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Abstract—It is established in this article that a special class of
metamaterials known as hyperbolic media allow the propagation of
large classes of novel monochromatic and pulsed localized waves.
Illustrative explicit solutions are given of “accelerating” oblique Airy
beams, as well as nondiffracting and nondispersive spatiotemporally
localized “all-speed” X-shaped and MacKinnon-type waves.

1. INTRODUCTION

Consider the time-harmonic Maxwell equations in a source-free region
of a canonical uniaxially anisotropic nonmagnetic medium, viz.,

∇× ~̃E (~r, ω) = −iωµ0
~̃H (~r, ω) ,

∇× ~̃H (~r, ω) = iωε0ε̄r (ω) · ~̃E (~r, ω) ,

∇ ·
[
ε̄r (ω) · ~̃E (~r, ω)

]
= 0,

∇ ·
[
~̃H (~r, ω)

]
= 0.

(1)

Here, ε0 and µ0 denote the permittivity and permeability of vacuum,
respectively, and ε̄r(ω) = ~ax~axεrx(ω) + ~ay~ayεry(ω) + ~az~azεrz(ω) is the
relative permittivity dyadic, which is characterized by the constraint
that the “transverse” permittivity elements εrx(ω) and εry(ω) are equal
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but distinct from the element εrz(ω) describing the properties of the
medium along the axis of symmetry.

In order to examine transverse-magnetic (TM) waves in the
uniaxial medium, an electric Hertz vector potential is introduced as
~̃H(~r, ω) = iωε0∇× ~̃Πe(~r, ω), with the additional restriction ~̃Πe(~r, ω) =
Π̃e(~r, ω)~az. From the first Maxwell curl equation, it follows, then, that

∇× ~̃E (~r, ω) = −iωµ0

[
iωε0∇× ~̃Πe (~r, ω)

]
= k2∇× ~̃Πe (~r, ω) , (2)

where k = ω/c, c being the speed of light in vacuum. Eq. (2) suggests

the relationship ~̃E(~r, ω) = k2 ~̃Πe(~r, ω) + ∇Φ(~r, ω), where the scalar
potential function Φ(~r, ω) is to be determined. From the second
Maxwell curl equation it follows that

∇× ~̃H (~r, ω) = iωε0∇×∇× ~̃Πe (~r, ω) = iωε0ε̄r (ω) · ~̃E (~r, ω) . (3)

It should be noted, however, that the last term on the right hand side
can be rewritten as

iωε0ε̄r · ~̃E = iωε0

(
εrxẼx~ax + εrxẼy~ay + εrzẼz~az

)

= iωε0

[
εrx

~̃E + (εrz − εrx) Ẽz~az

]

= iωε0

[
εrx

(
k2 ~̃Πe+∇Φ

)
+(εrz−εrx)

(
k2Π̃e+

∂

∂z
Φ
)

~az

]
. (4)

Upon introduction of this form into Eq. (3), one obtains

∇×∇× ~̃Πe =∇∇ · ~̃Πe −∇2 ~̃Πe

= εrx

(
k2 ~̃Πe+∇Φ

)
+(εrz−εrx)

(
k2Π̃e+

∂

∂z
Φ

)
~az. (5)

The divergence of the vector Hertz potential ~̃Πe as well as the scalar
potential Φ have not been specified up to this point. Benefiting
from this freedom, the following relationship is introduced: ∇ · ~̃Πe =
εrxΦ, or, equivalently, Φ = ε−1

rx (∂Π̃e/∂z). Based on this constraint,
the monochromatic electric and magnetic fields corresponding to the
extraordinary mode are given by

~̃E (~r, ω) = k2 ~̃Πe +
1

εxr (ω)
∇∇ · ~̃Πe (~r, ω) ,

~̃H (~r, ω) = iωε0∇× ~̃Πe (~r, ω) ,

(6)
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and the scalar Hertz potential component Π̃e(~r, ω) satisfies the
equation

[
∇2

t +
εzr (ω)
εxr (ω)

∂2

∂z2
+ εzr (ω) k2

]
Π̃e (~r, ω) = 0, (7)

where ∇2
t denotes the transverse (with respect to the symmetry axis

z) Laplacian operator.

2. HYPERBOLIC MEDIUM

The dispersion relation corresponding to the expression governing
Π̃e(~r, ω) in Eq. (7) is given by

(
−k2

x − k2
y −

εzr

εxr
k2

z + εzrk
2

)
= 0. (8)

The iso-frequency topology in wavenumber space embodied in this
relation depends on the properties of the transverse and longitudinal
relative permittivity elements. If both permittivity elements are
positive, the wavenumber surface associated with the dispersion
relation of the extraordinary mode is an ellipsoid. However, it may turn
out that within a certain frequency band one diagonal permittivity
element is positive and the other negative. Then, the dispersion
relation is described by a hyperboloid (see Fig. 1). Under these
conditions, the material is referred to as a hyperbolic medium. The
expression in Eq. (7) is a de Broglie-like equation for εxr(ω) < 0 and
εzr(ω) > 0, and a Klein-Gordon (Fock)-like equation for εxr(ω) > 0
and εzr(ω) < 0. The coordinate z is timelike in both cases.

The physical importance of hyperbolic wave dispersion was
first recognized in the 50’s in connection with electromagnetic

(a) (b) (c)

Figure 1. Topology in wavenumber space for different properties of
the transverse and longitudinal relative permittivities.
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wave propagation in the ionosphere and in stratified artificial
materials. Recently, however, hyperbolic anisotropic metamaterials
characterized by dielectric permittivities of different signs in orthogonal
directions have attracted significant attention due to their particular
physical properties, e.g., negative refraction, and potential physical
applications, such as subwavelength imaging (enhanced hyperlensing).
Hyperbolic media in the visible and near-infrared frequency regime
can physically be realized with metal (plasmonic)-dielectric nanolayers
or nanowire composites [1–3]. Extensive studies have been carried
out of monochromatic plane wave and beam propagation in hyperbolic
media [4, 5]; also, of the reflection and refraction of plane waves incident
on the interface of an isotropic and a hyperbolic metamaterial [6].
It has been established that a uniaxial anisotropic material with
εxr(ω) < 0 and εzr(ω) > 0 exhibits negative refraction behavior
for TM polarization for all incident angles, but the TE polarization
behaves altogether differently [7, 8]. Conditions have been derived
for a uniaxial anisotropic plasma metamaterial to support a Faraday
effect [9]. Monochromatic radiation in an unbounded hyperbolic
material has been studied analytically [10, 11].

Since z is a timelike coordinate in Eq. (7) for both cases of
hyperbolic behavior, one has a (2 + 1)-dimensional Lorentz symmetry
with variable metric [12]. One can use well-known solutions to the
quantum mechanical Klein-Gordon and de Broglie equations in order
to establish monochromatic solutions describing wave propagation in
a hyperbolic medium governed by Eq. (7). Our specific aim in this
exposition is to explore the feasibility of novel monochromatic and
pulsed localized waves in hyperbolic media. One class of the former is
studied in the next section. Several classes of the latter are examined
in Section 4.

3. MONOCHROMATIC LOCALIZED WAVES

We consider a paraxial approximation of Eq. (7) along the y direction;
specifically [13, 14],

Π̃e (~r, ω) ≈ ψ (~r, ω) exp [ik
√

εzry] ;

2ik
√

εzr
∂

∂y
ψ (~r, ω) +

∂2

∂x2
ψ (~r, ω) +

εzr

εxr

∂2

∂z2
ψ (~r, ω) = 0.

(9)

Under the assumptions that εxr(ω) < 0 and εzr(ω) > 0, the equation
for the slowly varying envelope function ψ(~r, ω) can be brought into
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the following nondimensional form:

i
∂

∂Y
ψ

(
~R, ω

)
+

∂2

∂X2
ψ

(
~R, ω

)
− ∂2

∂Z2
ψ

(
~R, ω

)
=0; ~R={X, Y, Z};

X =
x

x0
, Z =

z̄

x0
, Y =

ȳ

2kx2
0

; ȳ =
y√
εzr

, z̄ = z

√
|εxr|
εzr

.

(10)

Thus, a parabolic approximation of the de Broglie-like equation
along the y direction yields a hyperbolic Schrödinger-like equation
analogous to that arising in the study of normal temporal dispersion
or bidispersion. Using the hyperbolic rotation ς = X coshφ+Z sinhφ,
ξ = X sinhφ + Z coshφ, a broad class of skewed, nonspreading,
“accelerating” Airy solutions can be obtained [15]. Specifically,

ψ (X,Y, Z) = Ai

[
ζ (X, Z)√

2
− Y 2

4

]
Ai

[
ξ (X, Z)√

2
− Y 2

4

]

× exp
(

i
Y

2
√

2
[ζ (X, Z)− ξ (X, Z)]

)
. (11)

The new coordinates are no longer mutually orthogonal, but instead
intersect at the obliquity angle θ defined by the relation φ =
−(1/2) tanh−1(cos θ). Fig. 2 shows |ψ(X, Y, 0)| for (a) θ = 90◦,
(b) θ = 45◦ and (c) θ = 135◦.

Finite-energy, slowly diffracting oblique Airy solutions to Eq. (10)
can be obtained by analogy to those in the case of bidispersive media
given in [15]. Fig. 3 shows the propagation behavior of a finite-energy
Airy beam when θ = 45◦ on the planes Z = 0 and Z = 3.

(a) (b) (c)

Figure 2. Airy beam intensity profiles for (a) θ = 90◦, (b) θ = 45◦
and (c) θ = 135◦ on the plane Z = 0.
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(a) (b)

Figure 3. |ψ(X, Y, Z)| for θ = 45◦ on the planes (a) Z = 0 and
(b) Z = 3.

4. PULSED LOCALIZED WAVES

The study of propagation of localized pulsed signals in hyperbolic
media is complicated, in general, due to the frequency dependence
of the permittivity matrix elements. Consider, however, a canonical
situation whereby the permittivity matrix elements are constant within
a certain frequency regime. Then, approximately, one has

(
∇2

t −
|εzr|
εxr

∂2

∂z2
+ |εzr| 1

c2

∂2

∂t2

)
Πe (~r, t) = 0 (12)

in the time domain for εxr > 0 and εzr < 0. A large class
of spatiotemporally nonsingular localized luminal, subluminal and
superluminal pulsed solutions to this equation can be derived. These
solutions differ substantially from analogous ones in isotropic free
space. In the case of propagation along the z direction, the roles of
subluminality and superluminality are interchanged by comparison to
the propagation of the same structures in free space. A subluminal
wave packet is X shaped whereas a superluminal one has the form of
a sinc function.

More interesting forms of spatiotemporally localized waves in
hyperbolic media arise from specific choices of frequency dependence
of the permittivity matrix elements. Consider the case where [16]

εxr = −α + 1
α− 1

, εzr = α

(
1− ω2

p

ω2

)
; α > 1, ω > ωp. (13)

These two expressions for the relative permittivities are introduced
next into the dispersion relation given in Eq. (8) and, furthermore,
the constraint kz = ω/v, where v is a free parameter with units of
speed, is used. As a consequence, an exact solution for the space-time
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Hertz potential wave function Πe(~r, t) can be obtained by means of
the Fourier-Hankel spectral superposition

Πe (ρ, φ, τ) = eimφ

∞∫

ωp

dω eiωτJm

(
ρq

√
ω2 − ω2

p

)
F̃ (ω) ;

τ ≡ t− z

v
, q ≡

√
α

v2

(
v2

c2
+

α− 1
α + 1

) (14)

in cylindrical coordinates. The simplest exact solution can be obtained
for m = 0 and by choosing the temporal spectrum F̃ (ω) = exp(−a1ω),
where a1 is a positive parameter. It is given explicitly as

Πe (ρ, τ) =
e−ωp

√
(ρq)2+(a1−iτ)2

√
(ρq)2 + (a1 − iτ)2

. (15)

It represents a nonsingular wave function propagating in the z
direction, with a constant speed 0 < v < ∞, without sustaining
any spreading due to diffraction or dispersion. The modulus of this
expression versus τ and ρ is shown in Fig. 4. The form of the solution

Figure 4. |Πe(ρ, τ)| versus τ and ρ for the parameter values a1 =
10−8 s, v = 2c, ωp = 107 rad/s and α = 106.
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in Eq. (15) as well as its shape closely resemble those of the X wave
solution to the Klein-Gordon equation, and for ωp = 0 the X wave
solution of the scalar wave equation in free space. The latter two
solutions are restricted to superluminal speeds v > c [17–19], whereas
the one given in Eq. (15) for a hyperbolic medium is an “all-speed”
X-shaped solution.

The reason for this significant difference is that the Hertz potential
Πe(~r, t) corresponding to the two permittivity matrix elements in
Eq. (13) is an exact solution to the equation(

− ∂2

∂t2
∇2

t + α
α− 1
α + 1

∂4

∂t2∂z2
+ α

α− 1
α + 1

ω2
p

∂2

∂z2
+

α

c2

∂4

∂t4

+
α

c2
ω2

p

∂2

∂t2

)
Πe (~r, t) = 0. (16)

Consider, next, the situation where

εxr = −α− 1
α + 1

, εzr = −α

(
1− ω2

p

ω2

)
; α > 1, ω < ωp. (17)

Proceeding as in the previous case and using the constraint kz = ω/v
leads to the Fourier-Hankel synthesis

Πe (ρ, φ, τ) = eimφ

ωp∫

0

dωeiωτJm

(
ρq

√
ω2

p − ω2
)

F̃ (ω) ;

τ ≡ t− z

v
, q =

√
α

v2

(
v2

c2
+

α− 1
α + 1

)
.

(18)

The simplest explicit exact solution is given by

Πe (ρ, τ) =
sin

(
ωp

√
(ρq)2 + (a1 − iτ)2

)

√
(ρq)2 + (a1 − iτ)2

. (19)

Again, this represents a nonsingular wave function propagating in the
z direction, with a constant speed 0 < v < ∞, without sustaining
any spreading due to diffraction or dispersion. The modulus of this
expression versus τ and ρ is shown in Fig. 5. The form of the
solution in Eq. (19) as well as its shape closely resemble those of the
MacKinnon wave solutions to the Klein-Gordon and the scalar wave
equations. The latter two solutions are restricted to subluminal speeds
v < c and, furthermore, are modulated by a plane wave propagating
in the z direction with the superluminal speed c2/v [17–19]. In
contradistinction, the expression given in Eq. (19) for a hyperbolic
medium is an “all-speed” envelope MacKinnon-type solution.



Progress In Electromagnetics Research, Vol. 143, 2013 769

Figure 5. |Πe(ρ, τ)| versus τ and ρ for the parameter values v = 2c,
ωp = 107 rad/s and α = 4× 108.

5. CONCLUDING REMARKS

The feasibility of monochromatic and pulsed localized waves in
hyperbolic media has been explored in this exposition. A novel class of
monochromatic localized “accelerating” oblique Airy beams has been
derived in Section 3. In Section 4, it has be shown that it is possible
to derive purely superluminal and purely subluminal spatiotemporally
localized waves in hyperbolic media. The “all-speed” solutions derived
in this article are meant to emphasize the large disparities that may
exist between pulsed localized waves in hyperbolic media and free
space. The X-shaped solution in Eq. (15) and the MacKinnon-like
solution in Eq. (19) are nondiffracting and nondispersive due to the
infinite energy they contain. The corresponding transverse magnetic
electromagnetic fields can be derived from a temporal Fourier inversion
of the time-harmonic fields in Eq. (6), viz.,

~E (~r, t) = − 1
c2

∂2

∂t2
~Πe (~r, t) +

1
εxr

∇∇ · ~Πe (~r, t) ;

~H (~r, t) = ε0
∂

∂t
∇× ~Πe (~r, t) .

(20)

Finite energy solutions can be achieved by techniques analogous to
those used to launch causally pulsed localized waves in free space,
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e.g., from finite apertures constructed on the basis of the Huygens
principle [20, 21].

The discussion in this article has been restricted to idealized
lossless hyperbolic metamaterials. However, dissipation is present in
such media and must be accounted for. This task is relatively easy in
the case of the monochromatic localized beams discussed in Section 3.
The incorporation of dissipation in the study of pulsed localized waves
in hyperbolic media is a much more difficult problem. One possible
approach is to begin with the dispersion relation in Eq. (8), incorporate
physically meaningful models of the complex relative permittivities
εrx(ω) and εrz(ω), and finally resort to a slowly varying envelope
approximation.

REFERENCES

1. Noginov, M., M. Lapine, V. Podolskiy, and Y. Kivshar, “Focus
issue: Hyperbolic metamaterials,” Opt. Express, Vol. 21, 14895–
14897, 2013.

2. Drachev, V. P., V. A. Podolskiy, and A. V. Kildishev, “Hyperbolic
metamaterials: New physics behind a classical problem,” Opt.
Express, Vol. 21, 15048–15064, 2013.

3. Poddubny, A., I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic
metamaterials,” Nature Photon., Vol. 7, 948–957, 2013.

4. MacKay, T. G., A. Lakhtakia, and R. A. Depine, “Uniaxial
dielectric media with hyperbolic dispersion relations,” Microwave
Opt. Tech. Lett., Vol. 48, 363–367, 2005.

5. Sun, J., J. Zeng, and N. M. Litchinitser, “Twisting light with
hyperbolic metamaterials,” Opt. Express, Vol. 21, 14975–14981,
2013.

6. Hu, L. and S. T. Chui, “Characteristics of electromagnetic
wave propagation in uniaxially anisotropic left-handed materials,”
Phys. Rev. B, Vol. 66, 085108-1–7, 2002.

7. Hoffman, A. J., L. Alekseyev, S. S. Howard, K. J. Franz,
D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco,
and C. Gmachl, “Negative refraction in semiconductor metama-
terials,” Nature Mater., Vol. 6, 946–950, 2007.

8. Guo, B., “Negative refraction in the terahertz region using
plasma metamaterials,” Journal of Electromagnetic Waves and
Applications, Vol. 26, Nos. 17–18, 2445–2451, 2012.

9. Guo, B., “Faraday effect on negative refraction in uniaxial
anisotropic plasma metamaterials,” Chin. Phys. Lett., Vol. 30,
105201-1–4, 2013.



Progress In Electromagnetics Research, Vol. 143, 2013 771

10. Potemkin, A. S., A. N. Poddubny, P. A. Belov, and Y. S. Kivshar,
“Green function for hyperbolic media,” Phys. Rev. A, Vol. 86,
023848-1–9, 2012.

11. Silveirinha, M. G. and S. I. Maslovski, “Radiation from elementary
sources in a uniaxial wire medium,” Phys. Rev. B, Vol. 85, 155125-
1–10, 2012

12. Smolyaninov, I. I. and E. E. Narimanov, “Metric signature
transitions in optical metamaterials,” Phys. Rev. Lett., Vol. 105,
067402-1–4, 2010.

13. Fleck, Jr., J. A. and M. D. Feit, “Beam propagation in uniaxial
anisotropic media,” J. Opt. Soc. Am., Vol. 73, 920–926, 1973.

14. Hacyan, S., “Derivation of the paraxial equation for extraordinary
waves in uniaxial media,” J. Opt. Soc. Am. A, Vol. 27, 602–604,
2010.

15. Eichekraut, T. J., G. A. Siviloglou, I. M. Besieris, and
D. N. Christodoulides, “Oblique airy wave packets in bidispersive
optical media,” Opt. Lett., Vol. 35, 3655–3557, 2010.

16. Mohseni, M., “Photon gas with hyperbolic dispersion relations,”
J. Opt., Vol. 15, 035102-1–6, 2013.

17. Hernandez-Figueroa, H., M. Zamboni-Rached, and E. Recami,
Localized Waves, Wiley, New York, 2008.

18. Hernandez-Figueroa, H., M. Zamboni-Rached, and E. Recami,
Non-diffracting Waves, Wiley, New York, 2013.

19. Besieris, I. M., M. Abdel-Rahman, A. M. Shaarawi, and
A. Chatzipetros, “Two fundamental representations of localized
pulse solutions to the scalar wave equation,” Progress In
Electromagnetics Research, Vol. 19, 1–48, 1998.

20. Ziolkowski, R. W., I. M. Besieris, and A. M. Shaarawi, “Aperture
realizations of exact solutions to homogeneous wave equations,”
J. Opt. Soc. A, Vol. 10, 75–87, 1993.

21. Reivelt, K. and P. Saari, “Optically realizable localized wave
solutions of the homogeneous scalar wave equation,” Phys. Rev.
E, Vol. 65, 046622-1–7, 2002.


