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Some Aspects of Sidelobe Reduction in Pulse Compression Radars
Using NLFM Signal Processing

Iulian-Constantin Vizitiu*

Abstract—It is well known that in the pulse compression radar theory, the sidelobe reduction using
nonlinear frequency modulation (NLFM) signal processing represents a major and present research
direction. Accordingly, the main objective of this paper is to propose an interesting approach related to
the design of efficient NLFM waveforms namely, a temporal predistortioning method of LFM signals by
suitable nonlinear frequency laws. Some aspects concerning the optimization of the specific parameters
involved into analyzed NLFM processing procedure are also included. The achieved experimental results
confirm the significant sidelobe suppression related to other NLFM processing techniques.

1. INTRODUCTION

According to literature [1, 2], it is well known that pulse compression techniques are widely employed
inside of modern radar systems (e.g., (I)SAR, GPR, etc.) in order to increase the range resolution. As
the range resolution is inverse proportional with the frequency band (B) of the transmitted signals,
in the last period of time, in radar theory, a lot of suitable wideband signals (e.g., chirp, short radio
pulse, signals with discrete frequency modulation, unsinusoidal signals) were designed and analyzed at
processing performance level.

Generally, one of the most important requests imposed on the wideband signals is to assure for the
sidelobes of the compression (matched) filter response the lowest level. The presence in the response
of significant sidelobes may cause interference with other near echo signals, and have unwanted effects
in the detection process and ambiguities in the estimating of the target range [3]. Consequently, a
major research direction in the high-resolution radar literature is related to the designing of improved
FM waveforms with rectangular envelope and suitable modified FM laws, so that the matched filter
response contains lower sidelobes than in the standard LFM case [4].

In this research domain, the nonlinear FM (NLFM) signals represent an important class of
continuous phase modulation waveforms with applicability inside pulse compression radar systems. They
have been claimed to provide a high-range resolution, an improved SNR, low cost, good interference
mitigation, and spectrum weighting function inherently in their modulation function which offers the
advantage that a pure matched filter gives low sidelobes. The NLFM signals also assure better detection
rate characteristics, and they are more accurate in range determination than other processing methods
(e.g., dual apodization (DA), spatially variant apodization (SVA), leakage energy minimization (LEM)
etc.) [5]. However, the major drawback assigned to the most part of common NLFM waveforms seems
to be their Doppler intolerance, which requires, for example, using several filters (i.e., filter bank) at
the receiver [4].

In pulse compression radar theory, there are many interesting research works which have been done
to investigate and design optimal (as sidelobe level) NLFM signals [6, 7]. Generally, all these processing
techniques can be divided into two major research directions, namely: a) designing of pseudo-NLFM (or
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piecewise) waveforms which are in fact, LM signals predistortioned on short intervals (e.g., at the pulse
ends) into temporal domain or corrected into spectral domain [1, 8–10]; b) designing of proper (e.g., as
desired shape of the energy/power spectral density (E/PSD) etc.) pure (continuous) NLFM waveforms
using usually, iterative methods [11–13], stationary phase principle [14–16], Zak transform [17, 18],
suitable weighting/convolutional functions [19–22], explicit functions cluster algorithm [23, 24] or
marginal Fisher’s information-based techniques [25] etc. Also, many of the above described NLFM
methods are implemented by standard computational algorithms, but some interesting approaches
connected with the artificial intelligence (AI) paradigms are also discussed in literature [26–28].

This paper aims at presenting an interesting approach related to the design of efficient (as
sidelobe suppression etc.) NLFM waveforms namely, a temporal predistortioning method of LFM signals
by suitable continuous nonlinear frequency laws. Some aspects concerning the optimization of the
specific parameters involved analyzed NLFM technique are also included. Finally, the most important
conclusions are discussed.

2. TEMPORAL PREDISTORTIONING OF NLFM LAWS

In practice, some concrete situations can appear when, by reasons of simplicity of the pulse compression
radar system designing process and lower cost, the LFM signal base (i.e., B × T product) must be
reduced at the values less than 100 [2, 16]. In this case, the singular use of all standard weighting
windows is not efficient because of the disturbative behavior assigned to the Fresnel ripples, which is
translated into significant level of the matched filter sidelobes [2, 4]. Consequently, a high-potential
solution of this drawback can be represented by the temporal predistortioning of the LFM law [1, 3].

According to [11], the frequency modulation law of a temporal predistortioned FM signal can be
generally written as follows (Figure 1):

f(t) =





fd(t), t ∈ (0, ∆t]

fLFM(t) = −∆F

2
+

∆F

T
t, t ∈ (∆t, T −∆t]

−fd(T − t), t ∈ (T −∆t, T ]

. (1)

The values assigned to the parameters of the predistortioning function fd(t) can be chosen in order to
assure a continuity of the FM law slope in the points t = ∆t and t = T −∆t. However, this is not a
mandatory condition.

The phase modulation law of the signal is next obtained through (1) by stage integrating and

Figure 1. The temporal predistortioning technique of the LFM law.



Progress In Electromagnetics Research C, Vol. 47, 2014 121

setting this time as mandatory, the condition of phase continuity:

ϕ(t) =





ϕd1(t) = 2π ·
t∫

0

fd(t)dt, t ∈ (0,∆t]

ϕLFM(t) = ϕd (∆t) + 2π ·
t∫

∆t

fLFM(t)dt, t ∈ (∆t, T −∆t]

ϕd2(t) = ϕLFM (T −∆t)− 2π ·
t∫

T−∆t

fd(T − t)dt, t ∈ (T −∆t, T ]

. (2)

Consequently, this NLFM processing technique allows a significant decreasing of the Fresnel ripples
and the sidelobe level assigned to the matched filter response, respectively (Figure 2). It is important
to note that this sidelobe reduction is similar to the ones achieved in the case of signals with high-values
of the signal base (i.e., more than 100).

Figure 2. The absolute of the spectral density function for unpredistortioned (red) and predistortioned
(blue) FM signals (an arcsine predistortioning function was used).

Reference [4] fully describes the predistorsioning function, which was first proposed by Cook and
Bernfeld. The (pseudo) optimal values indicated by these authors were ∆t = 1/∆F and ∆f = 0.75·∆F .
For these values and signal base (denoted next by BT ) of 40 and 80, a decreasing of the sidelobes assigned
to the compression-weighting (Hamming) filter responses from −29.3 dB to −34.7 dB and from −35.5 dB
to −38.4 dB, respectively, were achieved. According to [11], more appropriate values for predistortioning
function parameters are ∆t = 1/∆F and ∆f = 0.55 ·∆F (in this case, as optimization criterion, the
local behavior of the sidelobe level was effective used etc.)

3. THE PROPOSED TEMPORAL PREDISTORTIONING TECHNIQUE

The primary idea of Cook and Bernfeld is extended in [11] to the nonlinear predistortioning case. In
other words, some examples of nonlinear predistortioning functions are given in [11].

In pulse compression radar theory, a lot of examples related to this basic idea are indicated [1, 8, 9].
However, as a common designing characteristic, all these approaches investigate only the case of LFM
signal base more than 100, and in many situations, the effective way (usually, pseudo optimal) to
choose the specific parameters assigned to the tested predistortioning functions is not clearly described.
Generally, the majority of these approaches discuss piecewise linear waveforms (with one or two
predistortioning stages) [1, 9], but some examples of piecewise nonlinear laws as “DDFC” modulation
function [8], polynomial function [9], etc. are also indicated.

Unlike the drawbacks mentioned above, the predistortioning technique of LFM law proposed in this
paper is applied to a signal base less than 100 and is based on the use of two promising (as ability to assure
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a significant sidelobe suppression) nonlinear predistortioning functions, namely: arcsine and tn (only
the second polynomial predistortioning function was partially tested in literature, but in a particular
case (i.e., for polynomial functions with order more than one and the predistortioning applied only to
a single LFM law end etc.) [9]). In addition, as for novelty, this technique gives a concrete modality
to optimize (as sidelobe reduction criterion) the specific parameters of the used predistortioning laws.
Finally, this proposed optimization method can be easily extrapolated for other types of nonlinear
predistortioning functions.

In the case of predistortioning function by arcsine type, the frequency modulation law of the
temporal predistortioned FM signal can be written as follows:

f(t) =





2
π
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The phase modulation law of this signal is next obtained through (3) by stage integrating and
setting the condition of the phase continuity into predistortioning points:

ϕ(t) =





ϕd1(t) = 2π ·




2
π
·∆f ·∆t ·


 t−∆t

∆t
· arcsin

(
t−∆t

∆t

)
+

(
1−

(
t−∆t

∆t

)2
)0.5




+t ·
(

∆F

T
·∆t− ∆F

2

)
−∆f ·∆t

}
, t ∈ (0, ∆t]

ϕLFM(t) = ϕd1(∆t)+2π ·
(

∆F

T
· t2

2
−∆F

T
· ∆t2

2
−∆F

2
· t+∆F ·∆t

2

)
, t ∈ (∆t, T −∆t]

ϕd2(t) = ϕLFM (T −∆t) + 2π · (t− T + ∆t) ·
(

∆F

2
− ∆F

T
·∆t

)

+4 ·∆f ·∆t ·

 t−T +∆t

∆t
· arcsin

(
t−T +∆t

∆t

)
+

(
1−

(
t−T +∆t

∆t

)2
)0.5

− 1


 ,

t ∈ (T −∆t, T ]

.

(4)
In the case of predistortioning function by tn type, the frequency modulation law of the temporal

predistortioned FM signal can be written as follows:
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In a similar way, the phase modulation law of this signal is given by equation:
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As the sidelobes level assigned to the compression-weighting (Hamming) filter response depends
on the values assigned to parameters (∆t, ∆f) and (n, ∆t, ∆f) respectively, an optimization criterion
for them has also been investigated. This optimization procedure can be designed using many action
ways [8, 11], but all defined objective/error-functions have a common reason, namely, minimization of
the sidelobes level.

Consequently, a first optimization criterion refers to the integrated behavior of the sidelobes
assigned to the compression-weighting filter response ρ(t). So, if t1 is the time when the mainlobe
of the response is canceled, the integrated mean mik of the sidelobes for a discrete variation domain of
the parameter ∆f , ∆fk, k = 1, 2, . . ., will be:

mik =
1

T − t1

T∫

t1

ρ (t, ∆fk)dt ∼= 1
N − k1

·
N∑

k=k1

ρ (t,∆fk), (7)

and the integrated mean square deviation σik :

σik =

√√√√√ 1
T − t1

T∫

t1

[ρ (t, ∆fk)−mik]
2 dt ∼=

√√√√ 1
N − k1

N∑

k=k1

[ρ (t,∆fk)−mik]
2. (8)

where N represents the number of sidelobes from [0, T ] domain.
A second optimization criterion was based on the analysis of the local values of the sidelobes.

Denoted with ρn, n = 1, 2, . . . , N , the level of the N sidelobes of the response from [0, T ] domain and
their local mean mlk will be:

mlk =
1
N

N∑

n=1

|ρn (∆fk)|, (9)

and the local mean square deviation σlk :

σlk =

√√√√ 1
N

N∑

n=1

(|ρn (∆fk)| −mρk
)2. (10)

Finally, the effective objective-function was represented by the minimization of the two parameters
(mi,lk , σi,lk), namely:

∆fmopt = {∆fk|mi,lk = min} and ∆fσopt = {∆fk|σi,lk = min} . (11)

4. EXPERIMENTAL RESULTS

The main objective of the experimental part of the paper was to demonstrate the sidelobe reduction
potential of the proposed predistortioning techniques (including its specific optimization way) related
to other NLFM laws described in some references [1, 9, 16], but in case of LFM signal base less than
100. Very importantly, in the majority of these reported NLFM laws, the processing advantage given
by NLFM waveforms as sidelobe suppression is doubled by a proper window function (e.g., Nuttall [8],
Kaiser [16] or Hamming (our study case) etc.).

In the case of predistortioning function by arcsine type and for BT = 40, the results achieved after
applying the optimization criteria given by (11) are illustrated in Figure 3. Consequently, using the
integrated behavior of the sidelobes, the minimum mean was found for ∆fmopt = 0.81 · ∆F , and the
minimum mean square deviation for ∆fσopt = 0.88 ·∆F (Figure 3(a)). Also, focusing this time on the
local behavior of the sidelobes, the optimal values of the frequency step are identical and equal to the
previous value, namely 0.88 (Figure 3(b)).

All Equations (7)–(10) were solved using specific numerical methods belonging to Matlab package.
Using as input conditions BT = 40 and ∆t = 1/∆F , the shape of the normalized envelope of

the compression-weighting (Hamming) filter response achieved in the case of arcsine predistortioning
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Table 1. Experimental results.

n

∆fopt/∆F (BT = 40, ∆t = 1/∆F )
minimum integrated average values minimum local average values
mi σi ml σl

1/4 1.70 1.70 1.65 1.65
1/3 1.35 1.35 1.30 1.30
1/2 0.98 0.95 0.98 0.98
2 0.40 0.43 0.38 0.38
3 0.33 0.35 0.33 0.33
4 0.30 0.28 0.33 0.33

function −ρp (τ, ∆f) is depicted in Figure 4. On the same chart, the shape in case of optimal value of the
frequency step (i.e., ∆fopt = 0.88 ·∆F )− ρp(τ, ∆fopt) and the normalized envelope of the compression-
weighting (Hamming) filter response achieved in the case of unpredistortioning FM signal −ρ(τ) (as
reference) are also illustrated.

As can be seen from the previous figure, an average sidelobe decreasing more than −40 dB was
generally demonstrated. Related to other experimental results reported in [1, 4, 9], an additional sidelobe
suppression, approximately 6 dB, was also achieved. Finally, related to NLFM technique described
in [16], the level of sidelobes was slightly decreased (i.e., 2 dB approximately).

In the case of predistortioning function by tn type, using a similar predistortioning time interval
(i.e., ∆t = 1/∆F ) and values for n power less and more than one respectively, the obtained results are
indicated in Table 1 and synthetically illustrated in Figure 5. As it is known, in this set of pictures,
ρk(·) denotes the normalized envelope of the compression filter response, ρw

k (·) the normalized envelope
of the compression-weighting (Hamming) filter response, and ρwp

k (·) the normalized envelope of the
compression-weighting (Hamming) filter response using a tn predistortioning law.

(a)

(b)

Figure 3. The average values of the sidelobes as a function by the frequency step (an arcsine
predistortioning function was used). (a) For integrated average values of the sidelobes. (b) For local
average values of the sidelobes.
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Figure 4. The shape of the normalized envelope of the compression-weighting (Hamming) filter
response achieved in case of arcsine predistortioned/unpredistortioned FM signal.

Based on the above reported experimental results, some important remarks can be made. Firstly,
for the power values less than one (excepting the case of n = 0.5), the frequency step optimizing the
sidelobes level is more than frequency deviation. Secondly, for the power values more than one, this
step represents a fraction of this. Next, for values of n more than one, a significant decreasing of the
sidelobes from the vicinity of the mainlobe is observed, while for values less than one, this decreasing
belongs to the far sidelobes. Finally, because the far sidelobes are under −40 dB anyway, an important
conclusion is that the power values more than one are preferred in concrete pulse compression radar
applications.

The sidelobe suppression level assigned to this predistortioning law is similar to the one achieved
in the case of arcsine law. Consequently, related to the experimental results reported in [1, 9, 16], an
average sidelobe reduction of 6 dB was also obtained. Finally, in both study cases, the applying of
the sidelobe suppression techniques has, as major disadvantage, an average increasing of the mainlobe
width with 20% (measured at −4 dB level).

Table 2. Experimental results.

n

∆fopt/∆F

minimum integrated average values minimum local average values
mi σi ml σl

BT = 40, ∆t = 0.5/∆F

1/2 1.90 2.40 2.00 2.00
2 0.83 1.00 0.73 0.73

BT = 40, ∆t = 0.75/∆F

1/2 1.27 1.40 1.33 1.33
2 0.57 0.60 0.57 0.57

BT = 40, ∆t = 1.5/∆F

1/2 2.00 1.00 1.87 1.87
2 0.23 0.20 0.23 0.23

BT = 40, ∆t = 3/∆F

1/2 1.20 1.07 1.20 1.20
2 0.60 0.13 0.13 0.13
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Figure 5. The normalized compression-weighting (Hamming) filter response in case of tn

predistortioning law.

To have a full view on the optimization of the parameters assigned to tn predistortioning law, it is
interesting to study the influence of the predistortioning time interval ∆t on the sidelobes level. Because
at the values of this interval much smaller than 1/∆F , the effect on Fresnel ripples is insignificant, and at
the values much higher than 1/∆F , the effect consists in the increasing of the frequency range assigned
to the predistortioned signal [4]. It is interesting to quantify the influence of ∆t only for values around of
1/∆F . After simulation stage, the obtained results are indicated in Table 2 and illustrated in Figure 6.

Based on the above reported experimental results, some important remarks can also be made.
Firstly, it can be concluded that the values assigned to the predistortioning time interval ∆t have an
important optimization effect on the sidelobes level. Secondly, for values of ∆t more than 1/∆F , the
power values more than one lead to a decreasing of the sidelobes from the vicinity of the mainlobe,
while values less than one lead to a decreasing of the far sidelobes. Finally, the values of ∆t less than
1/∆F have the highest influence on the sidelobes level.
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Figure 6. The normalized compression-weighting (Hamming) filter response as a function of time
interval ∆t (in case of tn predistortioning law).
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5. CONCLUSION

This paper presents in a synthetically manner, an interesting approach related to design of efficient
NLFM waveforms as sidelobe reduction technique, namely, a temporal predistortioning method of LFM
signals by suitable nonlinear frequency laws.

The NLFM processing algorithm has the advantage to improve the shape of the compression-
weighting (Hamming) filter response for low values of the signal base (i.e., less than 100) and to
assure a significant sidelobe suppression (i.e., more than −40 dB) similar to the one achieved in the
case of signals with high-values of the base (i.e., more than 100), or other piecewise linear/nonlinear
techniques [4, 8, 9, 16]. In addition, using the proposed optimization procedures of the parameters
assigned to the nonlinear predistortioning laws, an additional decreasing of the sidelobe level more than
6 dB is also acquired. Generally, NLFM signals generated by predistortioning (frequency/temporal)
techniques have some major drawbacks, namely: the mainlobe width and signal processing losses are
increased, and the range resolution can be sometimes significantly reduced. However, in our study
case and according to special literature [1, 4], the worsening of the range resolution (which is a very
important tactical characteristic of a (military) radar) can be considered one acceptable.

In summary, the proposed NLFM processing algorithm has been demonstrated to be an effective
sidelobe reduction technique having a great applicability inside the pulse compression radar systems.
Although the above described algorithm is focused to solve some particular drawbacks of the LFM signals
(e.g., the case of small signal base etc.), by their structure and especially, the associated optimization
method, it leads to experimental results similar to sidelobe reduction level, with other well-known NLFM
processing techniques reported in modern radar theory.
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