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Novel Data Acquisition Method for Interference Suppression
in Dual-Channel SAR

Xiao-Hong Lin*, Guo-Yi Xue, and Pei-Guo Liu

Abstract—Various interference sources either intentional or unintentional can mask the synthetic
aperture radar (SAR) signals and cause image degradation. With a novel data acquisition mode, a
new method based on dual-channel SAR is applied to suppress the interference. Using the received
dual-channel data, the two-dimensional location of the interference source can be estimated and then
the interference can be removed via a Two-Channel-Cancelation method. By establishing a linear model
of the interference-removed signal, the SAR image is reconstructed based on compressed sensing (CS)
theory. Our method requires only a minor change to the traditional SAR system hardware while obtains
a higher resolution. Simulation results are shown to demonstrate the validity of the proposed method.

1. INTRODUCTION

Synthetic aperture radar (SAR) can obtain high resolution images of illuminated scene under all weather
circumstances, and it has been widely used in both civil remote sensing and military surveillance [1].
However, there exist various kinds of interferences, such as radio-frequency interference (RFI) and
artificial interference [2, 3]. The RFI mainly comes from communication and television networks, while
the artificial interference is generated by a military jammer. Also, these interferences are classified into
two categories: 1) noncoherent interference; 2) coherent interference [4]. The noncoherent interference
raises the noise level of SAR image to bury the targets of interest. In coherent interference, military
jammer simulates target echoes or retransmits intercepted signals to cover the true target, then generates
false targets in the scene, which affect the enemy commander’s ability to judge the situation of the
battlefield. Since the existence of these interferences would seriously degrade the quality of SAR imagery,
SAR should embed the ability to detect and suppress the interferences.

At present, the suppression frameworks generally utilize the different characteristics between SAR
and the interference in the following four aspects:
1) Signal form. [5] fits a multi-parameter model of the interference to the measured data and

then coherently subtracting it. For nonstationary interference signals, this method is difficult
to implement due to complicated model and high-dimensional parameter estimation. Based on
a alteration of SAR transmitted signal, pulse diversity technologies are now widely applied to
counter digital radio frequency memory (DRFM) repeat jammer [6–8], however they are incapable
of suppressing the high-power noncoherent interference effectively.

2) Time-frequency domain. [4] utilizes wavelet to represent the instantaneous frequency of SAR
received signal and designs a filter to filter the corresponding wavelet coefficients of the interference
components. However, it requires the interference has good concentration in the time-frequency
plane. In [9], the narrow band interference is obtained and canceled by subtracting different range
subband spectra of the SAR image, but it is not suitable for removing wideband interference.
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3) Space domain. Interferences can be removed using adaptive beamforming and space-time adaptive
processing techniques [10–13]. These techniques work by forming the null adaptively in the
interference direction to minimize interference. Nevertheless, many spatial degrees of freedom
(DOF) may be required to attain full rejection whilst maintaining low sidelobes.

4) Polarization domain. In [14], the differences between SAR echo and coherent interference in
polarization domain are analyzed and a method for discrimination and suppression of coherent
interference in Doppler domain is proposed. However, it have limited performance in noncoherent
interference suppression.

With the above analysis, a simplified SAR system with capacity in eliminating various types of
interference would be potentially valuable in applications. To achieve this, a new interference suppression
technique for dual-channel SAR is developed in this paper. First, we introduce a novel data acquisition
method that requires only a minor change to the traditional SAR system hardware to work. At some
randomly selected slow times, the new system receives SAR echoes contaminated with interference,
while collecting only interference at the other slow times. The collected interferences are utilized to
estimate the direction of arrival (DOA) angle of the interference source at the randomly selected slow
times. Then, based on phase compensation in range frequency domain, the interference received at the
randomly selected slow times can be removed via a Two-Channel-Cancelation (TCC) method. It will be
demonstrated that the Signal-to-Interference ratio (SIR) is improved greatly by TCC operation. Finally,
a linear model of the interference-removed signal is established and the SAR image is reconstructed based
on the compressed sensing (CS) theory.

The remainder of this paper is organized as follows: Section 2 gives a basic introduction of CS
principle. In Section 3, we introduce our data acquisition method and derive the imaging models in
the presence of interference. Section 4 proposes a least square method to obtain the two-dimensional
location of interference source and then the interference can be removed using dual-channel data. In
Section 5, we use the interference-removed data to construct SAR image based on CS theory. The
simulation results are listed in Section 6, and the paper is summarized in Section 7.

2. BASIS THEORY OF COMPRESSED SENSING

Before going into further explanations about our method, it is necessary to provide some background
knowledge of compressed sensing (CS).

CS is a new theory which is available to reconstruct the sparse or compressible signals from far
fewer measurements than required by Shannon-Nyquist sampling theorem. Assume that a discrete
signal vector xN×1 is sparse on a basis matrix ΨN×N . x is represented as

x = Ψα (1)

where α ∈ RN is the weighting coefficient with K nonzero elements and K a measure of the sparsity of
x.

According to CS theory, x is measured by a linear projections y = Φx where Φ ∈ CM×N with
M ¿ N . It makes sense that only M samples of x need to be measured instead of N . In a matrix
notation, y is presented as

y = Φx = ΦΨα = Θα (2)

where Θ = ΦΨ ∈ CM×N . Since M < N , this equation is an ill-posed problem and has infinitely many
solutions. However, in CS theory, the sparse signal can be exactly reconstructed when the matrix Θ
has the Restricted Isometry Property (RIP) which requires:

(1− δk) ‖ α ‖2≤‖ Θα ‖2≤ (1 + δk) ‖ α ‖2 (3)

where δk ∈ (0, 1) is a minimal constant and α the sparse coefficient vector. It is proved that RIP can
be achieved with high probability when Φ is a random matrix [15].

Known the observed measurement y and the measured matrix Θ, the sparse vector α can be
reconstructed by searching for the solution with a l1 minimization criterion expressed as

min ‖ α ‖1 s.t y = Θα (4)
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if noise is taken into account, the above problem is changed into:
minλ ‖ α ‖1 s.t ‖ y −Θα ‖2< ε (5)

where λ is a weighted coefficient, and ε bounds the amount of noise in measured data.
Computation of (4) and (5) are both convex problems. Recently, there is a variety of sparse

approximation algorithms for solving such problems such as basis pursuit (BP) [16] and orthogonal
matching pursuit (OMP) [17].

3. DUAL-CHANNEL SAR IMAGING MODEL

3.1. Signal Model and Interference Model

In this paper, we consider a SAR system working in stripmap mode and having 2 antennas placed
along the azimuth direction with the inner spacing d. The first antenna transmits radar pulses and
both antennas receive the scattered echo signals. The observation mode of dual-channel SAR is shown
in Fig. 1. C1 and C2 denote the first and the second antenna respectively. Axis X, Y and Z are
corresponding to the azimuth, range and height direction respectively. By setting the scene center to be
the origin, the transmitter is located at (vta, ys,H), and the other receive antenna is at (vta + d, ys,H)
where ta is the slow time and v is the velocity of the platform.

H

v

Range

Azimuth

(x J ;
yJ ;

0)X

YY

Z

C1C2

R 1
R 2

Observation Grid

R J1

R J2

Hight
ys

d

Interference source

1 D+1 I

I+1

P

2 D+2

D 2D

x∆

y∆

(a) (b)

Figure 1. Observation geometry of dual-channel SAR. (a) The stripmap geometry; (b) Observation
grids.

The beam footprint is divided into P equal observation cells, as shown in Fig. 1(b). The sparse
targets will be located on the corresponding grid nodes. The size of every observation cell is ∆x×∆y
where ∆x = vTa, ∆y = c × Ts/2, Ta is the pulse repetition interval (PRI) of SAR, c is the velocity of
light and Ts is the range sampling period. Here, every cell is assigned a index i (i = 1, 2, 3, . . . , P ). The
targets location information obviously depends on the observation grid.

Suppose the radar transmit signal is
st(tr) = p(tr) exp(j2πfctr) (6)

where tr is the fast time, fc the carrier frequency, and p(tr) i the transmitted waveform which can be
written as

p(tr) = rect
(

tr
Tp

)
exp(jπγt2r) (7)

Here, rect(·) is the rectangle window, Tp the pulse duration, and γ the chirp rate.
Considering the movement of the radar platform along azimuth direction, the ground echo received

by the kth (k = 1, 2) channel can be written as

sk(ta, tr) =
P∑

i=1

g(i)p
(

tr − Rsk(ta, i)
c

)
exp

(
−j2πfcRsk(ta, i)

c

)
(8)
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where g(i) is the average backscattering coefficient of the corresponding discrete cell, and Rsk(ta, i) is
represented as follow

Rs1(ta, i) = 2R1(ta, i)
Rs2(ta, i) = R1(ta, i) + R2(ta, i)

(9)

where R1(ta, i) =
√

(vta − xi)2 + y2
i + H2 is the range from C1 to the target located at (xi, yi, 0) and

R2(ta, i) =
√

(vta + d− xi)2 + y2
i + H2 the distance between C2 and this target.

Assume there exists a interference sources at (xJ , yJ , 0), as shown in Fig. 1(a). The ranges from
C1 and C2 to the interference source are RJ1(ta) and RJ2(ta), respectively. In a far-field condition,
RJ2(ta)−RJ1(ta) ≈ d sin(θJ(ta)) where θJ(ta) is the direction of arrival (DOA) angle of the interference
signal [18]. Then, the interference signal received by C2 can be expressed as

z2(ta, tr) = z1

(
ta, tr − d sin (θJ(ta))

c

)
(10)

where z1(ta, tr) is the received interference signal in the first channel.

3.2. Data Acquisition

Traditional SAR system consists of transmitter, T/R switch, antenna and data recorder. The T/R
switch directs the pulse to the first antenna and returned echo to both the two receivers at an uniform
pulse repetition interval (PRI). Our new data acquisition system is almost similar to the traditional
one, the only difference being that there exists a diode switch in the transmit module,as shown in
Fig. 2(a). This diode switch is controlled by a random 0/1 sequence. When the number is 1, a high
positive voltage is applied on the diode anode and the diode is forward biased. In effect, this diode
switch is closed and the SAR works the same as the traditional system. When the number becomes 0,
a positive voltage is applied on the cathode and the diode is reverse biased. In this situation, the diode
switch is opened and both the two antennas only receive electromagnetic wave without transmitting a
pulse. The random 0/1 sequence can be generated before SAR data acquisition. When SAR works,
the random number is refreshed at every PRI. Fig. 2(b) shows the difference between traditional SAR
and our novel data acquisition. In Fig. 2(b), the traditional SAR transmits the pulse (denoted by the
rectangle window) toward the area to be imaged and collects return electromagnetic wave (represented
by the red curve) at every PRI. If there exists interference, these received signals contain the ground
echoes and the interference. For our acquisition system, when the random number is 1, the radar receive
the echoes and interference which are the same as the traditional SAR. However, the new system only
receives interference (denoted by the green curve) when the random number is 0.
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Figure 2. Data acquisition method proposed in this paper. (a) Basic block diagram of the system;
(b) Comparison with traditional SAR. (Red curve: SAR echoes contaminated with interference; Green
curve: interference).
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In this paper, the azimuth time when SAR transmits a pulse is denoted as tat, and the azimuth
time when SAR only receive interference signal is represented as tar. Ignoring the propagation effect of
the electromagnetic, the complete signals received by the kth receiver can be expressed as follow

ek(ta, tr) =
{

sk(ta, tr) + zk(ta, tr) if ta = tat

zk(ta, tr) if ta = tar
(11)

4. INTERFERENCE SUPPRESSION USING DUAL-CHANNEL DATAS

4.1. Removing Interference

From (10) and (11), at the slow time tat, the output of SAR in the range frequency domain is represented
by

E1(tat, fr) = S1(tat, fr) + Z1(tat, fr) (12)

E2(tat, fr) = S2(tat, fr) + exp
(
−j2πfr

d sin (θJ(tat))
c

)
Z1(tat, fr) (13)

where Ek, Sk and Zk denote the range spectrum of the total received signal, real echoes and interference
signal in the kth channel, respectively. According to the above two formulas, the interference can be
removed by a Two-Channel-Cancelation (TCC) method based on phase compensation, if θJ(tat) is
known. After TCC processing, the residual echoes will become

E2(tat, fr)− β(tat, fr)E1(tat, fr) = S2(tat, fr)− β(tat, fr)S1(tat, fr) (14)

where β(tat, fr) = exp (−j2πfrd sin (θJ(tat)) /c). Based on this formula, the illuminated scene can
be reconstructed via CS, which will be discussed in Section 5. However, θJ(ta) is unknown. In
Subsection 4.2, we will derive these DOAs in high precision, utilizing the data received at the slow
time tar.

4.2. Two Dimensional Location of Interference Source

According to the geometrical relationship between SAR and the interference source, as shown in Fig. 3,
a formula can be obtained as

tan (θJ(tar)) =
vtar − xJ√
yJ

2 + H2
= Qtar + b (15)

where Q = v/
√

y2
J + H2, b = −xJ/

√
y2

J + H2 and θJ(tar) can be estimated by these methods [19–21].
It should be noted that tan(θJ(tar)) form a straight line with slope Q and intercept b for real DOA
values θJ(tar). However, for the estimated DOA values θ̂J(tar), tan(θ̂J(tar)) will fluctuate around this
straight line. In order to obtain the DOAs of the interference source at the slow time tat, an operation
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Figure 3. The geometry between SAR and the interference source.
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called linear least-squares fitting is carried out to a set of (tar, tan(θ̂J(tar))) data pairs. Then, we will
obtain a fitting straight line whose slope Q̂ and intercept b̂ can be expressed as [22]

Q̂ =
tartan − tar · tan

tar
2 − tar

2 (16)

b̂ =
tar

2 · tan − tar · tartan

tar
2 − tar

2 (17)

respectively, where symbols with an overline denote average values and tan = tan(θ̂J(tar)). Since the
least-squares solutions are unbiased, consistent and effective, it means that the estimated parameters
have the highest probability to be correct and will converge toward the true values when the azimuth
sample number of the interference increases. From Q̂ and b̂, the two-dimensional location of the jammer
can be realized, and the corresponding coordinate can be derived as

x̂J = −vb̂

Q̂
(18)

ŷJ =

√
v2

Q̂2
−H2 (19)

Then, sin (θJ (tat)) can be estimated by

sin
(
θ̂J (tat)

)
=

vtat − x̂J√
(x̂J − vtat)

2 + ŷ2
J + H2

(20)

Now, we can remove the interference signal using the method proposed in Subsection 4.1.

4.3. Suppression Performance Analysis

Actually, due to the estimation error of sin (θJ (tat)), the interference will not be removed completely.
Next, we will analyze the change of the Signal-to-Interference ratio (SIR) after TCC processing. For
simplicity, in this subsection, we ignore the indexes related to fr and tat.

After TCC, the residual signal can be expressed as follow

∆E = E2 − β(θ̂J)E1 = S2 − β(θ̂J)S1 +
(
β(θJ)− β(θ̂J)

)
Z1 (21)

Approximately, we can regard the real echoes as the signal transmitted by a source located in the center
of the illuminated scene. Then, the echoes have the same property with the interference described
by (10). Now, ∆E can be rewritten as

∆E =
(
β(θT )− β(θ̂J)

)
S1 +

(
β(θJ)− β(θ̂J)

)
Z1 (22)

We define SIR before TCC as SIRorig = |S1/Z1|2. Then, after TCC, the SIR becomes

SIRTCC = ϑ · SIRorig =

∣∣∣∣∣
β(θT )− β(θ̂J)

β(θJ)− β(θ̂J)

∣∣∣∣∣
2

SIRorig (23)

where ϑ is the SIR improvement factor.
In general, the SAR bandwidth B ¿ fc. For DOA determination with no ambiguity, it requires

that the antenna spacing d ≤ λ/2 where λ is the carrier wavelength of SAR [18]. Here, we set d to be
a typical value λ/2. Then, β(θ) ≈ exp (−j2πd sin(θ)/λ) = exp(−jπ sin(θ)) and ϑ can be rewritten as

ϑ =

∣∣∣∣∣∣
exp

(
−jπ sin(θT )−sin(θ̂J )

2

)
− exp

(
jπ sin(θT )−sin(θ̂J )

2

)

exp
(
−jπ sin(θJ )−sin(θ̂J )

2

)
− exp

(
jπ sin(θJ )−sin(θ̂J )

2

)
∣∣∣∣∣∣

2

×
∣∣∣∣∣∣
exp

(
−jπ sin(θT )+sin(θ̂J )

2

)

exp
(
−jπ sin(θJ )+sin(θ̂J )

2

)
∣∣∣∣∣∣

2

=

∣∣∣∣∣∣
sin

(
π
2

(
sin(θT )− sin(θ̂J)

))

sin
(

π
2

(
sin(θJ)− sin(θ̂J)

))
∣∣∣∣∣∣

2

=

∣∣∣∣∣∣
sin

(
π
2

(
sin(θT )− sin(θ̂J)

))

sin
(
π cos

(
θJ+θ̂J

2

)
sin

(
θJ−θ̂J

2

))
∣∣∣∣∣∣

2

(24)
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For side-looking SAR, sin(θT ) ≈ 0. When the estimation error ∆θJ = |θJ − θ̂J | ¿ 1, we have

ϑ ≈
∣∣∣∣∣∣

sin
(π

2
sin

(
θ̂J

))

sin
(π

2
cos(θJ)

(
θJ − θ̂J

))
∣∣∣∣∣∣

2

≈
∣∣∣∣∣∣
sin

(π

2
sin(θJ)

)

π

2
cos(θJ)∆θJ

∣∣∣∣∣∣

2

(25)

Figure 4 shows the SIR improvement factors under different DOA estimation errors. It can be seen
that ϑ improves greatly when the DOA estimation accuracy becomes higher. In addition, when θJ gets
larger, the improvement factor also grows higher.

In theory, we can obtain a satisfied DOA estimation accuracy using the method proposed in
Subsection 4.2, when SAR receives enough interference signals. That is to say, after TCC processing,
the interference can be removed effectively.
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Figure 4. The SIR improvement factor versus the DOA estimation error.

5. SAR IMAGE RECONSTRUCTION BASED ON CS

After TCC processing, the SAR image is unable to be obtained via the traditional imaging algorithms.
However, we can reconstruct the sparse scene based on CS theory.

In order to use CS, a linear measurement model of the interference-removed signals should be
created firstly.

5.1. The Linear Model for Interference-Removed Signal

In practice, the range and azimuth times are discrete due to the sampling process. The 2-D discrete
time SAR echoes sk(tat, tr) can be written as sk(ta,m, tr,n), m = 1, 2, . . . ,M , n = 1, 2, . . . , N where M
is the number of azimuth samples and N is the number of samples for each pulse.

(8) can be expressed in matrix form as

sk = Akg (26)

where sk is an MN × 1 vector, Ak an MN × P matrix, and g the P × 1 scattering coefficient vector.
Here, g is sparse and only K(K ¿ P ) of its components is nonzero or greater than zero. In the above
expression,

sk =[sk(ta,1, tr,1), . . . , sk(ta,1, tr,N ), sk(ta,2, tr,1), . . . , sk(ta,2, tr,N ), . . . , sk(ta,M , tr,1), . . . , sk(ta,M , tr,N )]T
(27)

Let
φ(ta,m, tr,n, i) = p(tr,n −Rsk(ta,m, i)/c) exp (−j2πfcRsk(ta,m, i)/c)) (28)

Then, the projection matrix can be expressed as

Ak =[a(ta,1, tr,1), . . . ,a(ta,1, tr,N ),a(ta,2, tr,1), . . . ,a(ta,2, tr,N ), . . . ,a(ta,M , tr,1), . . . ,a(ta,M , tr,N )]T (29)
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where
a(ta,m, tr,n) = [φ(ta,m, tr,n, 1), φ(ta,m, tr,n, 2), . . . , φ(ta,m, tr,n, P )] (30)

Also, Sk(tat, fr) can be rewritten as

Sk = Ωsk = ΩAkg (31)

where Ω is a MN ×MN matrix represented as follow

Ω =




F 0 · · · 0
0 F · · · 0

0 0
. . . 0

0 0 · · · F


 (32)

Here, F is a N × N discrete Fourier transformation (DFT) matrix with the (p, q)th entity given by
1/
√

N exp (−j2πpq/N).
Similarly, (14) can be expressed in a matrix form as

E2 −BE1 = S2 −BS1 = (ΩA2 −BΩA1)g (33)

where Ek is a MN × 1 vector and has a similar construction to Sk; B is a MN ×MN matrix defined
as

B =




B1 0 0 · · · 0
0 B2 0 · · · 0
...

...
. . .

...
...

0 0 0 BM−1 0
0 0 0 0 BM




(34)

where Bm is a N ×N matrix defined as

Bm =




β(ta,m, fr,1) 0 · · · 0
0 β(ta,m, fr,2) · · · 0
...

...
. . .

...
0 0 · · · β(ta,m, fr,N )


 (35)

Here, β(ta,m, fr,n) is the 2-D discrete form of β(tat, fr).
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Figure 5. The flow chart of the presented interference suppression method for SAR imaging.
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5.2. Signal Reconstruction by CS

In our data acquisition method, the collection of SAR echo from the illuminated scene is equivalent to
random slow time undersampling. In the spirit of CS, a very small number of “random” measurements
carry enough information which can accomplish completely reconstruction for the signal. Let E′ =
E2 −BE1 be the undersampled data expressed in frequency domain, and A′ = ΩA2 −BΩA1 be the
projection matrix. Then, our CS measurement can be written as

E′ = A′g (36)

If the SAR image is sparse or compressible, then the targets can be reconstructed by solving [23]

min ‖g‖1 s.t. A′g = E′ (37)

The main flow chart of imaging algorithm for SAR based on CS is shown in Fig. 5.
Currently, many SAR imaging methods based on CS have been introduced [23–26]. It is

demonstrated that these methods improve the radar ability and image quality benefited from the
application of CS theory. Also, our method offers the similar advantages.

(1) Reduction in Data

In many SAR systems, radar data is directly stored on board and then transmitted to the
ground. In [25], the authors proposed to transmit fewer pulses than traditional systems at random
intervals, instead of transmitting pulses with a regular PRI. This scheme is known as “random slow-
time undersampling” which is similar to our acquisition for the contaminated SAR echo. In addition,
the interference is not necessary to be stored. We can estimate the DOA on board and transmit the
results to ground. Thus, Our system has the potential to significantly reduce the amount of data to be
stored and transmitted.

(2) Higher Resolution

The resolution of conventional SAR imaging algorithm based on Matched Filter (MF) theory is
limited by the transmitted signal bandwidth and the antenna length. In [24], a conclusion is drawn
that the sidelobe is suppressed significantly and a higher resolution can be obtained via a sparse
reconstruction method. Similarly, our method also can image the sparse scene with a higher resolution
than the traditional SAR.

(3) Obtaining Wider Swaths

For the traditional SAR, azimuth undersampling at the rate of the pulse repetition frequency causes
azimuth ambiguity, which induces ghost into the images. [26] has proved that azimuth random sampling
can suppress azimuth ambiguity effectively. Thus, our method is possible to image a much wider swath
than possible by the conventional methods.

6. SIMULATION AND ANALYSIS

In order to evaluate the performance of the presented method, some numerical simulation results are
provided in this section. The system parameters are shown as follows: carrier wavelength λ = 6 cm,
the bandwidth of LFM signal Br = 60 MHz, pulse duration Tr = 1 µs, sample rate fs = 84 MHz, pulse
repetition frequency fp = 300 Hz, SAR velocity v = 400 m/s, slant range of scene center is 10 km and
antenna interval d = 3 cm(λ/2). Assume there exists a interference source located at (1000 m, 500m,
0m), transmitting wideband noise signals. The signal-to-interference ratio (SIR) is set to be −30 dB.
In this section, the simulations of two scenes are tested, one is a sample scene has nine point targets,
and another is a complex scene has a ship from ERS SAR image. The original scenes and their imaging
results of the traditional SAR with interference are shown in Fig. 6. Due to the interference, the targets
smears and SAR is unable to perform accurate target detection and parameter estimation.
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Figure 6. The simulated scene. (a) and (b) Nine point targets and its imaging result of the traditional
SAR with interference; (c) and (d) A ship from ERS SAR image and its imaging result of the traditional
SAR with interference.

6.1. Point Target Simulation

The signal-to-noise ratio (SNR) is 15 dB and the radar works in our data acquisition method, and
the numbers of slow-time samples when the transmitter works is set to be 50 (35% of all azimuth
samples). First, we use the interference signal received at tar to locate and remove the interference.
The DOA values of the interference source is estimated with the two-side correlation transformation
(TCT) algorithm [19]. As shown in Fig. 7(a), the tangent values of the estimated DOA fluctuate
around the fitting straight line whose slope is 0.0378 and intercept is −0.0959. According to (18) and
(19), the interference source can be located at (1015.1m, 590.71m, 0m). Based on (20), the sine
values of the interference DOA can be estimated in a high precision, as shown in Fig. 7(b). The average
estimation accuracy of the interference’s DOA is 0.0052 rad and the SIR improvement factor is 51.38 dB.
In other word, SIR becomes 21.38 dB after TCC operation. Then, the corresponding linear model can
be established. Using the sparse information of the target space and solving the convex optimization
problem, the result of the presented method is shown in Fig. 8(a). It is observed that the interference
is removed and the actual target are clearly reconstructed compared with the traditional SAR imaging
algorithm shown in Fig. 8(b). In addition, the value of sidelobe in our method is far less than that in
tradition SAR, and the resolution is improved greatly.

In our method, there are two parameters which have an important influence on the interference
suppression performance. The first one is SNR and the other is the ratio σ defined as ε/ζ, where ε
denotes the number of slow-time samples when SAR transmitter works and ζ represents that of all
slow-time samples. We use relative error (RE) of the reconstruction image to evaluate the method
performance. The RE is defined as follow.

RE =

√√√√√√√√

P∑
i=1

[ĝ(i)− g(i)]2

P∑
i=1

g(i)2
(38)

where g(i) denotes the original image sequence of scattering coecients for illuminated scene, and ĝ(i)
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Figure 7. The estimated DOA values of the interference source. (a) Tangent values of the estimated
DOA at slow time tar; (b) Sine values of the estimated DOA at slow time tat.
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Figure 8. The imaging result of the nine point targets. (a) The proposed method; (b) The traditional
SAR without interference.
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Figure 9. The relative error of target reconstruction by the proposed method. (a) The RE versus SNR
under different σ; (b) The RE versus the ratio σ under different SNR.

is the reconstructed one. Apparently, the lower the value of RE is, the better the performance will be.
Fig. 9 shows the RE of the constructed image versus the different ratio σ and different SNR. At each
SNR level or ratio σ, 100 independent trial are performed. In Fig. 9(a), the result demonstrates that the
method performance deteriorates with the decreases of SNR. It is because that the CS reconstruction is
sensitive to noise [24]. In our simulations, the targets were still reconstructed correctly but with some
false targets coming out when SNR is 5 dB. Fig. 9(b) plots the RE of the proposed method at different
ratio σ under different SNR. It is observed that RE becomes smaller when the ratio σ increases, and a
satisfied imaging result can be obtained when σ is more than 0.2.
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6.2. Ship Scene Simulation

The ship echo signals are added by Gaussian white noise with different SNR levels (SNR = 5 dB, 10 dB,
20 dB) when the interference source locates at (1000m, 0 m, 0 m) and σ = 0.35. After interference
suppression, the imaging results of the ship are shown in Fig. 10(a). It can be seen that the locations
and scattering coefficients of ship scene are well extracted with low sidelobe by our method at high SNR
level. However, in low SNR level (such as 5 dB), the image is deteriorated. There are two reasons. One
is that CS is sensitive to noise. The other one is that lower SNR will bring about lower DOA estimation
accuracy and SIR improvement factor.

Under SNR = 20 dB and σ = 0.35, the interference source is located at different coordinates:
(100m, 0m, 0 m), (500 m, 0m, 0 m) and (2000 m, 0m, 0 m). The corresponding DOA of the interference
are approximately 0.57◦, 2.86◦ and 11.46◦ during the imaging time. The final imaging results of the
presented method is shown in Fig. 10(b). We can see that when the interference source is separated
farther away from the imaging scene, a better imaging result will be obtained. It is because that larger
DOA of the interference will result in a higher SIR improvement factor, which has been proved in
Subsection 4.3.

Finally, we set SNR = 20dB, the interference source to be at (1000m, 0 m, 0m) while σ = 0.15,
0.35 and 0.55 respectively. The imaging results are shown in Fig. 10(c). These results show that the
quality of SAR image will be improved with larger σ. This is because the better performance of CS

(a)

(b)

(c)

Figure 10. The imaging results of a ship scene under different condition. (a) Different SNR (left:
5 dB, middle: 10 dB, right: 20 dB); (b) Different DOA of the interference (left: θJ ≈ 0.57◦, middle:
θJ ≈ 2.86◦, right: θJ ≈ 11.46◦); (c) Different σ (left: σ = 0.15, middle: σ = 0.35, right: σ = 0.55).
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relies on the larger number of measurements [24]. In other words, the larger the number of echo samples
are, the more scattering centers can be reconstructed.

7. CONCLUSION

Image degradation due to various interferences is an important problem in SAR imaging, which can not
neglected during SAR image analysis. With a novel data acquisition mode, this paper has proposed
a new interference suppression method for dual-channel SAR. Compared to conventional interference
suppression approaches, the proposed method can obtain the two-dimensional location of the interference
source, which is an important information for Electronic Counter Counter Measures. In addition,
reduction in data, higher resolution and wider swaths can be achieved. However, there exist two
constraints for this method. First, the illuminated scene should be sparse or compressible. Second,
there is only one interference source located in the sidelobe region. In the future, we will extend this
work to remove multiple interferences with multi-channel SAR.
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