE, the GLRT detector is then obtained. The statistical property of the texture
component is considered in both of these two detectors, which makes the detectors more computationally
complicated. Substituting the texture component with its MLE, the OS-GLRT is finally derived.

The remainder of this paper is organized as follows. The compound Gaussian distribution with
RSRG texture is introduced in Section 2. The detection problem with target and clutter models is
formulated in Section 3. Section 4 is devoted to the design of the detectors in the compound Gaussian
distributed clutter, followed by their performance assessment in Section 5. The concluding remarks are
given in Section 6.

2. COMPOUND GAUSSIAN MODEL WITH RSRG TEXTURE

The compound Gaussian distribution with RSRG texture is derived from the multiplicative clutter
model. It takes the clutter observations as a product of two independent random variables: one
(X) modeling the speckle noise and the other (Y ) modeling the terrain backscatter, i.e., the texture
component. Therefore, the observations are defined by the product Z = X ·Y . It is considered that both
the imaginary and real part of the speckle noise can be modeled by correlated Gaussian distribution,
resulting in Rayleigh distributed speckle noise, which is characterized by the density

fX (x| y) =
x

y2
exp

(
− x2

2y2

)
, x, y > 0, (1)

where y is the parameter representing the texture component.
The RSRG distribution is proposed as a special case of the square root of generalized inverse

Gaussian distribution. In [25], it is pointed out that the RSRG distribution is an outstanding model
for the homogeneous, heterogeneous, and extremely heterogeneous clutter data. Its probability density
function (PDF) is given by

fY (y) =
2

γαΓ (−α)
y2α−1 exp

(−γ
/
y2

)
, −α, γ, y > 0. (2)
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Then the compound Gaussian distribution can be written as

fZ (x) =
∫ ∞

0
fX(x| y)fY (y)dy =

−αx
(
x2 + 2γ

)α−1

γα2α−1
, −α, γ, x > 0. (3)

From (3), it can be seen that the compound Gaussian distribution is actually the single-look amplitude
G0 distribution, whose rth order moments are given by

E {Zr} = 2r/2Γ
(r

2
+ 1

)
γr/2 Γ (−α− r/2)

Γ (−α)
. (4)

3. PROBLEM FORMULATION

Assume that the radar returns are collected from N coherent pulses. The problem of range-spread
target detection can be expressed as judging the presence of a range-spread target across K range cells
zk (k = 1, 2, . . . , K). It is supposed that the possible target is completely contained within the K range
cells, and its range migration is neglected within a coherent processing interval (CPI). A secondary data
set zk (k = K + 1, . . . , K + R) without any useful target echo is also collected, including pure clutter
with the same statistical properties as the primary data. It is also assumed that the clutter power is
significantly greater than the internal noise contribution [17]. In other words, the internal noise has
little effect on the detector performance. Therefore, the internal noise can be ignored, and the detection
problem can be formulated in terms of the following binary hypotheses test




H0 : zk = ck, k = 1, 2, . . . , K + R

H1 :
{
zk = βkp + ck, k = 1, 2, . . . , K
zk = ck, k = K + 1, . . . , K + R

, (5)

The complex random variable βk (k = 1, 2, . . . , K) accounts for target characteristics, which is assumed
to be constant from scan to scan. Therefore, |βk| (k = 1, 2, . . . , K) is the target amplitude. The
parameter p is the steering vector, i.e., p = (1, ejf0 , ej2f0 , . . . , ej(N−1)f0)T where f0 denotes a constant
and known phase shifting, and (·)T represents transpose.

The SIRP provide a general formulation of the joint density of a non-Gaussian random process.
Traditionally, a SIRP is introduced as a process whose finite order subprocesses, called spherically
invariant random vector (SIRV), possess a specific density. However, due to an equivalent formulation,
the SIRV and SIRP can be specified in a manner more intuitive to the modeling of radar returns as
follows. The N -dimension complex envelope of the clutter return ck in range cell k is called SIRV if it
can be written in the compound Gaussian formulation:

ck = τk · ηk, k = 1, . . . , K + R, (6)

where the texture component τk is a nonnegative real valued univariate random variable with density fτ ,
and the speckle noise ηk = [ηk(1), ηk(2), . . . , ηk(N)]T is zero mean complex Gaussian random vector, or
multidimensional complex Gaussian process. It is assumed that τk and ηk are independent from range
cell to range cell. In this paper, the texture component is modeled by RSRG distribution

fτ (τk) =
2

γαΓ (−α)
τ2α−1
k exp

(−γ
/
τ2
k

)
, −α, γ, τk > 0, (7)

The covariance matrix Σ associated with ηk (k = 1, 2, . . . , K + R) is defined as

Σ = E{ηkη
H
k }, k = 1, . . . , K + R, (8)

where (·)H represents conjugate transpose.
For concise, it is assumed that in each range cell there is at most one scattering center. In many

application cases, the scattering centers of a range-spread target may occupy only a fraction of the
K range cells. Furthermore, the amplitudes of range cells containing target scattering centers are
significantly greater than that of range cells with pure clutter [16]. If these range cells with pure clutter
are integrated in the target detection process, the detection performance may be degraded, which is
called “collapsing loss” [29]. Let ΘJ denote the index set of range cells containing target scattering
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centers, where the subscript J represent the number of scattering centers, i.e., the number of effective
range cells. Then the binary hypotheses test in (5) can be simplified as

{
H0 : zk = ck, k ∈ ΘJ

H1 : zk = βkp + ck, k ∈ ΘJ
. (9)

4. DETECTORS DESIGN

It is assumed that the normalized covariance matrix Σ in (8) and p in (9) is known. According to the
previous assumptions, the joint PDF of zk (k ∈ ΘJ) conditioned on τk and βk under each hypothesis is
given by ∏

k∈ΘJ

f(zk| τk, βk,Hi) =
∏

k∈ΘJ

1
τ2N
k |Σ| exp

[
−qi(k)

τ2
k

]
, i = 0, 1, (10)

where |·| denotes determinant, and q0(k) = zH
k Σ−1zk, q1(k) = (zk − βkp)HΣ−1(zk − βkp). Taking

account of the RSRG distribution of the texture component τk, the joint conditional PDF of zk (k ∈ ΘJ)
conditioned on βk can be expressed as

∏

k∈ΘJ

f(zk|βk,Hi) =
∏

k∈ΘJ

Eτ{f(zk| τk, βk,Hi)} =
∏

k∈ΘJ

∫ ∞

0
f(zk| τk, βk,Hi) · fτ (τk)dτk

=
∏

k∈ΘJ

∫ ∞

0

1
τ2
kN |Σ| exp

[
−qi(k)

τ2
k

]
· fτ (τk)dτk i = 0, 1. (11)

Hence if we define a function hS(s)

hS(s) =
∫ ∞

0

1
τ2N
k

exp
[
− s

τ2
k

]
· fτ (τk)dτk (12)

Then for the RSRG texture component, by substituting the PDF (7) in (12) it yields

hS(s) =
Γ(N − α)(s + γ)α−N

Γ(−α)γα
(13)

Now the clutter joint density conditioned on βk can be written in the compact form as
∏

k∈ΘJ

f(zk|βk,Hi) =
1

|Σ|J
∏

k∈ΘJ

hS(qi(k)), i = 0, 1 (14)

The function hS(s) defined in (12) is of great importance in SIRP theory, as all densities of interest
are expressed in terms of it. It is thus called the characteristic function.

4.1. The Optimal Detector

To simplify the analysis, it is assumed that the target amplitude βk (k ∈ ΘJ) is a fixed constant that is
completely specified. The Neyman-Pearson optimal detector is the ratio of the densities under H1 and
H0 hypothesis. Hence, according to (14), the likelihood ratio test can be expressed as

λopt =

∏

k∈ΘJ

hS(q1(k))

∏

k∈ΘJ

hS(q0(k))
=

∏

k∈ΘJ

(q1(k) + γ)α−N

∏

k∈ΘJ

(q0(k) + γ)α−N
(15)

The logarithmic expression of (15) is further given by

λopt = (α−N)


 ∑

k∈ΘJ

ln (q1(k) + γ)−
∑

k∈ΘJ

ln (q0(k) + γ)


 (16)
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Then the optimal decision rule is

λopt

H1
≷
H0

Gopt (17)

where Gopt is the detection threshold, which can be determined numerically from the given false alarm

ratio. The notation X
H1
≷
H0

Y means that the H0 hypothesis is rejected if and only if X > Y . The detection

statistic in (16) is a function of the fixed target echo, which is assumed to be totally known. As a result,
different thresholds Gopt are required to maintain a fixed false alarm ratio for varying signal to clutter
ratio (SCR) and different distributions of the target energy in the J range cells.

4.2. GLRT Detector

In a real application, the amplitude of the target echo in each range cell is unknown and hence βk (k ∈
ΘJ) has to be estimated firstly in the target detection process. As the assumption aforementioned, the
βk (k ∈ ΘJ) is constant from scan to scan. Then these parameters are estimated by the ML estimator.
By applying the MLE to (17), the GLRT detector with known covariance matrix Σ can be derived as

λGLRT =

max
βk

∏

k∈ΘJ

hS(q1(k))

∏

k∈ΘJ

hS(q0(k))

H1
≷
H0

GGLRT (18)

where GGLRT is the detection threshold. The MLE of βk (k ∈ ΘJ) can be obtained by maximizing the
function hN (q1(k)) in (14), i.e.,

β̂k =
pHΣ−1zk

pHΣ−1p
, k ∈ ΘJ (19)

From (19) and (18), the logarithmic expression of GLRT detector is given by

λGLRT = (α−N)


 ∑

k∈ΘJ

ln (q̂1(k) + γ)−
∑

k∈ΘJ

ln (q0(k) + γ)


 H1

≷
H0

GGLRT (20)

where q̂1(k) denotes the estimate of q1(k) with β̂k in (19).

4.3. OS-GLRT Detector

Both of the statistical properties of the two components, i.e., the speckle noise and texture component
are considered in the optimal detector and the GLRT detector. Considering that 1) the number and
the location of the range cells containing target scattering centers are unknown, i.e., the set ΘJ is
unknown; 2) it is computationally complicated to obtain the MLE of βk (k ∈ ΘJ), the aforementioned
two detectors are not practicable in the real scenarios. In this subsection, the GLRT detector based
on order statistics is proposed, in which the statistical property of the texture component is ignored,
and the true τk (k ∈ ΘJ) in the range cells are replaced by their MLEs. According to the OS method,
some largest observations from the range cells occupied by the most likely target scattering centers are
utilized to overcome the “collapsing loss” resulting from the lack of scattering center information.

Under the assumption that the normalized clutter covariance matrix Σ is known, the GLRT without
the statistical property of texture component can be derived from

λGLRT =

max
τ

max
β

∏

k∈ΘJ

f(zk| τk, βk,H1)

max
τ

∏

k∈ΘJ

f(zk| τk,H0)

H1
≷
H0

GGLRT (21)
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By substituting (10) in (21), the GLRT can be written as

λGLRT =

max
τ

max
β

∏

k∈ΘJ

1
τ2N
k

exp
[
−q1(k)

τ2
k

]

max
τ

∏

k∈ΘJ

1
τ2N
k

exp
[
−q0(k)

τ2
k

] (22)

In (22), the MLE of τk (k ∈ ΘJ) under the hypotheses H0 and H1 can be derived by utilizing the MLE
of βk (k ∈ ΘJ) in (19) as

H0 : τ̂k =
1

2N
q̂0(k)

H1 : τ̂k =
1

2N
q̂1(k)

(23)

Substituting (19) and (23) into (22), the GLRT is denoted as

λGLRT = −2(N − 1)
∑

k∈ΘJ

ln

[
1−

∣∣pHΣ−1zk

∣∣2
(
zH

k Σ−1zk

) (
pH

k Σ−1pk

)
]

H1
≷
H0

GGLRT (24)

Define a quantity wk as

wk =

∣∣pHΣ−1zk

∣∣2
(
zH

k Σ−1zk

) (
pH

k Σ−1pk

) , (25)

which is part of the detection statistical in (24). From the previous formula, the quantity wk can be
interpreted as the normalized energy of zk after matched filtering. Then the set ΘJ can be estimated
according to the values of normalized energy wk [17]. In sort descending, the order statistics of
wk (k ∈ ΘK) are denoted as

w(1) ≥ w(2) ≥ . . . ≥ w(k) ≥ . . . ≥ w(K) (26)

Hence, the detection statistic of the OS-GLRT detector can be obtained from the first J elements of
the set w(k) (k = 1, 2, . . . , J) as

λOS-GLRT = −2(N − 1)
J∑

k=1

ln
(
1− w(k)

)H1
≷
H0

GOS-GLRT (27)

where GOS-GLRT is the detection threshold of the OS-GLRT detector.

5. PERFORMANCE ASSESSMENT

The performance of the optimal detector, GLRT detector, and OS-GLRT detector are assessed by
the Monte-Carlo simulation in this section. It is assumed that the normalized covariance matrix Σ
is Toeplitz, and the power spectrum density (PSD) of the speckle noise is supposed to be Lorentzian.
Therefore, the clutter samples are generated from an exponential correlation structure, i.e., the elements
of the matrix Σ is given by [30]

[Σ]i,j = γ|i−j|
c , 1 ≤ i, j ≤ N (28)

where the parameter γc denotes the one-lag correlation coefficient.
The texture is modeled by the RSRG distribution as given in (7), in which α is the shape parameter

controlling the deviation from Gaussian statistics and γ is the scale parameter indicating the mean
of the distribution. Without loss of generality, the scale parameter γ is set as γ = 10. Firstly,
a group of clutter samples with RSRG texture are generated for the shape parameter α = −1.5.
The amplitudes of the target scattering centers in the range cells are assumed to be independent
identical distribution (IID), zero-mean complex circular Gaussian random vectors (RV) with the variance
E{|βk|2} = εkσ

2
sK (k ∈ ΘJ), where εk implies the fraction of the total energy in the given range cell
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Table 1. Values of εk for typical MDS models.

Model Range Cell Number
Number 1 2 . . . J

1 1/J 1/J 1/J 1/J

2 0.5 0.5/(J − 1) 0.5/(J − 1) 0.5/(J − 1)
3 0.9 0.1/(J − 1) 0.1/(J − 1) 0.1/(J − 1)

k, and the σ2
s indicates the average signal power per range cell. In this paper, three typical multiple

dominant scatters models are considered in Table 1.
The performance of these detectors depend on the parameters, such as βk(k ∈ ΘJ), p, etc., only

through the input SCR defined as

SCR =
σ2

s

σ2
c

pHΣ−1p (29)

where σ2
c = E(|c|2) = 2γ/(−α− 1) indicates the average clutter power per range cell. It is really

hard to compute the analytic detection threshold for a given false alarm probability PF . Alternatively,
the thresholds are obtained by Monte-Carlo simulation. Moreover, the probability of detection PD is
estimated based on Monte-Carlo simulation. The trials of Monte-Carlo simulations used to calculate
PF and PD are 100/PF and 10000, respectively. In order to alleviate the computational burden, it is
assumed that PF = 10−4, and the other parameters are set to be K = 12, J = 5, N = 5, f0 = 0.4,
γc = 0.99.

Firstly, the effect of different MDS models on the performance of these three detectors is evaluated.
In Figure 1, the plots of PD versus SCR of the three detectors are given for the three different MDS
models in Table 1. It can be seen from the plots that all the three detectors has the best performance
with MDS Model 1, where the target energy is uniformly distributed in J range cells. If most of the
target energy is concentrated in one range cell, the performance of the three detectors is degraded.
From (16), (20), and (27), the detection statistics of the three detectors are expressed as the product
or logarithmic sum of the returns in the J range cells. Therefore, if the total target energy in all the J
range cells is given, it can be concluded that the detection statistics achieve their maximum value when
the target energy is uniformly distributed. Contrarily, if the target energy is gradually concentrated,
the three detection statistics are all getting smaller, which results in significant detection loss.

Figure 1. PD versus SCR of the three detectors with
MDS Model 1–Model 3.

Figure 2. Detection threshold of the optimal
detector versus SCR with the MDS Model 1–
Model 3.
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If the target energy is uniformly distributed, taking the MDS Model 1 as an example, it can be seen
that the optimal detector has the best performance, and the performance of OS-GLRT detector is the
most poor. It also can be seen that the optimal detector is much better than the GLRT detector; and
the performance discrepancy of the OS-GLRT detector and GLRT detector is not that evident. This
means that the primary factor which affects the detector performance mostly is the estimation accuracy
of the amplitude βk(k ∈ ΘJ); and the statistical property of the texture has much less influence. If the
target energy is concentrated, taking the MDS Model 3 for example, the GLRT detector has the best
performance and the performance of the optimal detector, contrarily, is very poor. This means that the
optimal detector is significantly affected by different MDS models.

The detection statistic of the optimal detector is obtained under the condition that the target
amplitudes are totally known. As aforementioned, the detection threshold must be changed to maintain
a fixed PF for different SCRs or/and different distributions of the target energy in the J range cells.
In Figure 2, the detection threshold of the optimal detector versus SCR is plotted for the three MDS
models. It is seen from Figure 2 that the detection thresholds for the three MDS models have the same
trend, and all of them are not monotone with the SCR increasing from −10 dB to 20 dB. For the range
cells without target scattering centers, since 1) the variable q1 is increasing when the SCR is below 0 dB,
and it is degressive if the SCR is greater than 0 dB; 2) the detection statistic of the optimal detector
in (16) is a monotonically increasing function of q1, the detection statistic increases firstly and then
decreases as the same as q1. As a result, the detection thresholds changes as in Figure 2 to maintain a
fixed PF .

Table 2 lists the runtimes of the three detectors for 10000 Monte-Carlo trials. From this table, the
runtime consumed by the OS-GLRT detector is roughly as long as the optimal detector. The GLRT
detector, however, consumes much more runtime because the amplitudes of the target scattering centers
must be estimated in its procedure. Considering that: 1) the target energy is always totally unknown
in the real applications; 2) the GLRT is computationally expensive, the OS-GLRT detector, therefore,
is more applicable in the compound Gaussian clutter with RSRG texture.

Table 2. The runtimes of the three detectors for 10000 Monte-Carlo trials.

Detectors Optimal Detector GLRT Detector OS-GLRT Detector
Runtime/s 8.2325 12.7317 8.2183

Then the performance of the OS-GLRT detector with different parameters is considered. The
performance of the OS-GLRT detector is compared for different false alarm rate, i.e., PF = 10−6 and
PF = 10−4, in Figure 3. It can be seen clearly that the PD declines when the PF decrease from 10−4

to 10−6 for all the three models. For the Model 3, the variation of the probability PD is up to 0.3702,

Figure 3. PD versus SCR of the OS-GLRT
detector for different PF .

Figure 4. PD versus SCR of the OS-GLRT detector
with different shape parameter α.
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Figure 5. PD versus SCR of the OS-
GLRT detector with different one-lag correlation
coefficient γc.

Figure 6. PD versus SCR of the OS-GLRT
detector with different constant phase shifting f0.

Figure 7. PD versus SCR of the OS-GLRT
detector with different N .

Figure 8. PD versus SCR of the OS-GLRT
detector with different estimated number of
scattering centers Je.

which is much greater than the ones for the Model 1. It means that the effect of PF on the probability
of detection is more evidently if the target energy is more un-uniformly distributed.

Figure 4 plots the probability of detection versus SCR of the OS-GLRT detector with different shape
parameter α of the RSRG texture. The results indicate that the detection performance is improved
evidently as the shape parameter α increases from −10 to −0.8. According to [25], the shape parameter
α is related to the degree of homogeneity. Concretely, a larger α suggests more heterogeneous clutter
region. Therefore, the OS-GLRT performs better in the target detection against more heterogeneous
clutter. The performance of the OS-GLRT detector with different one-lag correlation coefficient γc and
constant phase shifting f0 is given in Figure 5 and Figure 6. The figures show that the OS-GLRT
detector is not affected by these two parameters. In Figure 7, the curves of PD versus SCR for OS-
GLRT detector are given with different numbers of coherent pulse N . It is observed that the detection
performance is improved evidently as N increases from 3 to 8.

Let Je denotes the estimated number of the scattering centers. All the simulation results in
Figure 3–Figure 7 of the OS-GLRT detector are obtained for the match case, i.e., the estimated number
of scattering centers equals the actual one (Je = J). However, the actual number of scattering centers of
a range-spread target is always unknown and cannot be estimated exactly in the real application. The
PD versus SCR of the OS-GLRT detector for different Je are plotted in Figure 8 for J = 5. It is observed
that the OS-GLRT detector performs best in the match case. When the estimated number of scattering
centers is larger than the actual one (Je = 7, 9), the SCR loss due to mismatch is small; however, when
the estimated number of scattering centers is smaller than the actual one (Je = 1, 3), OS-GLRT is
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degraded sharply, especially for Je = 1. The reason account for this is that some of the range cells
occupied by target scattering centers are not integrated in the statistic detection for OS-GLRT when
Je < J .

6. CONCLUSIONS

In this paper, the range-spread target detection in the compound Gaussian distributed clutter with
RSRG texture is studied. Three detectors, i.e., the optimal detector, GLRT detector, and the OS-
GLRT detector, are considered. Base on the simulation results, it can be concluded that:

1) The optimal detector has the best performance if the target energy is uniformly distributed.
However, it has a severely detection loss if most of the target energy is concentrated in one range cell.

2) The detection threshold of the optimal detector must be changed to maintain a constant false
alarm probability for different SCRs or/and distributions of target energy.

3) The GLRT is computationally expensive compared with the other two detectors because of the
estimation of the target energy in its procedure.

4) The OS-GLRT detector is carried out without the statistical property of the texture. It has worse
performance than the others if the target energy is uniformly distributed. However, it is computationally
cheaper than the others. Moreover, it performs very well if the target energy is concentrated.

5) The OS-GLRT detector is hardly affected by the one-lag correlation coefficient γc and the
constant phase shifting f0. It is more applicable for the range-spread target detection in the compound
Gaussian distributed clutter with RSRG texture, especially in the heterogeneous region.

6) The OS-GLRT detector is more robust for the case when the estimated number of scattering
centers is larger than the actual (Je > J) than the cases when Je < J .
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