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An Approximate Approach to Determining the Permittivity and
Permeability near λ/2 Resonances

in Transmission/Reflection Measurements

Sung Kim* and James Baker-Jarvis

Abstract—We present a simple and straightforward approximate approach to removing resonant
artifacts that arise in the material parameters extracted near half-wavelength resonances that arise
from transmission/reflection (T/R) measurements on low-loss materials. In order to determine material
parameters near one such λ/2 resonance, by means of the 1st-order regressions for the input impedance
of the sample-loaded transmission line, we approximate the characteristic impedance of the sample-
filled section that is, in turn, dependent either on the relative wave impedance in a coaxial transmission
line or on the relative permeability in a rectangular waveguide case. The other material parameters
are then found, supplemented with the refractive index obtained from the conventional T/R method.
This method applies to both coaxial transmission line and rectangular waveguide measurements. Our
approach is validated by use of S-parameters simulated for a low-loss magnetic material, and is also
applied to determine the relative permittivity and permeability from S-parameters measured for nylon
and lithium-ferrite samples. The results are discussed as compared to those from the well-known
Nicolson-Ross-Weir (NRW) method and are experimentally compared to those from the Baker-Jarvis
(BJ) method as well.

1. INTRODUCTION

Precise knowledge of electric permittivities, magnetic permeabilities, and electric and magnetic losses
of materials is a fundamental requisite for scientific research on materials and provides such data for
the engineering applications of these materials. Depending on forms of test material samples and
classes of measurement data of interest, numerous measurement techniques and algorithms for material
characterizations have been proposed, and various methods are extensively summarized in [1–4].

Solids are the major class of materials that are measured over broad frequency ranges. Because
broadband transmission and reflection coefficients are measureable by employing transmission-line-
type sample fixtures, transmission/reflection (T/R) methods have been widely adopted for broadband
measurements on solid material samples. Existing T/R methods for extracting material parameters,
whether those algorithms are reformulated or not, have been unable to resolve two major inherent
issues. The inherent weaknesses in current algorithms show up with dispersive or low-loss materials.
First, explicit (non-iterative) T/R methods involve a procedure for calculating a natural logarithm
containing measured transmission/reflection data, and the branch cut when the material being tested
is dispersive is ambiguous. The other issue stems from standing waves occurring within a low-loss
sample due to the impedance mismatch to air of the transmission line on both sides of the sample
faces where the dimension is an integer multiple of a half wavelength. Such a geometrical resonance is
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occasionally called ‘Fabry-Perot’ resonances in the literature [5–7]. Half-wavelength (λ/2) resonances
in the transmission and reflection coefficients, measured for low-loss samples, make the extracted
permittivities and permeabilities oscillatory, and give rise to considerable degradation of accuracy of
the material characterizations, with those resonant artifacts.

This resonance issue has been long recognized, and several efforts have been made to address
it [5, 8–10]. All of these proposed methods, however, can only remove the artifacts for permittivities
extracted with T/R methods at the λ/2 resonances. For the µr = 1 assumption for low-loss dielectric
materials, Boughriet et al. [8] reformulated the Nicolson-Ross-Weir (NRW) method [11, 12] smoothing
out permittivity data at the resonances. Assuming that the phase uncertainties of the reflection
measurements are dominant at the resonances, Hasar [9, 10] derived an amplitude-only method for
determining permittivities of low-loss dielectric materials. Chalapat et al. [5] proposed incorporating a
reference-plane-invariant method as modified from the Baker-Jarvis (BJ) technique [13, 14] into a non-
iterative method derived similarly from the NRW algorithm that uses the group-delay measurement
data, and successfully reduced uncertainties for the calculated permittivities, compared to conventional
T/R methods. While all of these approaches are inventive, they remain limited to fixing artifacts for
only dielectric material measurements.

In this paper, we present a methodology for determining both permittivities and permeabilities of
low-loss materials around the half-wavelength resonances. In the following, we first delineate the λ/2
resonance issue for the conventional T/R method. Along with an intuitive explanation about the input
impedance behavior for a sample-loaded transmission line at the resonance, we provide a starting point
for the method we have developed. With an assumption that the material sample treated in this work
is non-dispersive, the 1st-order regression coefficients for the input impedance are used to calculate
the characteristic impedance of the sample-filled section that is a function of the wave impedance of
the material filling a coaxial transmission line or is a function of the permeability filling a rectangular
waveguide. To this end, the other material parameters are calculated with help of the refractive index
obtained from the conventional T/R method. The only assumption made in this paper is that the
characteristic impedance of the material-filled section of the transmission line has a flat response at
the frequencies near the half-wavelength resonance. This approach can be applied to simultaneously
characterize both permittivity and permeability data of any low-loss, non-dispersive materials.

2. THEORY

2.1. The Issue for Conventional T/R Methods

To begin with, let us review the issue that arises in conventional T/R methods, often referred to as the
Nicolson-Ross-Weir (NRW) method [11, 12], Baker-Jarvis (BJ) iterative method [13, 14], etc.. These
T/R methods determine the complex permittivity and permeability of a material sample placed in a
transmission line from the measured total reflection and transmission coefficients (S-parameters) of the
transmission line. Fig. 1 shows the schematic of the measurement on S-parameters (together with input
impedance (Zin) to be used in Sections 2.2 and 2.3 to develop our new approximate approach) for the
transmission line loaded with a test material whose refractive index, relative wave impedance, absolute
permittivity, absolute permeability, propagation constant, and characteristic impedance are denoted as
n, ς, ε, µ, γ, and Z, respectively. In Fig. 1, the parameters with the subscript 0 mean the ones for the
air-filled sections, except that ς0 is the absolute value (not the relative value as ς), which is 377 Ω. The
S-parameters measured to implement the NRW method that requires reference planes 1 and 2 at the
sample faces in Fig. 1 are represented by

S11 = S22 =
Γ

(
1− t2

)

1− Γ2t2
, (1)

S21 = S12 =
t
(
1− Γ2

)

1− Γ2t2
, (2)

where t is the propagation factor and Γ is the reflection coefficient of the interface. These relate the
material parameters via

t = exp (−γL) (3)
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Figure 1. Schematic of the S-parameter and input impedance measurement of the sample-loaded
transmission line.

and

Γ =
µ
γ − µ0

γ0
µ
γ + µ0

γ0

, (4)

where L is the sample length. In Eqs. (3) and (4), the propagation constant γ is given by

γ = j

√
ω2εrµr

c2
−

(
2π

λc

)2

, (5)

where j is the imaginary unit defined as j =
√−1, and εr and µr are the relative permittivity and

permeability of the sample. c is the speed of light, ω the angular frequency, and λc the cutoff wavelength
of the rectangular waveguide (λc is infinite for a coaxial transmission line). We see that we can determine
the permittivity and permeability from measured S-parameters by solving Eqs. (1) and (2) for εr and
µr.

Instead of inserting Eqs. (3) and (4) into Eqs. (1) and (2), the NRW technique involves explicit
computations of Γ and t with measured S11 and S21, such as

Γ = X ±
√

X2 − 1, (6)

with

X =

(
S2

11 − S2
21

)
+ 1

2S11
, (7)

and
t =

(S11 + S21)− Γ
1− (S11 + S21) Γ

, (8)

and then analytically finding the relative permeability and permittivity with Eqs. (6), (7) and (8), where

µr =
1 + Γ

(1− Γ)Λ
√(

1
/
λ2

0

)− (
1
/
λ2

c

) (9)

and

εr =
λ2

0

µr

(
1
Λ2

+
1
λ2

c

)
, (10)

where λ0 is the free-space wavelength. In Eqs. (9) and (10), Λ is the guided wavelength that has
appeared in the literature [12] as

1
Λ2

= −
[

1
2πL

ln
(

1
t

)]2

. (11)
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The sign in Eq. (6) should be chosen so that |Γ| ≤ 1 because the sample under test is passive. If the
sample length exceeds a half wavelength, the logarithm in Eq. (11) can be multivalued. If the measured
group delay is smooth enough at measurement frequencies, we can use this to select the correct branch
of the logarithm [12]. If the material sample possesses a dispersive characteristic, the correct branch
cut will remain ambiguous. However, this branch-cut ambiguity is out of the scope of this paper, and
non-dispersive materials are assumed throughout this work.

In contrast to the NRW method employing Eqs. (9) and (10), the BJ method iteratively solves the
following equations as reformulated from Eqs. (1) and (2) for εr and µr:

S11S22 − S21S12 = exp [−2γ0 (Lair − L)]
Γ2 − t2

1− Γ2t2
, (12)

S21 + S12

2
= exp [−γ0 (Lair − L)]

t
(
1− Γ2

)

1− Γ2t2
, (13)

where Lair represents the entire length of the sample-fixture transmission line, and Lair ≥ L. For the
BJ iteration method, the reference planes for the S-parameter measurement are not necessarily at the
front and back faces of the sample as in the NRW method. The determinant (12) of the scattering
matrix and arithmetic mean (13) of the transmission coefficients are functions of Lair − L, not merely
of L. Therefore, the BJ iteration method is called the reference-plane invariant.

Taking the TEM case for simplicity, we rewrite the equations in a different way to clarify the
significant inherent issue of the conventional T/R methods. From Eq. (10) with λc = ∞ and Eq. (11),
we obtain the refractive index n of the test material as

n = n′ − jn′′ = ±√εrµr = ±j
λ0

2πL
ln

(
1
t

)
. (14)

From Eqs. (6) and (7), we have

Γ2 − Γ

[
1− (

S2
21 − S2

11

)

S11

]
+ 1 = 0. (15)

The substitution of the relation of Γ to the relative wave impedance ς, Γ = (ς − 1)/(ς + 1), into Eq. (15)
leads to the expression of ς as a function of measured S11 and S21:

ς = ς ′ + jς ′′ = ±
√

µr

εr
= ±

√
(1 + S11)

2 − S2
21

(1− S11)
2 − S2

21

. (16)

The signs in Eqs. (14) and (16) should be chosen so that n′′ ≥ 0 and ς ′ ≥ 0, taking passivity
constraints into account. The relative permittivity and permeability can be respectively found from
εr(= ε′r − jε′′r) = n/ς and µr(= µ′r − jµ′′r) = n · ς with n and ς from Eqs. (14) and (16). Note that
Eq. (16) has been adopted in the literature to extract negative permittivities and/or permeabilities for
metamaterials in the TEM case [15, 16].

Equation (16) provides a very convenient way to show how accuracy is lost around half-wavelength
resonant frequencies. As a specific example, we use Eqs. (14) and (16) to extract the refractive index,
wave impedance, permittivity, and permeability from the measured S-parameters for a nylon sample
(εr ≈ 3) of L = 15.10mm, measured with a coaxial transmission line having inner and outer radii,
a = 1.52mm and b = 3.50 mm, respectively. The results are shown in Fig. 2. Figs. 2(a) and (b) show
S11 and S21 as measured with Agilent† 8510C vector network analyzer (VNA), and we see from the plots
that |S11| and |S21| attain their negative and positive peaks at 5.75 GHz, where the length L becomes a
half wavelength. We can confirm from Figs. 2(c) and (d) that the refractive index is relatively smooth
in the entire measurement frequency range, whereas the wave impedance exhibits a strong resonance
at that frequency. In [17], the authors specified that this resonance was due to the fact that Eq. (16)
becomes ill-conditioned with |S11| ≈ 0 and |S21| ≈ 1 at the half-wavelength resonance for a very low-loss
material, and from Eq. (16) ς behaves divergent as a result.
† Reference to specific hardware in this article is provided for informational purposes only and constitutes no endorsement by the
National Institute of Standards and Technology.
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(a) (c)

(e)

(b)

(d) (f)

Figure 2. Measured S-parameters and extracted material parameters for nylon (εr ≈ 3) with
L = 15.10 mm. (a) |S11|, |S21|, (b) ∠S11, ∠S21, (c) n′, n′′, (d) ς ′, ς ′′, (e) ε′r, ε′′r , (f) µ′r and µ′′r .

The explicit NRW equations generate similar resonances in the extracted permittivity and
permeability at the frequency for a half wavelength, because as an intermediate step the algorithm
uses Eqs. (6) and (7) to calculate Γ that becomes divergent if |S11| ≈ 0. With respect to the BJ
iteration method based on Eqs. (12) and (13), we observe that the left-hand sides of Eqs. (12) and
(13) iterate to nearly the same values, i.e., |S11S22 − S21S12| ≈ |S21 + S12|/2 ≈1, with |S11|, |S22| ≈ 0
and |S21|, |S12| ≈ 1, and thus the material parameters calculated from these equations generate similar
artifacts when simultaneously measuring both εr and µr of a low-loss magnetic material. However, note
that the BJ method does not have the resonant issue if the method uses only Eq. (13) as a function
of S21 and S12, not of S11 or S22 (transmission (T ) method), assuming that µr = 1 when measuring a
dielectric-only material.

In Fig. 2(d), ς begins to oscillate around 5.3 GHz where |S11| is 0.139, not very small, and S21 is not
very close to unity (|S21| ≈ 0.966). All VNAs have a noise floor that is a bottom limit for S-parameters.
From a thru measurement under the condition of 10 dBm source power and 128 averaging, the reflection
noise floor level of our VNA was read to be about −75 dB, but as the measurement data approach the
noise floor, the data may not be sufficiently accurate. This indicates that the oscillation of ς comes not
only from small values but also from this measurement limitation.

In Figs. 2(e) and (f), we see that the extracted permittivity and permeability have resonances
similar to the wave impedance but are out of phase relative to one another (εr goes up and down, while
µr goes down and up as the frequency is increased around the resonance). This phase relationship
results from the fact that the wave impedance has a resonant peak, while the refractive index does not,
and consequently, εr = n/ς and µr = n · ς yield these artifacts around the resonance. Actually, both of
the NRW and BJ methods as starting at Eqs. (1) and (2) bring about nearly the same n′, n′′, ς ′, ς ′′,
ε′r, ε′′r , µ′r, and µ′′r , as shown in Fig. 2. To reiterate, the BJ method would not have resonant artifacts
when using Eq. (13) to extract only relative permittivity.

Having said that S11 should not be too small, we will take the power-series expansion of Eq. (16) to
remove the instability under the condition that |S11| ≈ 0, assuming that S11 is very small with respect
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to unity, to have good convergence:

ς ≈ 1− 2
S2

21 − 1
S11 +

2(
S2

21 − 1
)2 S2

11 −
2

(
1 + S2

21

)
(
S2

21 − 1
)3 S3

11 +
2

(
1 + 2S2

21

)
(
S2

21 − 1
)4 S4

11 + O
(
S5

11

)
. (17)

Note that Eq. (17) can be ill-conditioned with |S21| ≈ 1 like Eq. (16). Fig. 3 shows the wave impedance
calculated from Eqs. (16) and (17) from S-parameters for the nylon sample, taking the terms for the
expansion from 1st order to 4th order. We observe in Fig. 3 that the wave impedance from Eq. (17)
approaches the result from Eq. (16), with higher order terms included. Similar to that from Eq. (16),
ς from Eq. (17) begins to show the resonant behavior (deviation) around 5.3GHz, although S11 does
not appear in its denominators in Eq. (17). We also see that |S21| can be read from Fig. 2(a) to be
0.974 at 5.75GHz, which is not very close to unity at the resonant frequency. Besides, we observe in
Fig. 2(b) that ∠S11 = 110◦ and ∠S21 = −165◦ at 5.3 GHz, whereas ∠S11 = −104◦ and ∠S21 = 170◦
at 6GHz, and that these S-parameter phases rapidly change around the resonance. Therefore, we can
again confirm that measured S11 is not accurate enough because of the limitation of the measurement
equipment around the λ/2 resonance. We reiterate that this resonant issue is attributed not only to
|S11| ≈ 0 and |S21| ≈ 1 but also to measurement limitations.

(a) (b)

Figure 3. Wave impedance calculated from (16) and (17). (a) ς ′ and (b) ς ′′.

We see that any T/R methods derived from Eqs. (1) and (2) suffer from the permittivities and
permeabilities contaminated with the artifacts of the wave impedances around λ/2 resonances. This
interpretation can adequately explain the inevitable issue that any conventional T/R methods share, and
we can understand that it is very difficult to achieve very clean point-by-point (frequency-by-frequency)
material parameters of low-loss materials at each of the measurement frequencies around λ/2 resonances
by use of the conventional T/R methods. A key to removing the artifacts from the material parameters
extracted in the T/R measurements will be to derive a reasonable ‘wave impedance’ (‘permeability’
when a rectangular waveguide is used) around the λ/2 resonance. Section 2.3 will describe our attempt
to get rid of the artifact of the wave impedance (or permeability) near the resonance.

2.2. Input Impedance of a Sample-loaded Transmission Line

In this section, we investigate the input impedance of the transmission line as a function of the refractive
index and wave impedance of the test material sample installed in the transmission line. Again, consider
the transmission line loaded with the material with n and ς (see Fig. 1). We assume in Fig. 1 that
reference plane 1 coincides with the front face of the sample, but the relation of reference plane 2 to the
back face of the sample is arbitrary, and that the sample-loaded transmission line is introduced between
transmission lines with the characteristic impedance Z0 that connect to the VNA. In Fig. 1, the input
impedance Zin looking from reference plane 1 is represented by

Zin = R + jX = Z
Z0 + Z tanh (γL)
Z + Z0 tanh (γL)

, (18)
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where R and X are respectively the real (resistive) and imaginary (reactive) parts of the input impedance
of the loaded transmission line. In Eq. (18), the propagation constant and characteristic impedance of
the sample-filled section are given by

γ = jk0n (coaxial transmission line)

= j

√
(k0n)2 −

(
2π

λc

)2

(rectangular waveguide)
(19)

and
Z = Z ′ + jZ ′′

=
ςς0
2π

ln
(

b

a

)
(coaxial transmission line)

=
jωµrµ0

γ
=

ωµrµ0√
(k0n)2 − (2π/λc)

2
, (rectangular waveguide)

(20)

where k0 and ς0 are the wavenumber and absolute wave impedance (377 Ω) in air, and a and b are the
radii of the inner and outer conductors of the coaxial transmission line.

Figure 4 shows the real and imaginary parts R and X of the input impedance Zin calculated from
Eq. (18) with Z0 = 50 Ω and L = 20 mm, a = 1.52mm, and b = 3.50mm for the sample-loaded coaxial
transmission line. Here, it is assumed that the sample is such a low-loss material that the imaginary
parts n′′ and ς ′′ are negligible, and n and ς are simply real values. For plotting R and X in Figs. 4(a)
and (b), n is varied with ς fixed at 0.4, whereas for the plots in Figs. 4(c) and (d) ς is varied with
n set at 1.0. We observe from the latter two plots that, if ς 6= 1.0, the λ/2 resonance occurs at the
frequency for R = Z0(= 50), and X = 0. Fig. 4 shows how varying n shifts the curves of both R and
X along the frequency axis, and also that changing ς brings about different shapes of R and X curves

(a)

(c)

(b)

(d)

Figure 4. Real and imaginary parts R and X of the input impedance Zin of the transmission line
loaded with the sample of n and ς calculated from (18). (a) R with n varied and ς = 0.4, (b) X with n
varied and ς = 0.4, (c) R with n = 1.0 and ς varied, and (d) X with n = 1.0 and ς varied.
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that retain the same frequency of intersection R = Z0 and X = 0. This means that n determines the
resonant frequency and ς plays a main role in the gradient changes of R and X. Therefore, we will
be able to inversely calculate n from the measured resonant frequency and ς from the gradients of the
measured input impedance in R and X. Note that Fig. 4(c) demonstrates that ς < 1 and ς > 1 give
respectively maximal and minimal values to R at the resonant frequency. In other words, the half-
wavelength resonant transmission line with εr > µr can be represented by a parallel lumped-element
resonant circuit and that with εr < µr is equivalent to a series resonant circuit [18, 19].

2.3. Approximate Approach to the Characteristic Impedance Determination near the
λ/2 Resonance

We approximate the gradients of the real and imaginary parts R and X of the measured input impedance
Zin in order to calculate the characteristic impedance Z of the sample-filled section, assuming that Z
is constant around the λ/2 resonant frequency. Fig. 5 illustrates some 1st-order regressions for fitting
the real and imaginary parts R and X of the input impedance Zin of the sample-loaded transmission
line. In Figs. 5(a) and (b), the resonant frequency band is divided into two regions, I: fA − f0 and II:
f0 − fB, denoting f0 as the center frequency and fA and fB as the start and stop frequencies at the
resonance. f0 is chosen so that R is the maximal or minimal at that frequency and X is equal to zero
at the same time. In these frequency regions, the regression lines for approximating measured R and
X are expressed with the 1st order: R = a1f + a2 and X = b1f + b2 in region I, and R = c1f + c2 and
X = d1f + d2 in region II. The regression coefficients, a1, b1, c1, and d1, can be represented as

a1 =
R (f0)−R (fA)

f0 − fA
, (21)

b1 =
X (f0)−X (fA)

f0 − fA
, (22)

c1 =
R (fB)−R (f0)

fB − f0
, (23)

d1 =
X (fB)−X (f0)

fB − f0
, (24)

where R and X are given by Eq. (18) with Eqs. (19) and (20) that are functions of n and ς for the
coaxial transmission line (µr for the rectangular waveguide, instead of ς). Here, n is acquired from the
conventional T/R method and is substituted into the equations. We can readily solve Eqs. (21) and (22)
for the transmission-line characteristic impedance Z in region I, and Eqs. (23) and (24) for the one in
region II. Note that if the frequencies f0, fA, and fB are very high, a1, b1, c1, and d1 may be very small,
resulting in degraded accuracy for Z. Therefore, we use the values in GHz for f0, fA, and fB when the
measurement frequency is in the GHz range. In this paper, we employ the Newton-Raphson method to
iteratively solve Eqs. (21)–(24) with the proper initial values chosen from outside the resonance.

(a) (b)

Figure 5. Illustration of the regressions for the real and imaginary parts R and X of the input
impedance Zin. (a) R and (b) X.
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In the case when a coaxial transmission line is used, we can find the wave impedance with a
knowledge of Z(= Z ′ + jZ ′′):

ς =
2πZ

ς0 ln
(

b
a

) . (25)

The relative permittivity and permeability can be obtained with ς from Eq. (25) and n from Eq. (14);
i.e., εr = n/ς and µr = n · ς.

If the transmission line is a rectangular waveguide, the relative permeability can be calculated with
known Z as follows:

µr =
γZ

jωµ0
=

√
(k0n)2 − (2π/λc)

2

ωµ0
Z. (26)

The permittivity can then be calculated from εr = n2/µr with µr from Eq. (26) and n from Eq. (10)
along with Eq. (11) (n = ±√εrµr = ±λ0

√
1/Λ2 + 1/λ2

c). Note that for our approximation to work,
we must assume that the sample has non-dispersive material parameters around the resonance so that
we are allowed to get flat Z from the approximation near the resonant frequency. This assumption
simultaneously guarantees that we do not suffer from the branch cut ambiguity when we calculate
n from Eq. (14) (or Eq. (10) with Eq. (11)). To clarify the order of computing the parameters at
each step for obtaining the permittivity and permeability, the flow diagram in Fig. 6 summarizes
the computation procedure, depending on whether we use a coaxial transmission line or rectangular
waveguide. Fig. 6 shows that once measuring the S-parameters and input impedance Zin (convertible
from the S-parameters) for the sample, the refractive index n is first acquired in the same manner as the
ordinary T/R method, and the regression coefficients a1, b1, c1, and d1 are calculated from Zin to get
the characteristic impedance Z of the loaded section. A sequence of these computations does not involve
any complicated tasks. Also, note in Fig. 6 that the only difference between the coaxial transmission
line and rectangular waveguide measurements is that in the coaxial line case the wave impedance ς is

Figure 6. Flow diagram for the computation procedure.
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calculated from Z while the relative permeability µr is immediately found in the rectangular waveguide
case, and that the other material parameters then follow and are easily found in both cases.

Essentially, the conventional T/R methods require at least two equations (S11 and S21) (the BJ
method makes full use of S-parameters, S11, S22, S21, and S12) to solve two unknowns (permittivity and
permeability). In the early stage of this work, we tried using Eq. (2) for measured S21 and Eq. (18) for
measured input impedance Zin instead of immediate use of Eq. (1) for S11. However, we got almost the
same ς as that from the conventional T/R methods. Moreover, instead of Eq. (1), we attempted to use
equations for the resonant frequency f0 and quality (Q) factor at a λ/2 resonance, but we observed that
measured Q of various material samples appeared to be too low (e.g., Q = 1 to 3 for a nylon sample)
to obtain sufficiently accurate εr and µr from f0 and Q measurements.

3. RESULTS AND DISCUSSION

In order to validate our approximate technique, we employed S-parameters obtained with the full-
wave simulator, ANSYS‡ High Frequency Structure Simulator (HFSS). This is the case when the data
deterioration due to the VNA measurement limit is omitted and simulated S11 becomes only small at the
resonance. As a test sample for the simulation, a very low-loss non-dispersive magnetic material was
considered whose relative permittivity and permeability are εr = 10.000 − j0.001 (tan δe = 0.0001)
and µr = 25.0000 − j0.0025 (tan δm = 0.0001). We placed the test sample into a 7-mm coaxial
transmission line (APC-7) known to operate up to 18GHz with no higher-order modes when loaded
with a polytetrafluoroethylene (PTFE) dielectric insulator. We configured the sample length to be
L = 5 mm so that the λ/2 resonance occurs below 18 GHz.

(a) (c)

(e)

(b)

(d) (f)

Figure 7. Input impedance, permittivity and permeability extracted from the simulated data for the
coaxial transmission line. (a) R, (b) X, (c) ε′r, (d) ε′′r , (e) µ′r and (f) µ′′r (green and red dashed lines
respectively represent our approximate data in regions I and II).

‡ Reference to specific software in this article is provided for informational purposes only and constitutes no endorsement by the
National Institute of Standards and Technology.
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The simulated input impedance Zin of the sample-loaded transmission line is shown in Figs. 7(a)
and (b), exhibiting a λ/2 resonance at f0 = 5.69GHz, where R = 50.0500Ω (minimal) and X = 0.0975 Ω
(close to zero). Selecting fA = 5.54GHz and fB = 5.84GHz to apply our approximate approach, we
made use of a built-in function of the commercial numerical software package, MATLAB§, for finding
the regressions as plotted in Figs. 7(a) and (b). The resultant regression coefficients are a1 = −12.0486,
b1 = 78.6471, c1 = 13.0710, and d1 = 78.6003. By solving Eqs. (21)–(24) with these regression
coefficients and the initial values taken from outside the resonance to find the characteristic impedance
Z, and then by substituting Z into Eq. (25), we obtained the wave impedance ς of the test sample. The
relative permittivity and permeability in Figs. 7(c)–(f) were calculated from εr = n/ς and µr = n · ς
with a knowledge of the refractive index n obtained from Eq. (14) for the NRW algorithm.

Figures 7(c) and (e) show that ε′r and µ′r from the NRW method have large discrepancies compared
to the values configured for the simulation at fA and fB, and we can confirm that fA and fB we
selected are within the frequency band of the half-wavelength resonance. In Figs. 7(c)–(f), εr and µr

approximated with our approach seem to be very consistent across regions I and II, and it is validated
that our assumption to derive the approximation — material parameters of test samples are constant
around the resonance — is adequate. In Figs. 7(c)–(f), the approximate permittivity and permeability
are shown to be εr = 9.999− j0.004 and µr = 25.0540 + j0.0050 in region I, and εr = 10.008− j0.009
and µr = 25.0310 + j0.0170 in region II, agreeing very well with the values we input in the simulation,
whereas the NRW material parameters are shown to be very divergent at the λ/2 resonant frequency.

(a) (c)

(e)

(b)

(d) (f)

Figure 8. Input impedance, permittivity and permeability extracted from the simulated data for the
rectangular waveguide. (a) R, (b) X, (c) ε′r, (d) ε′′r , (e) µ′r and (f) µ′′r (green and red dashed lines
respectively represent our approximate data in regions I and II).

Next, we attempted to test out our current approximate approach with S-parameters simulated for
the same sample installed in a rectangular waveguide in place of the coaxial transmission line. In the
simulation model, we used a WR-112 waveguide whose operational frequency is 7.05–10 GHz (H band).
§ Reference to specific software in this article is provided for informational purposes only and constitutes no endorsement by the
National Institute of Standards and Technology.
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The sample length was chosen to be L = 5 mm so that the resonance occurs within that frequency range.
From the plots for the input impedance in Figs. 8(a) and (b), we see that the resonant frequency is
f0 = 9.5125GHz, where R = 453.2300Ω (minimal), which is very close to the characteristic impedance
of the air-filled waveguide at f0, and X = 4.3849Ω (very small). Choosing fA = 9.325GHz and
fB = 9.700 GHz, we obtained a1 = −94.8193, b1 = 394.7375, c1 = 101.8847, and d1 = 404.9929. Using
Eqs. (21)–(24), and Eq. (26) with these regression coefficients, we extracted the relative permittivity and
permeability, as shown in Figs. 8(c)–(f). In regard to the waveguide measurement, the extracted relative
permittivity and permeability seem to have minimal slopes unlike those in the coaxial transmission line
measurement. This is attributed to the fact that Eq. (26) for µr, calculated from a1, b1, c1, and d1 for
approximating the input impedance Zin (in turn, the characteristic impedance Z), contains n as acquired
from the NRW method and not necessarily very constant in the rectangular waveguide measurement.
The approximate permittivity and permeability shown in Figs. 8(c)–(f), εr = 10.070 − j0.001 and
µr = 24.8622− j0.0025 at 9.4 GHz in region I and εr = 10.066− j0.001 and µr = 24.8584− j0.0025 at
9.6GHz in region II, exhibit very good agreement with those we used in the simulation. In contrast, the
NRW results generate very divergent peaks at the λ/2 resonance, just as for the coaxial-transmission-line
case.

Also, we examined our approach using measured S-parameters shown in Figs. 2(a) and (b) for nylon
of L = 15.1mm. Figs. 9(a) and (b) show extracted ε′r and ε′′r for nylon by comparison to the results from
the BJ iterative method which uses only Eq. (13) for dielectric-only measurements and is considered to
be one of the most accurate methods for broadband dielectric measurements, since Eq. (13) is a function
of S21 and S12, not of S11 nor of S22 [13, 14]. Uncertainty bounds are given in Figs. 9(a) and (b) with
regard to the data obtained from the BJ method. Moderately strict dimensional errors (+/ − 4µm)
for the sample and fixture were input in order to calculate these uncertainties. Note that because in
this case the BJ method can determine only the permittivity, and as well is a reference-plane invariant

(a)

(c)

(b)

(d)

Figure 9. Nylon permittivity and permeability extracted from measured S-parameters. (a) ε′r, (b) ε′′r ,
(c) µ′r and (d) µ′′r (green and red dashed lines respectively represent our approximate data in regions I
and II).
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(a)

(c)

(b)

(d)

Figure 10. Lithium ferrite permittivity and permeability extracted from measured S-parameters. (a)
ε′r, (b) ε′′r , (c) µ′r and (d) µ′′r (green and red dashed lines respectively represent the data in regions I and
II).

algorithm, the uncertainties that the present approximation and conventional T/R methods may suffer
from are greatly eliminated with the BJ method.

In Figs. 9(a) and (b), we see that the approximate method gives εr = 2.864 + j0.1216 and
εr = 2.858 − j0.032, respectively, in regions I and II, showing relatively good agreement with the
lower bounds for the BJ data (εr = 2.940− j0.038 and εr = 2.939− j0.045) in regions I and II, whereas
the NRW method has a very large divergent spurious peak at the λ/2 resonance. In Figs. 9(c) and (d),
our approximate permeability appears to be µr = 1.052 − j0.061 and µr = 1.053 − j0.014 in regions I
and II, respectively, while the NRW permeability again results in the artifact at the λ/2 resonance.

For a second experimental test, we measured a sample of a low-loss magnetic material, lithium
ferrite, with the APC-7 coaxial transmission line. Figs. 10(a)–(d) show the permittivity and permeability
extracted by means of both the NRW and our approximate methods. These plots show that the results
from the NRW method include very prominent artifacts, whereas our approximation generates roughly
εr ≈ 10 and µr ≈ 1.1 near the resonance. We deduce that disagreements between regions I and II
originate from lithium ferrite’s slightly dispersive properties in these frequency regions.

Both simulation and experimental results in this section confirm that our approximate approach
gives considerably more accurate data near the half-wavelength resonance than does the NRW method
in both the simulations and experiments (also more accurate than the BJ method for magnetic
measurements). We emphasize that the approximate approach proposed in this paper can be applied
whether a test material is dielectric or magnetic as long as the material possesses flat material properties
at the half-wavelength resonant frequencies. Note that, at this point, we have manually selected fA

and fB by visual inspection of the resonant frequency bands by checking where the material parameters
resulting from the conventional T/R methods start to show oscillation, and thus that the accuracy of
our approximate approach presented in this paper may depend on a way of choosing fA and fB.
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4. CONCLUSION

We have developed an approximate method for measuring permittivities and permeabilities near half-
wavelength resonances. The approach approximates the characteristic impedance Z of the sample-filled
section of the transmission line with 1st-order regression coefficients for the input impedance Zin of the
sample-loaded transmission line at each of two frequency regions I and II around the resonant frequency.
Either of ς of the sample loaded in the coaxial transmission line or µr in the rectangular waveguide is
calculated from the approximate characteristic impedance Z. The other material parameters are easily
obtained by employing n calculated from the conventional T/R method.

We have validated our approximate method with simulated S-parameters for both coaxial
transmission line and rectangular waveguide measurements. The results from our method are in very
good agreement with the values configured for the simulations. In contrast, the NRW method exhibits
strong divergent artifacts at the λ/2 resonances.

Furthermore, we have extracted nylon permittivity and permeability from experimentally measured
S-parameters. Our approximate approach shows smooth εr, that is close to the lower bounds of the
nylon permittivity estimated by the BJ dielectric-only method, and the permeability µr ≈ 1, whereas
the NRW method leads to a very large spurious peak in both permittivity and permeability at the
λ/2 resonance. We have also measured lithium ferrite and have confirmed that relatively better results
are obtained from the approximate approach than those from the NRW method. To reiterate, we
emphasize that the NRW and BJ methods generate resonant artifacts when simultaneously extracting
permittivities and permeabilities of low-loss materials around λ/2 resonances. The BJ data shown in
Section 3 for comparison are the results from the T method that does not extract µr.

At present, we are investigating the reasonable bounds of the material parameters determined from
the T/R methods to choose physically justifiable fA and fB where the extracted parameters start to
deviate from the real ones. That extended study will give us a robust way of choosing fA and fB, which
will be reported in a future publication.
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