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Performance Enhancement of Target Recognition Using Feature
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Abstract—This paper proposes a fusion technique of feature vectors that improves the performance
of radar target recognition. The proposed method utilizes more information than simple monostatic or
bistatic (single receiver) algorithms by combining extracted feature vectors from multiple (two or three)
receivers. In order to verify the performance of the proposed method, we use the calculated monostatic
and bistatic RCS of three full-scale aircraft and the measured monotatic and bistatic RCS of four scale-
model targets. The scattering centers are extracted using one-dimensional FFT-based CLEAN and then
used as feature vectors for a neural network classifier. The results show that our method has better
performance than algorithms that solely use monostatic or bistatic data.

1. INTRODUCTION

Traditional radars are monostatic, meaning that the transmitter and receiver are located at the same
position. Thus, most previous studies on radar target recognition assume a monostatic arrangement.
The recognition algorithms generally involve feature vectors consisting of scattering center information
from the early-time response or resonant frequency information from the late-time response [1-3].
Scattering centers are those points on the target associated with strong scattered fields while natural
resonant frequencies arise from global interactions and are related to the physical size of the target.
Scattering center data tend to be strongly resistant to noise with relatively high energy [1,4], and are
most useful when describing target characteristics at higher frequencies than resonance data. For these
reasons, scattering centers are used as a feature vector for target recognition in this paper.

Many recent studies have considered using a monostatic radar with scattering centers as feature
vectors. The authors in [4] conducted a target classification experiment using the feature vectors
extracted in an efficient way that takes advantages of both the model-based technique and the FFT-
based CLEAN algorithm. In [5], a study compared the FFT-based CLEAN algorithm, TLS (total least
squares)-Prony method, and the EP (Evolutionary Programming)-based CLEAN technique. In [6], the
scattering centers were extracted and target recognition performance was compared among the IFFT
(Inverse fast Fourier Transform), TLS-Prony, GEESE (generalised eigenvalues utilising signal subspace
eigenvectors), and MP (matrix-pencil) methods.

The development of radar cross section (RCS) reducing technology has produced a wealth of low-
RCS radar targets. In response, the radar community has turned to bistatic radars whose transmitter
and receiver are placed in different positions as a means to enhance detection [7-10]. Low-RCS targets
are designed to minimize the backscattering signal using radar absorbing materials (RAM), and thus
do not produce a strong signal to monostatic radars [11]. This explains to the improved effectiveness of
bistatic radar compared to monostatic radar [10]. Unfortunately, little research has been undertaken to
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study target recognition using bistatic radar. One such study is [12], which compares the performance
of monostatic and bistatic radar target classification schemes using the computed bistatic RCS (BRCS)
of simple wire targets and time-frequency analysis for target feature extraction.

The studies mentioned above each used a feature vector extracted from either the monostatic radar
return or from the bistatic radar return in target classification experiments. The present paper proposes
a feature vector fusion technique that combines the feature vectors extracted from both monostatic and
bistatic radar returns with an aim to enhance the performance of target recognition.

Both numerical and experimental data is used to explore the effectiveness of the proposed vector
fusion technique. First the monostatic RCS (MRCS) and the BRCS of full-scale 3-D models was
calculated at various aspect angles using FEKO, a commercial EM solver. Then measurements of four
scale model targets were made using the scattering range at Michigan State University. The 1-D FFT-
based CLEAN algorithm, which is known to be strongly resistant to noise, was used to extract the
scattering centers of the targets from both computed and measured data, and the feature vectors of the
targets thus obtained were used as inputs to a neural network classifier. We used the MLP (multilayer
perceptron) classifier, which is one of the standard classifiers, because the classification accuracy of these
classifiers is the same [13].

Target recognition performance was investigated for three cases. In each case a transmitter position
was established and one or more receivers were placed in monostatic or bistatic positions. The first case
uses a single receiver (monostatic or bistatic). The second case assumes two receivers, one monostatic
and one bistatic. The third case uses three receivers, one monostatic and two bistatic. Experiments show
that combining multiple feature vectors, as in the third case, produces the best classifier performance.

2. PROPOSED METHOD

2.1. Feature Extraction Using FFT-Based CLEAN

There are various methods for obtaining one-dimensional (1-D) scattering centers, including using FFT-
based CLEAN [4,14,15], an EP-based method [1,5], and a model-based method such as Prony’s
method [16]. Model-based methods have high resolution characteristics, but are very sensitive to
random noise and require an accurate estimation of the number of scattering centers present in the
data, as determined by using some information-based criterion (typically with a large computational
cost) [16]. EP-based CLEAN was developed to overcome these difficulties. It has demonstrated both
high resolution and robustness to model order. However, it is computationally much more costly than
Prony’s method or FFT-based CLEAN [1, 5]. FFT-based CLEAN is a good candidate for 1-D scattering
center extraction even though it has lower resolution, since it has a strong resistance to random noise
and is computationally fast. In this paper, the test data is mixed with random noise, so an algorithm is
required that is robust to noise. Therefore, the FFT-based CLEAN algorithm was adopted to extract
the scattering centers. Since the CLEAN algorithm assumes an undamped exponential model, an
undamped exponential model is used in this study. The undamped exponential model of the scattered
signal in the high-frequency region is as follows [4, 5]:

E(fq):ZleameXP <_]47quan>5 q:]-an (1)

Cc

where M is the number of scattering centers, f, the frequency at sample ¢, () the number of frequency
samples, R,, the location of mth scattering center, a,, the associated amplitude, and ¢ the speed of
light.

The FFT-based CLEAN algorithm is a technique to extract scattering centers according to signal
energy. The details of the algorithm proceed as follows.

Step 1. (Initialization) Set m = 1 where m is the index of iteration to extract the mth scattering
center and define the stepped-frequency measured data as Ep,(f;) for¢=1, ..., Q.

Step 2. (Range profile generation) Obtain the range profile using inverse fast Fourier transform

(IFFT) as follows:
"D (1q) = abs [F~H {Em (fg)}] (2)

where 74 is the gth range bin defined as (¢ — 1) x AR with AR the range resolution (5z77) and abs
means the absolute values.
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Step 3. (Parameter extraction) After obtaining the range profile, the a,, and R,, are extracted
using the peak search method. The global maximum location 74max is determined as the location of
mth scattering center (R,,) and the complex amplitude at that point (7¢max) is determined as ap,.

Step 4. (Elimination of extracted signal) After the a,, and R,, are found at the Step 3, the point
spread function can be obtained using IFFT as

psf(ry) = abs [Fl {am exp <—j4”qu’”) H (3)

C

The point spread function is sinc function, since we use the rectangular window in Eq. (3). Then,
the point spread function psf,,(rq) is subtracted from the range profile rp,, (1) to give rp,, (rq):

Pm+1 (rq) =T"Pm (rq) _psfm (Tq)a q= 17"'7@ (4)
Step 5. (Termination check) Let m = m + 1. Return to Step 3, unless the desired M scattering
centers are extracted. In this paper, it is assumed that M is known and fixed for all targets and aspect
angles. In neural network-based target recognition, the feature vectors must have the same dimension.
Therefore, M is fixed and the FFT-based CLEAN process is terminated when the iteration index m
reaches the predetermined value M.
After the extraction of M scattering centers, their ranges are assorted in ascending order. Next,
the shift-invariant feature vector f, which is used as the neural network input, is obtained as follows:

f ={lai],|az|,|as|,...,|ar]| ,d12,d13,d14, . .., dir] (5)
where |a;|, for i = 1,2, ..., M, is the absolute value of the complex valued amplitude a; sorted in
descending order, and dy;, j = 2, ..., M, is the relative distance between d; and d; sorted in ascending

order. Figure 1 shows an example of the 11 dimensional feature vector when the number of scattering
centers M = 6.

2.2. Feature Vector Fusion

Figure 2 illustrates an overall block diagram of the feature vector fusion technique, which this paper
proposes for improving the target recognition performance. Rx1 is the monostatic receiver and Rx2
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and Rx3 are the bistatic receivers. Rx1 receives the backscatter signal of the target and Rx2 and Rx3
receive the signals scattered sideward. For the target recognition experiments, these scattering signals
can be obtained by simulation or measurements.

Next, the feature vectors extracted from each of the scattering data received by Rx1, Rx2 and Rx3
using the 1-D FFT-based CLEAN algorithm. These extracted feature vectors are then passed through
the fusion stage where those feature vectors extracted from monostatic receiver and bistatic receivers
are combined together, providing added information for the classifier.

The feature vector f.;, which results from combining feature vectors extracted from the monostatic
receiver and from one bistatic receiver, is defined as

fo1 = [frx1, frx2] (6)

Here fry refers to the feature vector extracted from the monstatic receiver Rx1, and fryo refers to the
feature vector extracted from the bistatic receiver Rx2. Note that f.q has a dimension of 22, since fry1
and fryo each have a dimension of 11.

The feature vector f.o, which results from combining feature vectors extracted from monostatic
receiver and from the two bistatic receivers, is defined as

fo = [frx1, fRx2, fRx3] (7)

where frys is the feature vector extracted from the bistatic receiver Rx3, which is different in position
from Rx2. Thus, f.o has a dimensions of 33. The combined feature vectors, f.; and f.o, are used as
input to the neural network classifier. Finally, a target recognition experiment is conducted and a target
recognition rate is obtained.

3. RESULTS

The performance of the proposed algorithm was determined through simulation and measurement.
Performance was first investigated using the numerically calculated data from CAD models of three
different aircraft targets. Figure 3 shows the targets used in the simulations. The target dimensions are
actual scale, as shown in Table 1.

FEKO was then used to calculate the RCS of each target in the frequency range 150-404 MHz with
128 frequency samples and H H polarization. To reduce the computational time, the Physical Optics
option was used. The nose of each target was placed at the position (0, 0, 0), and the incident field
vector was chosen to lie in the z-y plane (elevation angle of 0°), with the electric field horizontally
polarized.

(b)

Figure 3. Three 3D CAD models of targets used in the simulation, (a) F-117, (b) F-15, and (c) F-5.

Table 1. Dimensions of three CAD models.

Target | Length [m] | Width [m]

F-117 21 14
F-15 19 13
F-5 14.2 8.2
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Figure 4. Configuration for monostatic and bistatic RCS calculations.
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Figure 4 shows the configuration for the monostatic and bistatic RCS calculation. The transmitter
Tx is placed at 0° and the receiver positions are varied from 0° to 150° with a 30° angle interval. At
each monostatic and bistatic angle, the targets are also rotated in the z-y plane from 0° to 150° with a

2° aspect angle step.

Next, feature vectors were extracted for each target using 1-D FFT-based CLEAN. Figure 5 and
Figure 6 show examples of scattering centers extracted from the monostatic and bistatic (bistatic angle
= 30°) RCS, respectively of the F-117 at 0° aspect angle. The extracted 6 scattering centers (labeled
o) match well with the peaks of the range profile. The feature vectors described by Eq. (5) have a
dimension of 11, which includes the amplitudes of 6 scattering centers and 5 relative distances between

the first and the other scattering centers.
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Figure 5. Extracted scattering centers from Figure 6. Extracted scattering centers from
monostatic RCS of F-117 at aspect angle of 0°, BRCS (bistatic angle = 30°) of F-117 at aspect

SNR = 20dB. angle of 0°, SNR = 20dB.
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The MLP neural network with two hidden layers was then used to perform a target recognition
experiment [12,17]. The MLP neural network configuration is shown in Figure 7. The number of
neurons in the first hidden layer was chosen to be twice of the feature vector dimension, and that in
the second hidden layer was chosen as the half of that in the first hidden layer. Also, the number of
neurons in the output layer is same as the number of targets. To improve the classifier performance, we
trained it until the mean square error (MSE) was 107°.

Input —»

Input First Hidden Second Hidden Output
Layer layer layer Layer

Figure 7. The MLP neural network configuration.

The feature vectors were established at aspect angles over the range 0° to 150° with a 2° step for
each target. The noiseless feature sets were used for training. Then, white Gaussian noise at a specified
SNR was added to the original signals of all targets. The noisy feature sets at a given SNR are used
for testing. Therefore, there are 3 x 76 = 228 noiseless feature sets for training, and 3 * 76 = 228 noisy
feature sets for testing. The target recognition rate (F,) is defined as

total number of correct identifications

Fe = x 100 8
“ " number of targets x number of aspects for testing (%) (8)

Before checking whether or not the proposed feature vector fusion technique improves the target
recognition performance, the target recognition experiment was first carried out using only the single
feature vector extracted from either the monostatic or bistatic receivers. Figure 8 shows the mean
and standard deviation (with bar) of target recognition rates when using the feature vector extracted
using only the single receiver. A Monte Carlo analysis was used to establish statistics for the target
recognition rate. The mean and standard deviation were computed using only 30 trials, due to the
computational expense of each trial. As shown in Figure 8, the target recognition performance is found
to be significantly different depending on the position of the receivers, indicating that the position of the
transmitter and receivers has a strong effect on the target recognition rate. The best target recognition
rate is found to occur at the bistatic angle of 150°.

Next, to establish the performance of the proposed method, the best target recognition rate
identified in the above experiment was compared with the target recognition performance in the case
where feature vectors were extracted from two receivers (monostatic + one bistatic receiver). As
can be seen in Eq. (6), the combined feature vector f,; has a dimension of 22. Figure 9 shows the
results of comparing the target recognition rates for the two cases, fusion and non-fusion. As before,
30 Monte Carlo trials were conducted. According to Figure 9, the target recognition performance
of three fusion feature sets (monostatic + bistatic angle = 60°, monostatic + bistatic angle = 90 °,
monostatic + bistatic angle = 150°) are better than the best non-fusion feature set (150° bistatic angle).
The best performance is found for the fusion of monostatic + bistatic angle = 150°.

Finally, the target recognition performance was examined in the case where feature vectors were
extracted from three receivers (monostatic + two bistatic receivers). As can be seen in Eq. (7), the
combined feature vector f.o has a dimension of 33. Table 2 shows the results of comparing target
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Figure 10. Performance comparison of radar target recognition for the best feature vector fusions of
calculated data.

recognition rates for various f.o. The best performance is found for the fusion of monostatic + bistatic
angle = 90° + bistatic angle = 150°. To compare the performance of f.; and f.o, the best results were
examined. Figure 10 shows that the best result from the three feature vector fusion outperforms the
best from the two feature vector fusion. As might be expected, when the feature vector is augmented
with additional information about the target, the recognition rate is improved.

The proposed method was next applied to the data measured using the Michigan State University
reflectivity arch scattering range, which is a bistatic measurement system. The measurement
configuration is shown in Figure 11. Scattering targets were placed on a low density styrofoam column,
which was positioned at the center of the arch, at the same height from the ground as the horn
antennas to provide the most uniform incident field. Frequency-domain measured data were obtained
for a frequency range of 2-5.81 GHz with a 30 MHz step increment, using an Agilent E5071C network
analyzer. Aspect angles were varied from 0° to 30° relative to the nose, at 0.5° intervals. The bistatic
angles between transmitter horn and receiver horn were set to 12.4°, 30° and 60°. (Note that 12.4° is
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Table 2. Performance comparison of radar target recognition using three feature vector fusion
(monostatic + two bistatic receivers) for calculated data.

Combination of Receivers SNR [dB]
10 15 20 25 30
Mono + Bi30° 85.53 87.66 90.83 91.43 93.37
+ Bi60° (2.36) (1.36) (0.89) (0.90) (0.57)
Mono + Bi30° 88.32 90.47 92.28 93.61 95.36
+ Bi90° (2.20) (1.28) (0.69) (0.63) (0.29)
Mono + Bi30° 87.78 88.78 91.32 92.53 94.71
+ Bi120° (1.92) (1.45) (1.29) (0.73) (0.49)
Mono + Bi30° 88.89 91.15 92.30 94.12 96.22
+ Bi150° (2.12) (1.10) (1.06) (0.55) (0.49)
Mono + Bi60° 89.22 90.65 92.70 94.44 95.63
+ Bi90° (1.91) (1.06) (0.57) (0.78) (0.36)
Mono + Bi60° 89.28 91.84 93.07 94.56 95.95
+ Bi120° (1.60) (1.14) (0.61) (0.81) (0.35)
Mono + Bi60° 89.85 90.04 93.34 94.43 96.72
+ Bi150° (2.03) (1.17) (0.68) (0.55) (0.55)
Mono + Bi90° 90.03 91.24 93.89 95.03 96.01
+ Bi120° (1.95) (1.17) (1.03) (0.67) (0.47)
Mono + Bi90° 92.00 93.28 94.62 96.18 97.57
+ Bi150° (1.88) (0.96) (0.85) (0.63) (0.39)
Mono + Bi120° 88.84 92.68 93.27 94.64 96.40
+ Bi150° (1.85) (0.90) (0.81) (0.91) (0.49)

/ — \
Receiving ﬁ Transmitting

Horn Horn

>

Positioner
Controller
Dataport Tx RXx
@ ©® ©@ System
Controller
PC set

Network Analyzer

Figure 11. Bistatic radar measurement system at MSU.
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Table 3. Performance comparison of radar target recognition using the feature vector fusion
(monostatic + two bistatic receivers) for measured data.

Combination of Receivers SNR [dB]
10 15 20 25 30

Mono + Bil12.4° 93.64 95.48 96.85 97.83 98.61

+ Bi30° (1.31) (0.93) (0.11) (0.46) (0.40)

Mono + Bi12.4° 92.07 95.91 96.67 97.39 98.03

+ Bi60° (1.57) (1.08) (0.91) (0.61) (0.59)

Mono + Bi30° 94.24 96.51 97.20 98.29 99.87

+ Bi60° (1.40) (1.08) (0.76) (0.37) (0.22)

@ (b) (© (d)
Figure 12. Scale model targets used for measurement, (a) B-58, (b) F-14, (c¢) F-22, and (d) Mig-29.
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Figure 13. Extracted scattering centers from Figure 14. Extracted scattering centers from
monostatic RCS of F-22 at aspect angle of 0°, BRCS (bistatic angle = 30°) of F-22 at aspect
SNR = 20dB. angle of 0°, SNR = 20dB.

the smallest bistatic angle allowed by the geometry of the measurement system). The four scale model
targets (1 : 32 Mig-29, F-22, F-14 and 1 : 48 B-58) shown in Figure 12 were used for measurement.
Next the feature vectors for each target were extracted using FFT-based CLEAN. Figure 13 and
Figure 14 show six extracted scattering centers for the F-22 scale model from the monostatic and bistatic
angle = 30° at 0° aspect angle. The extracted 6 scattering centers (indicated as o) match well with
the peaks of the range profile for the measured data, verifying that the FFT-based CLEAN works well
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Figure 17. Performance comparison of radar target recognition for the best feature vector fusions of
measured data.

for the measured data. The measured data are used for training and the noisy data created by adding
white Gaussian noise at a given SNR are used for testing. At each monostatic and bistatic angles there
are 4x61 = 244 measured feature sets for training, and 461 = 244 noisy feature sets for testing. Thirty
Monte Carlo trials were used as in the computed data case.

As with the previous simulation using a calculated data, the target recognition rates were compared
for three cases: (1) using a single receiver (2) using two receivers (monostatic and one bistatic) (3) using
three receivers (monostatic and two bistatic). The results are shown in Figure 15, Figure 16 and Table 3.
From Figure 15, it can be seen that the best target recognition rate using a single receiver occurs at
the bistatic angle of 60° among the receiver positions. Figure 16 shows that all fusion feature sets of
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two receivers were better than the best of the single receiver. From Table 3, we can see that the best
performance of case (3) is found at the fusion of monostatic + bistatic angle = 30°+ bistatic angle
= 60°. Figure 17 shows that the best of three feature vector fusion also outperforms the best of two
feature vector fusion as with the results using computed data. Thus, the results using the measured
data is consistent with the results from the calculated data.

4. CONCLUSION

This paper proposes a feature vector fusion technique for performance enhancement of radar target
recognition. A study was done to compare the proposed technique to the existing method that does
not use vector fusion. First, an experiment with three different CAD models of full-scale fighters was
implemented based on RCS data calculated at the monostatic and bistatic angles of 30°, 60°, 90°, 120°,
and 150°. Also, measured data from four scale-model targets at monostatic and bistatic angles of 12.4°,
30° and 60° were used for verification of the proposed method. The 1-D FFT-based CLEAN Algorithm
was used to extract the scattering centers to use as the target feature vector. The extracted feature
vector was used as input to a neural network classifier to conduct the target recognition experiment.
It was determined that the target recognition performance was better with feature vector fusion than
without, which validates the proposed method of enhanced target recognition performance. A future
study is proposed to examine target recognition using feature vector fusion with only multiple bistatic
receivers (two bistatic receivers or three bistatic receivers, but without monostatic data). Also it is
important for future study to determine when the performance is saturated as the extent of feature
vector fusion is increased (to determine the optimal feature vector fusion dimension).
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