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Ultra-Wideband Antenna Arrays: Systems with Transfer Function
and Impulse Response

Yvan Duroc*

Abstract—This paper proposes some approaches to model Ultra Wideband (UWB) antenna arrays.
Based on the array factor, often stipulated as not adapted for the description of the properties of UWB
arrays in the literature, an analytical expression of the beampattern is developed. The achieved results
are coherent with other formulations and empiric studies proposed in the literature. Furthermore, a
time-frequency modeling of UWB antenna arrays is proposed using the concept of array factor and
antenna effective length.

1. INTRODUCTION

Even if the concept of antenna arrays is not new with early work in the 1920s [1], Multiple Input Multiple
Output (MIMO) communication systems using antenna arrays have recently emerged as a breakthrough
for wireless systems of revolutionary importance. All wireless technologies face the challenges of signal
fading, multipath, increasing interference, and limited spectrum. Antenna arrays in MIMO systems
exploit multipath and associated diversity to provide higher data throughput and simultaneous increase
in range and reliability, all without consuming extra radio frequency [2]. They enable the signal-to-
interference by suppressing interferers by the use of spatial filtering or spatial diversity [3] and can also
present advantages for cryptography [4]. Ultra-Wideband (UWB) technology is a potential candidate
in the race of the wireless world since the Federal Communications Commission (FCC) released a
report approving its use in the 3.1–10.6 GHz frequency range. However this technology is limited by an
extremely low allowable transmitted power, i.e., −41.3 dBm/MHz [5]. To overcome this constraint, the
combination of MIMO techniques with UWB technology has been found to be one of the most relevant
solutions. Furthermore, it should be noted that the antenna arrays for the UWB systems present the
same advantages as in narrowband systems [6].

In this context, a lot of the works concerned the design of UWB MIMO antennas [7–9] as well as
the description of their specific properties [10–14]. The direct transposition of narrowband approaches
is not adequate and too incomplete for the UWB antenna array descriptors, as is the case of single
element [15–17]. The traditional description of antenna arrays from array factors [18] cannot be directly
used in UWB arrays because it does not take into account the frequency dependence. As for the single
UWB antennas, the modeling of UWB antenna arrays is typically performed in the time domain.
Therefore the beampattern has been defined considering the time expressions of the signals [7]. In [12],
the properties of short-pulsed sparse transmitting arrays are explored. The array’s characterization is
carried out via the energy radiation pattern which is decomposed into a set of different types of beam
contributions (main beams, grating lobe beams and cross-pulsed lobe beams), and this according to the
array’s physical and excitation parameters. The properties of UWB arrays are described in [11] which
notably highlights that even sparse UWB antenna arrays do not manifest grating lobes. This statement
is completed in [13, 14] focusing on the grating lobes and determining the minimum requirements so
that an UWB array does not effectively manifest grating lobes. Finally as early as 2006, [10] proposed
a study aiming to highlight the signal dispersion due to parameters as the scan angle, the input signal
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duration, the repetition rate of the input pulse train. Guidelines to reduce pulse coupling was introduced
from a physical model of the time domain coupling in pulsed antenna arrays.

The objective of this paper is to introduce a time-frequency model of antenna arrays. It extends the
system modeling proposed in the case of the single UWB antennas [19] for the UWB arrays. Indeed, it
is acknowledged that for evaluating antennas with baseband pulse excitations the most general antenna
descriptor is the antenna impulse response, and thus, the UWB antennas can be considered as Linear
Time Invariant (LTI) systems characterized by transfer functions or associated impulse responses. The
proposed idea is to characterize the UWB antenna arrays using a similar approach. Section 2 shows
how the classical approach developed for narrowband antenna arrays relying on the array factor can
be generalized for the UWB antenna arrays. Section 3 presents the new system modeling dedicated
for UWB antenna arrays. The proposed approach is based on the modeling describing the antennas
as systems with transfer function and impulse response and exploits the definition of the array factor.
Finally section 4 draws conclusions and outlines future works.

2. CHARACTERIZATION OF UWB ANTENNA ARRAYS

2.1. Introduction

The antenna arrays are generally described by means of array factors where it is assumed electromagnetic
waves at a single frequency [20]. The phase shifts introduced by the array geometry and the eventual
amplitude weight and phase shifter of each antenna element define the array factors. For UWB antenna
arrays, this approach was abandoned because the signals may be extremely short, and thus the emitted or
received signals by individual antenna elements do not always overlap in the time domain [13]. However,
the classic method can be exploited and applied in the case of UWB arrays taking into account some
precautions. The following parts show how it is possible to describe an antenna array through a system
approach based on the array factor and also show the coherence with the used specific time descriptors.

2.2. UWB Array Pattern

2.2.1. Radiation Vector for Antenna Arrays

Considering a three-dimensional array of N several identical antennas located at positions ~dn with
relative complex feed coefficients An(f) (n = 1, . . . , N−1), the total radiation vector ~Ftot(~k) is function
of the radiation vector ~F (~k) due to a single antenna element at the origin and the array factor A(~k) [20]:
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and where λ is the free-space wavelength, f the frequency, c the velocity of light, and ω the pulsation.
Consequently the far-zone field of an N -element array of identical elements is equal to the product

of the field of a single element (at a selected reference point, usually the origin) and the array factor
of that array. The array factor is a function of the number of elements, their geometrical arrangement,
their relative magnitudes and phases and their spacings. This result is general and exact for all types
of antennas constituting the array. However, different approaches proposed for UWB arrays take into
account the frequency dependence and the fact that the phase information alone is not sufficient as it
does not provide information on temporal superposition of the signals [7, 14]. From this remark, without
loss of generality, first a simple example is detailed then a generalization is developed in order to bring
out the properties in the UWB case.
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2.2.2. Azimuthal Power Pattern for an Array of Two Antennas

Consider an array of two isotropic antennas at positions ~d0 = 0 and ~d1 = dx̂ as illustrated in Fig. 1(a).

(a) (b)

Figure 1. Geometry of (a) two-element (b) N -element array along x-axis.

Assuming the array unit weights and considering the array spacing d = lλ0 (where λ0 is the central
wavelength of the signal and l is a real number) the azimuthal power pattern g(f, ϕ) is:
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can also be rewritten as:
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where J0(2πl f
f0

) and J2n(2πl f
f0

) are the coefficients of the Bessel functions of the first kind. These
expressions are general and show that it is possible to include the frequency dependence in the analysis
of the patterns.

2.2.3. Beampattern for an Array of N-antennas

Consider a one-dimensional array of N isotropic antennas at positions ~dn = ndx̂ in Fig. 1(b).
Considering the array spacing d = lλ0, the array factor is a function of the azimuthal angle ϕ and
the frequency variable f as:
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Assuming the array unit weights, after some calculations the azimuthal power pattern g(f, ϕ) is written:
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The power pattern depends on the azimuthal angle and the frequency variable: the given expression
is general and true whatever the shape of the transmitted signals. In order to take into account the
spectral characteristics of the signals, it is necessary to complete the approach of modeling. Classically,
when one single frequency is considered, the array factor intrinsically includes this frequency. More
generally, it is necessary to associate the array factor with the Fourier transform F of the emitted
baseband signal S(f) = F [s(t)] to find an expression more complete of the radiated signal X(f) by the
array:

X(f, ϕ) = A(f, ϕ) · S(f) (9)
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The normalized beam pattern is defined by:
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Therefore, after some calculations, its expression is given by:
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or equivalently by
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where Rs(n) is the autocorrelation function of the signal s(t) and Re{·} stands for real part.
The expression is the same as that proposed in [13] where the study is realized in the time domain.

This result shows that the classical reasoning in the case of a single frequency can be generalized
unlike what is suggested by [13]. Here, the objective is not to reproduce the empirical studies showing
the properties of beampatterns but rather to propose a general definition and theoretical expressions
allowing the characterization of UWB antenna arrays. Illustration examples of simulated beam pattern
according to (12) can be found in [13] for a 5-element array.

In conclusion, the main interest of this definition is the consideration of the properties of the
transmitted signal (amplitude and phase), and this, regardless of its properties and frequency band.
Finally, it should be noted that for this study, it was assumed that the coupling between adjacent
radiation elements is not taken into consideration. The following approach proposes a system modeling
which includes the eventual distortion of the antennas (always assuming not coupling) and relies on
methods proposed for the single UWB antennas.

3. SYSTEM MODEL OF UWB ANTENNA ARRAYS

3.1. System Modeling of Antennas

To describe and specify the transient radiation and reception characteristics of antennas, the effective
lengths have been considered first [21, 22]. With the emergence of the UWB technology, the transfer
function (i.e., frequency response) and the impulse response (i.e., time response), which are derived from
the effective length, have been preferred. Therefore the UWB antennas are considered as LTI systems
for which the performance affects the overall performance of the wireless systems. In [23], several of the
proposed techniques are presented with the objective to compare their approach and to highlight the
achieved differences. Fig. 2 illustrates a model of the wireless communication systems. The radio link
decomposed into three functional blocs provides a useful modeling: the channel of propagation Hch(f),
the TX and RX antennas (which can be single or even multiple as developed later) each described
by a transfer function, ~HTX(f, θTX , ϕTX) and ~HRX(f, θRX , ϕRX), and the associated impulse response
~hTX(t, θTX , ϕTX) and ~hRX(t, θRX , ϕRX) where f is the frequency, t the time, and θ and ϕ are the polar
and azimuth angles. Therefore, the characterization is very complete because it includes the frequency
dependence, the phase information, and the polarization and the directional properties. Under far-field
propagation conditions, it can be shown that the transfer functions and the impulse responses modeling
the antennas present analytical expressions which are functions of the effective length of the antennas
expressed in frequency domain or time domain respectively [23].

Moreover, assuming a wireless channel with only one direct path between the transmitter and
receiver (i.e., Line-Of-Sight, LOS propagation), the transfer between the output s and e the input can
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Figure 2. Block diagram of wireless communication systems.

also be deduced. The characterization of antennas as LTI systems presents the advantage to achieve
time-frequency models, especially suitable for UWB antennas, and for example, allows the determination
of the radiated and received transient waveforms of any arbitrary waveform excitation and antenna
orientation.

3.2. Total Effective Length for an Antenna Array

Using the concept of array factor and conjointly the approaches developed for achieving the system
models of UWB antennas, an UWB array system model can be achieved.

Considering the assumptions given in part III.A., the radiated field in transmission ~Erad can be
defined in the frequency domain from the effective length ~LeTX of the TX antenna as [18]:
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where r is the radiation distance, Z0 the free space impedance, and I the excitation current. This
expression can be rewritten introducing the transverse part of the radiation vector ~F⊥ [20] as follows:
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The vector ~F⊥ includes both the characteristics of the antenna via the effective length ~LeTX and the
properties of the emitted signal via the spectral form of the current I(f).

Under the same assumptions and considering an antenna array (with N elements), the total radiated
field ~Etot

rad is:
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with
~Ftot,⊥(f, θTX , ϕTX) = A(f, θTX , ϕTX) · ~F⊥(f, θTX , ϕTX) (16)

Consequently, an equivalent effective length ~Letot,TX , called total effective length by analogy with the
total radiation vector, for the antenna array can be introduced as:

~Letot,TX (f, θTX , ϕTX) = A(f, θTX , ϕTX) · ~LeTX (f, θTX , ϕTX) (17)

The array factor A(f, θTX , ϕTX) is easily defined by the traditional approaches; for example, in the
azimuthal plan and for the antenna array represented by Fig. 1(a), it is expressed by (7). Furthermore,
the study remains general as shown in the previous section; the antenna array can be constituted of all
types of the similar antennas, narrowband or UWB antennas.
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As in the case of a single antenna, the total effective length is a very complete representation
taking into account the main characteristics and allowing the description of the antenna array through
descriptors such as impulse response or function transfer.

3.3. UWB Antenna Array System Modeling

An extension of the system modeling for the UWB antenna arrays can now be deduced. As presented
in [22], several formulations are possible according to the chosen way for the modeling. For illustrating
the concept, the Fig. 2 being considered, a TX model can be established. The TX antenna assumed
to be an antenna array, the transfer function ~HTX(f, θTX , ϕTX) and the associated impulse response
~hTX(f, θTX , ϕTX) can be expressed in function of the total effective length as shown below. Therefore,
the function transfer of an antenna array in transmission mode can be written in a very general form
as:

~HTX(f, θTX , ϕTX) = α~Letot,TX(f, θTX , ϕTX) (18)

where the coefficient α is a scalar, frequency dependent, which includes the modeling approach and the
generator and antenna impedances (for more details about α, see for example Equations (16) to (18)
in [23]).

Therefore, the corresponding impulse response is:

~hTX(t, θTX , ϕTX) = F−1[α] ∗~letot,TX(t, θTX , ϕTX) (19)

with
~letot,TX(t, θTX , ϕTX) = A(t, θTX , ϕTX) ∗~leTX (t, θTX , ϕTX) (20)

The array factor appears in its time form, and it can be simply written according to the array which
it represents. For example, the time expression equivalent to (7) is calculated using the inverse Fourier
transform as:

A(t, θTX , ϕTX) =
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n=0
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t− nl cosϕ

f0

)
(21)

This study shows that the concepts of the system modeling developed for the case of a single antenna
can be generalized for the antenna arrays. Moreover the developed principle is very general and can be
applied to UWB antennas but also in the case of a single frequency because the different expressions are
simplified and the classical equations are obtained. Another remark is that the influence of transmitted
signals (i.e., input signals) can be also taken into account independently. The proposed description with
the array factor leads to a useful time/frequency system modeling.

4. CONCLUSION

This paper emphasizes views for modeling the antenna arrays, and more particularly the UWB antenna
arrays. The array factor has been used in order to establish an analytical expression of the beampattern
of an array of N -antennas. Moreover, from the classical approach describing the arrays through the
array factor and using a system modeling of antennas, a time-frequency model of TX antenna arrays has
been proposed. The proposed concept leads to general and elegant models, including the cases of single
antennas and antenna arrays, which are valuable for narrowband and UWB communication systems.
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