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A Mathematical Model for the Transient Lightning Response from
Grounding Systems

Zhong-Xin Li*, Yu Yin, Cui-Xia Zhang, and Liu-Cun Zhang

Abstract—With the Fast Fourier Transform (FFT), a mathematical model for accurately computing
distribution of a lightning currents flowing along a high voltage a.c. substation’s grounding system
buried in half infinite homogenous earth has been developed in this paper. It is a hybrid of Galerkin’s
method of moment (MoM) and a conventional nodal analysis method. The model can directly calculate
the distribution of both branch and leakage currents along the grounding system. A dynamic state
complex image method and a closed form of Green’s function of a dipole or monopole in the half infinite
homogenous earth model are introduced into this model to accelerate calculations of mutual impedance
and induction coefficients. Analytical formulae for the mutual induction and impedance coefficients
have been developed to accelerate the calculation for near field case by using Maclaurin expansion.
With the inverse FFT, the model can be used to study the transient lightning response of a grounding
system.

1. INTRODUCTION

For lightning protection system earth termination, grounding systems are often used, whose basic
function is to disperse the lightning current to earth without causing any potential differences or induced
voltages that might endanger people or damage installations. The behavior of grounding systems at
power frequencies is well understood and detailed procedures for their design are widely accepted [1].
However, the performance of grounding systems due to lightning strokes might be quite different, and
in some cases it the efficiency of the protection can critically deteriorate. In spite of the large amount
of work that has been devoted to this subject, there is still no consensus on how to apply our current
knowledge to the design of the grounding for better high frequency and dynamic performance [2].

Recently many computerized analysis methods have been developed based on different approaches
to research the response of grounding systems to lightning strokes, for example, circuit theory method [3–
6], transmission line theory method [7–13], electromagnetic field theory method [14–22], hybrid
method [23–26], and finite difference time domain method (FDTD) [27, 28]. Among these numerical
methods, the last hybrid method has combined the merits of circuit theory and electromagnetic field
theory methods, and can directly calculate the distribution of both branch and leakage currents, better
than both circuit theory and electromagnetic field theory methods, further calculating field domain is
much less than the one for the FDTD, so it will be deeply studied in this paper.

The hybrid method has been adapted from quasi-static electromagnetic field theory to high
frequency electromagnetic field theory. The hybrid method based on quasi-static electromagnetic field
theory has been widely used to study substation grounding problem in the low frequency domain in [29–
32]. Meanwhile, the hybrid method has further been used to study the lightning problem for grounding
system in [23–25]. On the other hand, the hybrid method based on high frequency electromagnetic field
theory has been developed to research the lightning problems on a substation’s grounding electrodes
in [26]. However, that paper gives no details about how to achieve the combination of contributions
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from the transversal current and longitudinal current, and does not give the Green’s function for a
dipole buried in homogenous earth model. In this paper, the hybrid method has been systematically
described to study the behavior of high frequency electromagnetic fields of the grounding problem with
more details about the hybrid method and the Green’s function of the dipole buried in the homogenous
earth model. On the other hand, the hybrid method is similar to the partial element equivalent (PEEC)
method which was developed a long time ago [33, 34].

The complex image method has been well developed in the microwave domain [35–39]. It has been
introduced into the electrical power system domain since 1992 by Chow et al. [40]. Due to different
electromagnetic field theories applied to grounding system, the complex image method can be divided
into three categories: 1) electrostatic complex image method (ESCIM) [40, 41]; 2) quasi-static complex
image (QSCIM) [30–32, 42, 43]; and 3) dynamic state complex image method (DSCIM). For the ESCIM
in [40, 41], the electrostatic complex image appeared with some pairs of conjugate complex numbers
or real numbers, and for the QSCIM in [30–32, 42, 43], the quasi-static complex image used pairs of
conjugate complex numbers or complex numbers. We should point out that no matter whether ESCIM
or QSCIM is used, the multilayered earth model must be considered as more than two layers of the
horizontal conductive medium. However, for DSCIM, all multilayered earth models must be considered,
including a homogenous earth model. It can be proved that no pairs of conjugate complex numbers
appear for DSCIM. Furthermore, for DSCIM, a shift complex image method has been introduced to
deal with Sommerfeld’s integral in [44]. However, how to achieve exponential series about an equivalent
coefficient of propagation haven’t been introduced. The complex image method has been mentioned
to study the lightning problem for a grounding electrode without a detailed discussion in [26]. Next,
details for both vertical and horizontal dipoles and scalar monopoles in the homogenous earth model
will be discussed in this paper.

In this paper, following the above works, based on the high frequency dynamic state electromagnetic
field theory and unequal-potential mathematical supposition, and combined with the FFT, a novel
accurate model which is a hybrid of the conventional nodal analysis and Galerkin’s MoM has been
developed for calculating the distribution of both branch and leakage currents along a grounding system
in the half infinite homogenous earth model, within which the interaction mutual induction between
leakage currents and branch currents has been considered. On the other hand, both branch and leakage
currents within the grounding system and their mutual coupling influence are considered in the model.
Due to the high frequency electromagnetic field, there is a Sommerfeld infinite integration in vector
Green’s function of a dipole or scalar Green’s function of a monopole. To accelerate the calculation,
the high frequency DSCIM and a closed form of these Green’s function are introduced, meanwhile,
some analytical formulae will be developed to quickly calculate the mutual inductive and conductive
coefficients for near field. In this way, the efficiency of our method has been achieved. Meanwhile,
with the inverse FFT, the model can calculate the distribution of a lightning current along a grounding
system, which can be used to study the transient lightning response of a grounding system.

2. FREQUENCY DOMAIN ANALYSIS

The transient problem is first solved by a formulation in the frequency domain. The time-domain
response is then obtained by application of a suitable Fourier inversion technique. The response to a
steady state, time harmonic excitation is computed for a wide range of frequencies starting at zero Hz.
From this frequency response, a transfer function is constructed for every frequency considered. The
transfer function is dependent only on the geometric and electromagnetic properties of the grounding
system and its environment.

If i(t) represents the injected current at a point in the grounding system, and x(t) denotes the
observed response, then

x(t) = F−1W (jω) · F [i(t)] (1)

where F and F−1 are the Fourier and inverse Fourier transforms, respectively, W (jω) is the transfer
function, and ω is the angular frequency.

Once the transfer functions W (jω) have been determined for each calculated quantity, for example
the electric field or current at specified points, the time-domain solutions can be obtained by direct
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application of Eq. (1). The calculation of the inverse Fourier transform is carried out by an FFT
algorithm which is well-suited for the evaluation of the time-domain responses.

The impulse impedance, an essential parameter in grounding system design, is used, which has
defined in [45].

3. MATHEMATICAL MODEL OF THE EQUIVALENT CIRCUIT OF THE
GROUNDING SYSTEM

The grounding network’s conductors are assumed to be completely buried in half homogenous earth
with conductivity σ1 and permittivity ε1 = εr · ε0.

The methodology proposed is based on the study of all the inductive, capacitive and conductive
couplings between the different grounding system conductors. First, the grounding system is divided
into Nl segments that can be studied as elemental units, then the discrete grounding system has Np

nodes.
The grounding network is energized by injection of single frequency currents at one or more

nodes. In general, we consider that a sinusoidal current source of value Fm is connected at mth
(m = 1, 2, . . . , Np) node, where scalar electric potential (SEP) Vm of the mth node of the grounding
network refers to the infinite remote earth as defining zero SEP. In the same way, we define an average
SEP Un on nth (n = 1, 2, . . . , Nl) segment. If the segments are short enough, it is possible to consider Un

as approximately equal to the average of the nth segment’s two terminal nodes SEP: Un = (Vl +Vm)/2,
where l and m are the nodes of the nth segment.

3.1. Mathematical Model of the Grounding System in Frequency Domain

With the above considerations, and following [25–32], the obtained electric circuit may be studied using
the conventional nodal analysis method [46], resulting in the following equations:

[
F̄

]
=

[
¯̄Y

]
· [Vn

]
(2)

[
¯̄Y

]
=

[
¯̄K

]t
·
[
Ys

]
·
[

¯̄K
]

+
[
¯̄A

]
·
[
Yb

]
·
[
¯̄A

]t
(3)

where [F̄] is an Np× 1 vector of external current sources; [Yb] is the Nl×Nl branch admittance matrix
of the circuit including resistive and inductive effects, which gives a matrix relationship between branch
currents [Ib]; [Ys] is an Nl ×Nl mutual conduction matrix, which gives a matrix relationship between
average SEP [Ū] and leakage currents [Is] through the rapid Galerkin’s MoM [41]. The distribution
between branch and leakage currents can be seen in Fig. 1. Both [ ¯̄A] and [ ¯̄K] are incidence matrices,
which are used to relate the branches and nodes. They are rectangular matrices of order Nl ×Np, for
whose elements, can be referred to [25–32].

The vector of nodal SEP [Vn] may be calculated through solving (2). Refer to [25, 30] and for the
method of obtaining the average SEP [Ū], leakage current [Is], branch voltage [Ub], and branch current
[Ib].

Once the branch and leakage currents are known, the SEP, electrical field intensity (EFI), and
magnetic field intensity (MFI) at any point in the half homogenous earth can be calculated.

Figure 1. The branch and leakage currents.
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Just as in [30–32], the study of the grounding system’s performance has been reduced to the
computation of [Ys] and [Yb].

3.2. Computation of [Yb] and [Ys]

From [25–32], we know that each segment is modeled as a lumped resistance and self-inductance. Mutual
inductances or impedances between branch or leakage currents are also included in the model:

[
Xq

]
Nl×Nl

=




X1,1 . . . X1,i . . . X1,j . . . X1,Nl

: : : : : : :
Xi,1 . . . Xi,i . . . Xi,j . . . Xi,Nl

: . . . : . . . : : :
Xj,1 . . . Xj,i . . . Xj,j . . . Xj,Nl

: . . . : . . . : : :
XNl,1 . . . XNl,i . . . XNl,j . . . XNl,Nl




−1

(4)

(i) for [Xq] = [Yb] case: Xm,m = Zs
mm + jωLmm, Xn,m = jωMnm; here m = 1, . . . , Nl, n = 1, . . . , Nl.

The diagonal elements consist of self impedance and self induction, other elements belong to mutual
induction between a pairs of conductor segments. The formula for self impedance and self induction
can be referred to [25–32], here, we give out formula of mutual induction as below

Mnm=
∫

ln

∫

lm

t̂n(r̄n) · ¯̄GA(r̄n, r̄m) · t̂m(r̄m)dtmdtn

=
∫

ln

∫

lm

t̂n(r̄n)·



Gx
Ax11

(r̄n, r̄m) 0 0
0 Gy

Ay11
(r̄n, r̄m) 0

Gz
Ax11

(r̄n, r̄m) Gz
Ay11

(r̄n, r̄m) Gz
Az11

(r̄n, r̄m)


 t̂m(r̄m)dtmdtn (5)

where t̂m(r̄m) and t̂n(r̄n) are unit direction vectors along the mth and nth short thin conductors,
respectively. And r̄m and r̄n are position vectors at the surface of mth and nth short thin conductors,
respectively.
If a vector dipole buried in an infinite homogenous conductivity medium, the ¯̄GA(r̄n, r̄m) =
µ
4π

e−jkRnm

Rnm

¯̄I0, here ¯̄I0 is a diagonal unit matrix, and Rnm =
√

(xn − xm)2 + (yn − ym)2 + (zn − zm)2,
we have

Mnm =
µ

4π

∫

ln

∫

lm

e−jkRnm

Rnm
t̂n(r̄n) · t̂m(r̄m)dtmdtn (6)

For the quasi-static state electrical field case, the electromagnetic wave’s propagation effect can be
neglected, we know

Mnm =
µ

4π

∫

ln

∫

lm

1
Rnm

t̂n(r̄n) · t̂m(r̄m)dtmdtn (7)

From [31], we know the mutual induction coefficient (7) can be analytically calculated [47, 48];
however, the mutual impedance coefficient (6) can also be analytically calculated, which will be
introduced later.

(ii) for [Xq] = [Ys] case: Xn,m = Znm.

Znm is the mutual impedance coefficient between a pair of segments in the grounding system. The
matrix above includes the conductive and capacitive effects of the earth, and its elements are the
mutual impedance coefficient Zmn.

Znm =
∫

ln

∫

lm

Gϕ(r̄n, r̄m)
dtm
lm

dtn
ln

(8)
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For an infinite homogeneous conductivity medium, we have Gϕ(r̄n, r̄m) = e−jkRnm

4πσ̄1

1
R and σ̄1 =

σ1 + jωε1, so

Znm =
1

4πσ̄1lmln

∫

ln

∫

lm

e−jkRnm

Rnm
dtmdtn (9)

For the quasi-static state electrical field case, since the electromagnetic wave’s propagation effect
has been neglected, we know

Znm =
1

4πσ̄1lmln

∫

ln

∫

lm

1
Rnm

dtmdtn (10)

From [31], we know the mutual impedance coefficient (10) can be analytically calculated [47, 48];
however, the mutual impedance coefficient (9) can also be analytically calculated, which will be
introduced later.

4. THE CLOSED FORM OF THE GREEN’S FUNCTION OF A SCALAR MONO-
POLE OR VECTOR DIPOLE IN THE HALF HOMOGENOUS EARTH MODEL
AND THE DYNAMIC STATE COMPLEX IMAGE METHOD

From [49, 50], we have the vector and scalar Green’s function of a vertical dipole and a monopole:

Gz
Az11

(ρ, z; ρ′, z′) =
µ

4π

∫ ∞

0

kρ

jkz1

[
e−jkz1 |z−z′| − kTM

01 e−jkz1(z′+z)
]
J0(kρρ)dkρ (11)

where ρ =
√

x2 + y2, ρ′ =
√

x′2 + y′2; and (x, y, z) and (x′, y′, z′) are, respectively, numerical value of
coordination for source and field points. Meanwhile, kTM

01 = σ̄1kz0−σ̄0kz1
σ̄1kz0+σ̄0kz1

.

Gϕ11(ρ, z; ρ′, z′) =
1

4πσ̄1

∫ ∞

0

kρ

jkz1

[
e−jkz1 |z−z′| − kϕ

01e
−jkz1(z+z′)

]
J0(kρρ)dkρ (12)

where kϕ
01 = σ̄0kz0−σ̄1kz1

σ̄0kz0+σ̄1kz1
.

Meanwhile, the vector Green’s function of a horizontal dipole along the x-axis is

Gx
Ax11

(ρ, z; ρ′, z′) =
µ

4π

∫ ∞

0

kρ

jkz1

[
e−jkz1 |z−z′| − kTE

01 e−jkz1 (z′+z)
]
J0(kρρ)dkρ (13)

where kTE
01 = kz0−kz1

kz0+kz1
.

Gz
Ax11

(ρ, z; ρ′, z′) =
µ

4π

∂

∂x

∫ ∞

0

[
−kTM

01 + kTE
01

kρ
e−jkz1 (z+z′)

]
J0(kρρ)dkρ (14)

or

Gz
Ax11

(ρ, z; ρ′, z′) =
µ

4π

∂

∂x

∫ ∞

0

kρ

jkz1

[
−jkz1

kTM
01 + kTE

01

k2
ρ

e−jkz1(z+z′)
]

J0(kρρ)dkρ (15)

First, the closed form of Green’s function of a vertical dipole in Eq. (11) is considered. Using
[35–36] and applying the Matrix Pencil (MP) method [51], we develop kTM

01 into a finite exponential
series:

kTM
01 = k̃TM

01 +
MTM∑

i=1

αTM
i eβTM

i jkz1 (16)

where k̃TM
01 = σ̄1−σ̄0

σ̄1+σ̄0
, which is the quasi-static term of kTM

01 .

Gz
Az11

(ρ, z; ρ′, z′)=
µ

4π

∫ ∞

0

[
kρ

jkz1

e−jkz1 |z−z′| − k̃TM
01 e−jkz1(z′+z)

−
MTM∑

i=1

αTM
i

kρ

jkz1

e−jkz1 (z′−βTM
i +z)


J0(kρρ)dkρ (17)
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Considering the Sommerfeld identity,
∫ ∞

0

kρ

jkz1

e−jkz |z|J0(kρρ)dkρ =
e−jkR0

R0
(18)

and Lipschitz integration ∫ ∞

0
e−zkρJ0(kρρ)dkρ =

1
R0

(19)

where R0 =
√

ρ2 + z2, we have

Gz
Az11

(
r̄, r̄′

)
=

µ

4π


e−jk1R

R
− k̃TM

01

R′ −
MTM∑

i=1

αTM
i

e−jk1RTM
i

RTM
i


 (20)

where

R =
√

(x−x′)2+(y−y′)2+(z−z′)2, R′ =

√
(x−x′)2+(y−y′)2
+(z + z′)2 ,

RTM
i =

√
(x− x′)2 + (y − y′)2 + (z − βTM

i + z′)2.

We must point out that the complex image method and the closed form of Green’s function
have been much used in the microwave domain [35–39]. Here, the complex image method has further
been introduced into the electrical power system domain to analyze the behavior of a high frequency
electromagnetic field, meanwhile, according to the characteristics of the complex image method applied
in the electrical power system domain, the complex image method has been called DSCIM.

Then, the closed form of Greens function of a monopole and a horizontal dipole in Eqs. (12), (13)
and (14) are considered. Just as for kTM

01 , all these kϕ
01, kTE

01 , and jkz1

kTM
01 +kTE

01
k2

ρ
, can be developed into

finite terms of exponential series, and applying Sommerfeld identity, Lipschitz integration and its varied
form

∫∞
0 e−zkρJ0(kρρ)dkρ

kρ
= ln(z +

√
z2 + ρ2), we have

Gϕ11

(
r̄, r̄′

)
=

1
4πσ̄1

[
e−jk1R

R
− k̃ϕ

01

R′ −
Mϕ∑

i=1

αϕ
i

e−jk1Rϕ
i

Rϕ
i

]
(21)

where Rϕ
i =

√
(x− x′)2 + (y − y′)2 + (z − βϕ

i + z′)2.

Gx
Ax11

(
r̄, r̄′

)
=

µ

4π


e−jk1R

R
−

MTE∑

i=1

αTE
i

e−jk1RTE
i

RTE
i


 (22)

where RTE
i =

√
(x− x′)2 + (y − y′)2 + (z − βTE

i + z′)2.

Gz
Ax11

(
r̄, r̄′

)
=

µ

4π

∂

∂x


−k̃TM

01 ln
((

z+z′
)
+R′)−

MTEM∑

i=1

αTEM
i

e−jk1RTEM
i

RTEM
i


 (23)

where RTEM
i =

√
(x− x′)2 + (y − y′)2 + (z − βTEM

i + z′)2.
For the quasi-static electrical field case, since the electromagnetic wave’s propagation effect can be

neglected, we have

Gz
Az11

(
r̄, r̄′

)
=

µ

4π

[
1
R
− k̃TM

01

R′

]
(24)

Gx
Ax11

(
r̄, r̄′

)
=

µ

4π

1
R

(25)
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Gz
Ax11

(
r̄, r̄′

)
=

µ

4π

∂

∂x

[
−k̃TM

01 ln
((

z + z′
)

+ R′)] (26)

Gϕ11

(
r̄, r̄′

)
=

1
4πσ̄1

[
1
R
− k̃ϕ

01

R′

]
(27)

The vector and scalar Green’s functions GAz11(r̄, r̄′), GAx11(r̄, r̄′), Gz
Ax11

(r̄, r̄′), and Gϕ11(r̄, r̄′) for
the quasi-static electrical field case can be found in [31].

5. HOW TO QUICKLY CALCULATE ANALYTICALLY THE ELEMENTS OF [Y b]
AND [Y s] FOR THE HIGH FREQUENCY ELECTROMAGNETIC FIELD CASE

The Mmn in Eq. (6) and Zmn in Eq. (9) are, respectively, the mutual induction and impedance
coefficients. In the general case, we introduce the symbol Amn to denote Mnm and Zmn, so we have

Amn =
∫

lm

∫

ln

e−jkRnm

Rnm
dtmdtn, (28)

Here m=1, . . . , Nl, n=1, . . . , Nl, and R=

√
(xn−xm)2+(yn−ym)2

+(zn − zm)2 .

For two short conductors lm and ln at any position, we can write their line parameter equations
as follows: lm: x = xm(tm) = ax

mtm + bx
m, y = ym(t) = ay

mtm + by
m, z = zm(tm) = az

mtm + bz
m; and ln:

x = xn(tn) = ax
ntn + bx

n, y = yn(tn) = ay
ntn + by

n, and z = zn(tn) = az
ntn + bz

n.
Thus, we have

Amn =
∫

lm

∫

ln

e−jk
√

t2m+2βtm+γ

√
t2m + 2βtm + γ

dtmdtn (29)

where β = −(ax
max

n + ay
may

n + az
maz

n)tn + (ax
mbx

m + ay
mby

m + az
mbz

m)− (ax
mbx

n + ay
mby

n + az
mbz

n) = −ξtn + ζ;
and γ = t2n + 2[(ax

nbx
n + ay

nby
n + az

nbz
n) − (bx

max
n + by

may
n + bz

maz
n)]tn − 2(bx

mbx
n + by

mby
n + bz

mbz
n) + (bx

m)2 +
(by

m)2 + (bz
m)2 + (bx

n)2 + (by
n)2 + (bz

n)2 = t2n + 2ψtn + χ.
Here, we can use the Maclaurin series to expand the Xnm, so an analytical formula can be obtained

instead of the numerical integration, this will be introduced below.
According to the Maclaurin series, we have

Amn =
∫

lm

∫

ln

[
1√

(tm + β)2+γ − β2
−jk − k2

√
(tm + β)2 + γ − β2

2
+

jk3
(
(tm + β)2 + γ − β2

)

6
+ . . .

+
(−jk)η

√
((tm+β)2+γ−β2)η−1

η!
+ . . . +

(−jk)Nt

√
((tm + β)2 + γ − β2)Nt−1

Nt!


 dtmdtn, (30)

Here, η = 0, 1, 2, . . . , Nt, and Nt is the maximum number of the Maclaurin series, which is chosen
by the desired precision of the calculation. We must point out that the first term can analytically
calculated [47, 48, 52], however, others must be carefully studied. After some examination, we can see
that the above formula consists of two kinds of pieces of basic integral formulae:

T1(η) =
∫ l2

l1

tη ln
(
f + bt +

√
t2 + Q2

)
dt, (31)

T2(η) =
∫ l2

l1

tη
√

t2 + Q2dt, (32)

Both of the two formulae can be solved analytically, which have been fully discussed in [53].
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6. NUMERICAL RESULTS AND ANALYSIS

According to the approach introduced in this paper, a Fortran language program has been implemented,
which can simulate any complicated grounding system in a half infinite homogenous earth model.

6.1. Verification of Model

To verify the results of the method proposed in this work, some cases solved by other authors [55–58]
are studied. Although our mathematical model was designed to calculate the behavior of high frequency
electromagnetic fields within a grounding system, the model can also calculate the behavior of a low
frequency electromagnetic field in the grounding system. To verify our model, numerical results for
both high and low frequency electromagnetic fields will be observed through different comparisons.

6.1.1. Low Frequency Domain Case

The first case is from [55], in which the unequal potential model is used. The earth is homogenous,
whose conductivity is 100−1 S/m, the size of the grounding grid is 60 m× 40m and consists of a 6× 4
mesh grid, the material of the conductor is Cu, whose conductivity is 5.8×10+7 S/m, and whose radius
is 10mm, and is buried at a depth of 0.5 m. The potential at injecting point is 960.9 V from [55], the
calculated maximum value of SEP at injecting point are, respectively, (963.2, 2.720) V for the quasi-
static electrical field case and (951.9, −7.569)V for the dynamic state electromagnetic field case, and
the minimum values of SEP at the grid are, respectively, (962.4, −1.016)V for the quasi-static electrical
field case and (951.1, −11.235) V for the dynamic state electromagnetic field case. In the calculation,
the permittivity of the earth is 5ε0 and the frequency is 50 Hz.

The second case, from [56], which gives some grounding impedance measurement results, two types
of grids are used for the measurements: grid (a) is 100 m×100m 16-mesh grid, grid (b) is a 50 m×50m
16-mesh grid. The earth is considered as a half uniform medium. The radius of the grid conductors
is 0.5 cm, and they are buried at a depth of 0.5m in the earth. Here, the conductivity of the copper
conductors is σCu = 5.8× 107 S/m, and the permittivity of the earth model is set at ε1 = 5. The result
can be seen in Tables 1 and 2.

Table 1. Comparison with published measurement result: Uniform earth model (σ = 10−2 S/m)
f = 80 Hz.

grid type Ref. [56] Our model
grid Meas. Quasi-static Dynamic state
a 0.52 (0.55, 1.65× 10−4) (0.54, −1.25× 10−2)
b 0.99 (1.04, 3.11× 10−3) (1.03, −1.03× 10−2)

Table 2. Comparison with published measurement result: uniform earth model (σ = 10−1 S/m)
f = 80 Hz.

grid type Ref. [56] Our model
grid Meas. Quasi-static Dynamic state
a 0.05 (0.07, 1.35× 10−4) (0.07, −3.00× 10−3)
b 0.10 (0.12, 2.90× 10−3) (0.12, −1.04× 10−3)

6.1.2. High Frequency Domain Case

The first case shows different frequency grounding impedances between our code and the measurement
data from [57]. In this case, vertical conductors with 4 m length have been buried in a homogenous
earth model with ρe = 450 Ωm, and the permittivity used in our model is, respectively, set as εe = 10,
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εe = 40 and εe = 80. The comparison can be seen in Fig. 2. It can be seen that they are in agreement
with each other for high frequencies.

The second case also gives the comparison from low frequency to higher frequency between our
code and the simulation results from [58], a horizontal conductor with 1 m length and 5mm radius was
buried at 1m depth below a homogenous earth model, which possesses ρe = 100 Ωm and εe = 10. It is
seen in Fig. 3 that they agree with each other from low frequencies to higher frequencies.

6

Figure 2. Comparison of grounding impedance
dependence on frequency between the measure-
ment data from [57] and our code.

Figure 3. Comparison of grounding impedance
dependence on frequency between the numerical
results from [58] and our code.

6.1.3. Time Domain Case

The case from [45], a typical grounding grid with a 2 × 2 mesh grid and with the size of 10 × 10m is
considered, which was made of round copper conductors with a 50mm2 cross section. The grounding
grid was buried at 0.5m depth in two-layer horizontal earth, whose resistivity’s ratio for the upper and
the lower soil layers is ρ1/ρ2 = 50/20Ωm/Ωm, the upper layer thickness being H = 0.6m. For our
method, a homogenous earth model should be used. From [54], the soil apparent resistivity is found to
be 43.81Ωm, and the soil’s permittivity is set as 5. The inject lightning current parameter was set at
T1 = 3.5µs, T2 = 73µs, and Im = 12.1A. The feed point is at the middle of one border of the grid.
The transient SEP can be seen in Fig. 4, which ultimately agrees with the measured curve in Fig. 7(c)
in [45]; meanwhile, the impulse grounding impedance was 1.6 Ω, as given by [45], and it is 1.50Ω for
our model.

Figure 4. Transient SEP at injection point. Figure 5. A grounding system.
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6.2. Validation of Our Methods

The DSCIM’s solution can give less than 1% error, compared to the numerical integration of Sommerfeld,
in the near and intermediate zones. In the far zone, however, the complex-image solution gives a large
percentage of error for the case of a dipole embedded within lossy ground. In the transient analysis of
the grounding system, the maximal frequency is about 1 MHz for the typical lightning current; in this
case, the wavelength is approximately 10–30 m for the typical soil parameter. On the other hand, for
the far field, the absolute value of the mutual coupling between widely separated segments is negligible.
The 1 MHz limit was given by CCITT [59], which is too prudent in our method: actually, the maximum
frequency for our method is up to 10 MHz, covering the frequency range usually of interest in power
systems.

6.3. Simulation Result Analysis

A grounding system is given in Fig. 5, which is buried below the ground surface at a depth of 0.5 m,
four bars with cross angles with the x, y, and z axes of, respectively, θx = θy = θz = 45◦ for a,
θx = θz = 45◦, θy = 135◦ for b, θx = θy = 135◦, θz = 45◦ for c and θx = θz = 45◦, θy = 135◦ for d.
The earth is modeled as a half homogenous conductive medium, whose conductivity and permittivity
are σ1 = 15−2 S/m, ε1 = 20ε0, respectively. The material of the grounding system conductor is Cu
with conductivity σCu = 5.8× 107 S/m. The conductor radius is 5mm. The external excited lightning
current is injected from the corner of the grounding system, which is described by a double-exponential
function as I(t) = 1.29× (e−0.019010t− e−0.292288t) kA, which means that the parameters of the lightning
current are T1 = 10µs, T2 = 50µs and Im = 1.29 kA.

6.3.1. Discussion of the QSCIM and DSCIM Methods for the Grid

The numerical results can be seen in Fig. 6: we can see that the transient SEP at injection
point agree with each other with smaller discrimination from the Fig. 6. Meanwhile, we know
that the impulse grounding impedance from QSCIM is (1.866, 2.977 × 10−2)Ω and from DYCIM is
(1.777, −6.598× 10−2)Ω.

Figure 6. Transient SEP at injection point between dynamic and quasi-static case.

6.3.2. Discuss Electromagnetic Field Distribution above the Grounding System

Three different times (2µs, 39.5µs, and 79.5µs) have been chosen to discuss the electromagnetic field on
the ground surface above the grid. Before the discussion, we can observe that the total leakage currents
of the grounding system and the harmonic components of external injected currents in the frequency
domain in Fig. 4 in Table 3. From the Table, we can see that this model’s accuracy is good.

The distribution of the electromagnetic field along the surface with chosen three different times
has been given in Figs. 7–12. Among these figures, Figs. 7–9 show the distribution of module of EFI E
along the surface, and Figs. 10–12 show the distribution of module of MFI B along the surface.
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Table 3. Total currents along grid for different frequencies.

Freq.
Total leakage
currents (kA)

Harmonic components
(kA)

0.025MHz (−4.833, −4.272) (−4.834, −4.272)
0.5MHz (−0.184, 3.985× 10−3) (−0.184, 3.988× 10−3)
1MHz (−5.469, 9.094) (−5.469, 9.094)

Figure 7. Distribution of module of EFI Ex on
the ground surface (t = 2µs).

Figure 8. Distribution of module of EFI Ex on
the ground surface (t = 39.5µs)

Figure 9. Distribution of module of EFI Ex on
the ground surface (t = 79.5µs).

Figure 10. Distribution of module of MFI Bx on
the ground surface (t = 2 µs).

Figure 11. Distribution of module of MFI Bx on
the ground surface (t = 39.5µs).

Figure 12. Distribution of module of MFI Bx on
the ground surface (t = 79.5µs).
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From Figs. 7–9, we can see that the maximum value of the module of EFI E occurs on the four
corners instead of the injection point, and the module of EFI E above the injection point is apparently
smaller than that above the four corners.

The distribution of the module of MFI Bx is given in Figs. 10–12. We can see that, unlike the EFI
case, the maximum value of the module of MFI B occurs at the injection point at the middle of the
grid for all times (1µs, 39.5µs and 69.5µs).

7. CONCLUSION

With the FFT, based on the theory of dynamic state electromagnetics, combined with the rapid
Galerkin’s MoM and the conventional nodal analysis of electrical network model techniques, a new
mathematical method for calculating the transient lightning current distribution along a grounding
system in the half infinite homogenous earth model for a.c. substations was developed. The DSCIM, a
closed form of Green’s function for a dipole or monopole buried in the earth, and analytical formulae
for the mutual induction and impedance coefficients were introduced into this model to accelerate the
calculation. A computer program based on this new mathematical model was developed, which can
be applied to investigate a.c. substation transient electromagnetic field distributions and to design a
reasonable substation grounding system based on the half infinite homogenous earth model. Last, some
numerical results were discussed. In this way, some conclusions have been obtained:

(i) For DSCIM, no pairs of conjugate complex numbers will occur, although they always appear in the
QSCIM case.

(ii) The QSCIM assumption provides overestimated results in comparison with the DSCIM case.
(iii) Numerical calculation has been replaced with analytical calculations introduced in our method

under the DSCIM approximation for the near field case.
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