
Progress In Electromagnetics Research B, Vol. 59, 71–87, 2014

Analysis on Strongly Coupled Oscillator Arrays Using Modified
Y-Parameters Approach

Yu-Tsung Lo and Jean-Fu Kiang*

Abstract—A modified Y -parameters approach is proposed to model the behavior of coupled oscillator
arrays (COA’s). A coupling network with tunable coupling strength is proposed, which has a near-
constant input conductance, to ensure the oscillation condition under different attenuation levels. The
parameters of oscillators and the coupling network are derived on the TSMC 0.18µm technology,
and their Y parameters are extracted around 10 GHz for illustration. After being verified with full-
circuit simulations and other behavior models, including the Adler’s equation and the conventional Y -
parameters approach, this method is applied to estimate the maximum allowable number of oscillators
that can be coupled together. The inter-element phase shift of a COA is controlled by tuning the
free-running frequencies of oscillators at both ends. Injection signals with proper phases are proposed
to synchronize multiple COA’s into a bigger COA.

1. INTRODUCTION

A coupled oscillator array (COA) can be used to supply input signals with linear phase progression
to an antenna array for beam-steering or power combining [1–3]. The linear phase progression can be
achieved by tuning the free-running frequencies at both ends of the array [1]; or by changing the phase
difference of injection signals fed to the oscillators at both ends [4].

Locking stability of coupled oscillators has been analyzed in [5]. In [6], it is shown that the in-phase
power-combining mode can be sustained by inserting a resistor at the center of the coupling network to
attenuate undesired modes, or by placing two resistors at both ends of a transmission-line segment [7, 8].
In [9], an one-dimensional coupling network is proposed, which consists of one-wavelength transmission-
line segments and series/shunt resistors. In [10], a non-reciprocal coupling network is used to enhance
the array stability while extending the scanning range.

Bandwidth and coupling strength are two key factors in designing a coupling network. In [1], it
is assumed that the Q factor of the coupling network is lower than that of the oscillators. In [11], it
is pointed out that the previous assumption is not necessary if the Kurokawa’s analysis [12] is applied
while the oscillators and the coupling network are properly modeled in terms of the Y parameters.
Hence, a narrow-band (high Q) coupling network has also been used [11].

A stronger coupling usually leads to a wider locking range [13, 14]. However, the output amplitudes
of the VCO’s may vary significantly under different phase progressions [7, 15]. A typical threshold
between weak and strong coupling regimes, for example 0.5, has been proposed [11], around which the
locking bandwidth varies significantly. With the coupling coefficient greater than 0.5, the amplitude
of oscillators at both ends becomes larger than those of the interior ones [13]. Hence, there seems a
trade-off between the locking bandwidth and a uniform amplitude distribution across the COA.

Several methods have been used to analyze COA’s. The time evolution of frequency and phase
can be obtained by solving a set of differential equations. In [8], a Y -parameters approach is used to
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analyze the COA’s. Harmonic-balance technique has been used to derive the steady-state response of
COA’s [7]. In [16], a linearized discrete model is derived on the Adler’s equation to study the transient
behavior. In [17], two weakly coupled oscillators are analyzed using a perturbation projection vector
(PPV). In [18], the steady-state amplitude and phase of two differential oscillators, coupled via a resistive
network, are obtained by solving a set of differential equations.

The probability of lock tends to limit the maximum allowable size of a COA, which originates from
the randomness in the free-running frequencies of the oscillators. The probability of lock decreases as
the array size increases [19]. Besides, the beam-pointing error also increases with the array size [20].

In this work, a modified Y -parameters approach is proposed to simulate the behavior of a COA. A
coupling network with a variable coupling strength is proposed to maintain oscillation under different
attenuation levels. The parameters of the oscillators and the coupling network are designed on the
TSMC 0.18µm technology, and their Y parameters are extracted around 10 GHz for illustration. The
results of this method are compared with those of the Adler’s equation, the conventional Y -parameters
approach, and the full-circuit simulations. The Monte-Carlo technique is introduced to this method to
estimate the probability of lock due to randomness of the free-running frequencies of the oscillators.
Thus, the maximum allowable number of oscillators in a COA can be estimated. We also propose to
inject signals into the center oscillators of multiple COA’s to synchronize them into a larger COA.

This paper is organized as follows: The modified Y -parameters approach on a COA is presented
in Section 2, the designs of the proposed coupling network and VCO’s are presented in Section 3,
with relevant parameters extracted for numerical simulations. The fourth-order Runge-Kutta method
is used to solve the differential equations. In Section 4, numerical results of different behavior models
and full-circuit simulations are compared. In Section 5, the modified Y -parameters approach is applied
to simulate the time evolution of instantaneous frequencies with N > 3, a Monte-Carlo technique is
applied to simulate the randomness of free-running frequencies. A strategy of synchronizing multiple
COA’s is proposed and analyzed, to extend the available size of COA’s. The conclusion is drawn in
Section 6.

2. BEHAVIOR MODELS OF COA’s

Figure 1 shows a one-dimensional coupled oscillator array (COA) of N elements, connected through an
N -port coupling network. The coupling network is composed of N − 1 modules, with each connected
to two neighboring oscillators; where Vm is the voltage at port m, Yosc,m is the output admittance of
the mth oscillator, and Yco,m is the input admittance at port m of the coupling network. The behavior
of a COA has been modeled with the Y -parameters approach [8, 13], the Adler’s equation; and will be
modeled with a modified Y -parameters approach in this work. The COA’s will be explored on their key
feature of achieving linear phase progression by tuning the free-running frequencies of the oscillators at
both ends.

Figure 1. Coupled oscillator array (COA) connected via an N -port coupling network.

2.1. Y -Parameters Approach

The input admittance at port m of the coupling network can be represented as [4]

Yco,m =
1

Vm

N∑

n=1

YmnVn (1)
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where Vm = Amejϕm is the voltage phasor at port m, and Ymn ’s are the Y parameters of the N -port
coupling network. The resonance condition [21] implies that

Ym

(
ωm, V̄

)
= Yosc,m (ωm, Vm) + Yco,m(ωm, V̄ ) = 0 (2)

where Ym(ωm, V̄ ) is the total admittance at node m, and V̄ = [V1, V2, . . . , VN ]t. Although Yosc,m and
Yco,m can be obtained independently, the free-running frequency of a stand-alone oscillator will deviate
from its initial value, ω0,m, when connected to the coupling network.

In [8], (2) is expanded in a Taylor series around ω0,m as

Ym

(
ω0,m, V̄

)
+ (ωm − ω0,m)

∂Ym(ωm, V̄ )
∂ωm

∣∣∣∣
ω0,m

' 0 (3)

where ωm is the instantaneous frequency. If the amplitude, Am, and the phase, ϕm, are constant, the
time derivative of vm(t) = Re{Amej[ω0,mt+ϕm]} can be calculated as

d

dt
Re

{
Amej[ω0,mt+ϕm]

}
= Re

{
jω0,mAmej[ω0,mt+ϕm]

}
(4)

If the amplitude and the phase vary slowly with time, the time derivative becomes [12]
d

dt
Re

{
Am(t)ej[ω0,mt+ϕm(t)]

}
= Re

{
j

[
ω0,m +

dϕm(t)
dt

− j

Am(t)
dAm(t)

dt

]
Am(t)ej[ω0,mt+ϕm(t)]

}
(5)

Under the condition of slow-time variation [8]:
dϕm(t)

dt
¿ ω0,m and

1
Am(t)

dAm(t)
dt

¿ ω0,m (6)

(5) can be put in the form of (4), with the instantaneous frequency, ωm = ω0,m + δωm, where [12]

δωm =
dϕm(t)

dt
− j

1
Am(t)

dAm(t)
dt

(7)

Substituting (7) into (3), we obtain

Ym(ω0,m, V̄ ) +
[
dϕm(t)

dt
− j

1
Am(t)

dAm(t)
dt

]
∂Ym

∂ωm
(ω0,m, V̄ ) ' 0 (8)

Define an instantaneous phase, ψ(t) =
∫ t

ω0,mdt + ϕ(t), then dϕ(t)/dt = dψ(t)/dt − ω0,m, and
(8) can be reduced to [8]

dAm(t)
dt

= Am(t)Im
{
Fm

(
ω0,m, V̄

)}
(9)

dψm(t)
dt

= ω0,m − Re
{
Fm

(
ω0,m, V̄

)}
(10)

where

Fm

(
ω0,m, V̄

)
=

Ym

∂Ym/∂ωm

(
ω0,m, V̄

)
(11)

The time evolution of amplitude and phase of the oscillators in a COA are governed by (9) and (10).

2.2. Adler’s Equation

If the Y parameters of the coupling network is less sensitive to frequency, (9) and (10) can be reduced
to the Adler’s equation. If the amplitude variation is negligible, as in [1, 22], the Adler’s equation can
be further reduced to

dψm

dt
= ω0,m − ω0,m

2Qm

N∑

n=1

Im
{

κmn
An

Am
ej(ψn−ψm)

}
(12)

where κmn = Ymn/gpm is the coupling coefficient between oscillators n and m, Qm = ωmCm/gpm is the
quality factor of oscillator m, gpm and Cm are the conductance and capacitance, respectively, of the
equivalent RLC circuit representing the mth oscillator.
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2.3. Modified Y -parameters Approach

In applying the conventional Y -parameters approach to analyze COA’s with strong coupling [11, 13], the
deviation of free-running frequencies has not been considered. Typically, an isolated VCO is designed
to drive a 50Ω load. Imagine that at t < 0, the mth VCO is connected to a 50 Ω load and oscillates at
its designed free-running frequency, f0,m. At t = 0, all the VCO’s are detached from their 50 Ω loads,
and switched to the coupling network.

Figure 2 illustrates the drifting of oscillation frequency f
(1)
m from f0,m right after oscillators are

switched to the coupling network. If f0,m > fs, the susceptances Bco,m and Bosc,m can be approximated
as

Bco,m = pc

(
f (1)

m − fs

)

Bosc,m = po

(
f (1)

m − f0,m

) (13)

where pc and po are derived by curve-fitting on the simulation data of the coupling network and the
mth VCO, respectively. The oscillation condition implies that Bco + Bosc = 0, which leads to

f (1)
m =

pcfs + pof0,m

pc + po
(14)

Hence, the initial frequency of the first VCO satisfies fs < f
(1)
1 < f0,1. Similarly, f0,N < f

(1)
N < fs. For

the other VCO’s f
(1)
m = fs because f0,m = fs. Thus, we set ω

(1)
m = 2πf

(1)
m in (17) at the first time step.

To more accurately describe the behavior of the COA, expand (2) about the instantaneous frequency
at time step n, t = n∆t, as

Ym

(
ω(n)

m , V̄
)

+
(
ω(n+1)

m − ω(n)
m

) ∂Ym

(
ω

(n)
m , V̄

)

∂ωm

∣∣∣∣∣∣
ω

(n)
m

' 0 (15)

where ω
(n)
m and ω

(n+1)
m are the instantaneous frequencies at time steps n and n+1, respectively. Eqs. (9)

and (10) are then modified as
dAm(t)

dt
= Am(t)Im

{
Fm(ω(n)

m , V̄ )
}

(16)

dψm(t)
dt

= ω(n)
m − Re

{
Fm(ω(n)

m , V̄ )
}

(17)

where

Fm

(
ω(n)

m , V̄
)

=
Ym

∂Ym/∂ωm

(
ω(n)

m , V̄
)

(18)

The oscillation frequency is updated at each time step, and ω
(n)
m can be viewed as the free-running

frequency for the next time step.
Table 1 summarizes the comparison of these three behavior models.

Figure 2. Adjustment of the VCO’s oscillation frequency when connected to the coupling network, fs

is the target frequency, f0,m is the free-running frequency of the mth stand-alone oscillator, f
(1)
m is the

initial frequency of the mth oscillator after all the oscillators are connected to the coupling network.
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Table 1. Comparison of behavior models.

model modified Y -parameters approach Y -parameters approach Adler’s equation

main idea
Taylor expansion with

updated frequency
Taylor expansion

phasor diagram [22] or

reduction of Y parameters [8]

key

equations

dAm(t)
dt

=Am(t)Im
{
Fm(ω

(n)
m , V̄ )

}

dψm(t)
dt

=ω
(n)
m −Re

{
Fm(ω

(n)
m , V̄ )

}

where

Fm(ω
(n)
m , V̄ )= Ym

∂Ym/∂ωm
(ω

(n)
m , V̄ )

dAm(t)
dt

=Am(t)Im
{
Fm(ω0,m, V̄ )

}
dψm(t)

dt
=ω0,m−Re

{
Fm(ω0,m, V̄ )

}

where

Fm(ω0,m, V̄ )= Ym
∂Ym/∂ωm

(ω0,m, V̄ )

dψm
dt

=ω0,m

− ω0,m

2Qm

N∑
n=1

Im
{
κmn

An
Am

ej(ψn−ψm)
}

valid range strong/weak coupling strong/weak coupling weak coupling

required

parameters

Y parameters of

oscillators and

coupling network

Y parameters of

oscillators and

coupling network

coupling coefficient of

coupling network and

quality factor of oscillators

3. DESIGN OF COUPLING NETWORK AND VCO

3.1. Design of Coupling Network

A coupling network is designed to provide a variable coupling strength to the COA. The input
conductance of the coupling network is preferred to be insensitive to the coupling strength, to make
sure the negative conductance of the VCO is always sufficient to sustain the oscillation [11].

Figure 3 shows one module of the proposed coupling network, which is composed of two attenuators
and a transmission-line segment of one-wavelength long. One of the attenuator is composed of transistors
M1, M2 and M3, the other is composed of transistors M4, M5 and M6. These MOSFET’s are biased
in the triode region to function like a resistor. The bias voltages, Vb1 and Vb2, are used to control
the on-resistance of the MOSFET’s, in order to adjust the insertion loss of the attenuator. By proper
tuning of the bias voltages, both attenuators present a near-constant input conductance at different
attenuation levels [23].

The attenuator can be modeled as a resistive T network, as shown in Figure 4, with the input
impedance

Zin = R1 +
R2(R1 + Z0)
R2 + R1 + Z0

(19)

where R1 and R2 are implemented with the drain-source resistance of a MOSFET. If both the source
and the load are impedance-matched to Z0, namely, Zin = Z0, then

Z0 =
√

R2
1 + 2R1R2 (20)

The ratio of input to output voltages can be derived as

γ =
Vi

Vo
=

R2
1 + 2R1R2 + R1Z0 + R2Z0

Z0R2
(21)

Figure 3. Module in the proposed coupling
network, which is composed of two variable
attenuators and one transmission-line segment.

Figure 4. Equivalent T network of an attenuator.
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Substituting (20) into (21), the power attenuation becomes

20 log10 γ = 20 log10

R1 + R2 + Z0

R2
(22)

A specific attenuation level, γ, can be achieved by adjusting R1 and R2 as

R1 = Z0
γ − 1
γ + 1

, R2 = Z0
2γ

γ2 − 1
(23)

For example, to achieve 3 dB of attenuation requires R1 = 8.5Ω and R2 = 142Ω, under Z0 = 50 Ω.
The ABCD matrix of the T network is[

A B

C D

]
=

[
1 + R1/R2 2R1 + R2

1/R2

1/R2 1 + R1/R2

]
(24)

By cascading the ABCD matrices of the two attenuators and the one-wavelength transmission-line with
phase constant β and physical length `, the ABCD matrix of one module in the coupling network can
be derived and transformed to a Y matrix

¯̄Ys =

[
Y11,s Y12,s

Y21,s Y22,s

]

where

Y11,s =
(BC + A2) cos β` + j(ACZ0 + ABY0) sinβ`

(BA + AB) cos β` + j(A2Z0 + B2Y0) sinβ`

Y21,s = − 1
(BA + AB) cosβ` + j(A2Z0 + B2Y0) sinβ`

Y12,s =
(A4 + B2C2)(cos2 β`− sin2 β`)− 2A2BC

(BA + AB) cos β` + j(A2Z0 + B2Y0) sinβ`

Y22,s =
(A2 + BC) cos β` + j(ACZ0 + ABY0) sinβ`

(BA + AB) cos β` + j(A2Z0 + B2Y0) sinβ`)

(25)

The Y parameters of the N -port coupling network can be expressed in terms of the Y parameters
in (25) as

Ymn =





Y11,s, m = n = 1, N
2Y11,s, m = n 6= 1, N
Y12,s, |m− n| = 1
0, otherwise

(26)

Figure 5 shows the Y -parameters of the proposed coupling network. The results using (26) match well
with those using the Agilent ADS simulation tools with the TSMC 0.18µm circuit models, over the
band of 5–15 GHz. The difference between the results using (26) and those with the circuit simulation
tools is attributed to the parasitics of the transistors, which are not taken into account in the former.

Figure 6 shows the simulated drain-source resistances, R1,ds and R2,ds, of transistors M1 and M2,
respectively. Specific attenuation level can be achieved by proper adjustment of R1 and R2 by (23), via
control voltages, Vb1 and Vb2, respectively. For example, to tune the attenuation from 3 to 10 dB, one
needs to adjust R1 from 8.5 to 26Ω and R2 from 142 to 35 Ω. The widths of M1 and M2 are 256µm
and 42 µm, respectively, working under a bias voltage from 0 to 1.8 V.

Figure 7(a) shows the simulated attenuation of the attenuator at 10GHz. The attenuation level of
3 to 10 dB can be achieved by controlling the bias voltages, Vb1 and Vb2. Relevant parameters are listed
in Table 2. Figure 7(b) shows the input resistance and coupling coefficient of a module under different
attenuation levels. Note that the total attenuation provided by a module is 2γ, and the input resistance
is kept close to 50 Ω. Compared to the purely resistive coupling circuit in [24, 25], our coupling network
is designed to maintain a near-constant input conductance to ensure oscillation at different attenuation
levels.
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(a) (b)

(c)

Figure 5. Y -parameters of the proposed N -port coupling network at γ = 3 dB, ——: Re{Ymn} using
(26), − + −: Re{Ymn} using circuit simulation, − − −: Im{Ymn} using (26), − ◦ −: Im{Ymn} using
circuit simulation; (a) m = n = 1, N , (b) m = n 6= 1, N , (c) |m− n| = 1.

Figure 6. Simulated drain-source resistances: (a) R1,ds (controlled by Vb1) and (b) R2,ds (controlled
by Vb2).

The coupling coefficient between oscillators n and m can be defined as [8]

κmn =
Ymn

gpm
, |m− n| = 1 (27)

where Ymn is listed in (26), and gpm is the conductance of the equivalent RLC circuit representing the
mth oscillator. Figure 7(b) shows the relation between the coupling coefficient and the attenuation
level, with the frequency close to 10 GHz. As mentioned in [11], κmn > 0.5 implies a strong coupling,
and κmn < 0.5 implies a weak coupling. The coupling coefficient is about 0.5 at the attenuation level
of 9 dB.
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(a) (b)

Figure 7. Simulated (a) attenuation and (b) input resistance and coupling coefficient, of the attenuator
at 10 GHz.

Table 2. Parameters to achieve desired attenuation levels.

γ (dB) 3 4 5 6 7 8 9 10
R1 (ω) 8.6 11.3 14 16.6 19.1 21.5 23.8 26
Vb1 (V) 0.7 0.64 0.61 0.58 0.56 0.55 0.53 0.52

R1,ds (Ω) 8.4 11.3 13.6 16.9 19.6 21.2 24.6 26.4
R2 (Ω) 142 105 82.2 66.9 55.8 47.3 40.6 35
Vb2 (V) 0.53 0.58 0.62 0.65 0.68 0.72 0.75 0.8

R2,ds (Ω) 139 104.2 80 66.5 56.5 46.9 41.7 35.3

If the coupling network is only slightly dependent on the frequency within the band of interest,
a coupling coefficient can be conveniently defined to model it [8]. Stronger coupling usually leads to
stronger frequency dependence of the coupling network [13]. The frequency-dependent Y parameters
can be used to model the proposed coupling network over the band of interest more accurately, when
solving (9) and (10) [13], or solving (16) and (17).

3.2. Design of VCO

Figure 8 shows the schematic of the VCO adopted in this work, which is designed to operate around
10GHz. Its free-running frequency can be tuned by applying the control voltage, Vctrl, to the RF
MOS varactors, C1 and C2, to tune over a range from 0.66 pF to 0.91 pF. The two inductors of the
LC circuit are implemented with a 1-turn transformer in the TSMC models, with radius of 110µm.
The width/length (w/`t) of transistors M2 and M3 are 80/0.18, and is 70/0.18 of transistor M1, the
bias current source. The quality factor of the LC circuit is about 10. The phase noise is −95 dBc/Hz
at 1 MHz offset and −100 dBc/Hz at 1.5 MHz offset, with Vctrl = 1 V. The total dc current is 5.6 mA
and the supply voltage is 1.2V. The free-running frequency of the oscillator can be tuned from 9.5 to
12.3GHz as Vctrl is adjusted in the range of 0 to 1.8 V.

The oscillator can be modeled as an RLC circuit connected to an active device, as shown in Figure 9.
For the mth oscillator, the free-running frequency is ω0,m ' 1/

√
LmCm. The output admittance can be

expressed as

Yosc,m = Gosc,m + jBosc,m (28)

where Gosc,m = gpm − gam , and −gam is the negative conductance provided by the cross-couple pair.
By the van der Pol equation [1, 26], gam is related to the oscillation amplitude, Am, as [27, 28]

gam(Am) = −g1 + 3g2A
2
m (29)

where g1 and g2 are empirical coefficients. Thus, we have

Gosc,m(Am) = gpm − (−g1 + 3g2A
2
m

)
(30)
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Figure 8. Schematic of VCO used in the COA. Figure 9. Schematic of a parallel RLC circuit
connected to an active device and a coupling
network.

Figure 10. Output admittance of oscillator m
with Am = 75mV, ——: simulated Gosc,m, −−−:
simulated Bosc,m, −◦−: curve-fitted Gosc,m, −•−:
curve-fitted Bosc,m.

Figure 11. Output conductance of oscilla-
tor m with different amplitudes, f0,m = 10 GHz,
——: simulation with ADS, − − −: curve-fitting
with (31).

The oscillation amplitude can be tuned by adjusting the bias current of the oscillator. Using
the ADS simulation tools, we obtain Gosc,m(0.0525) = −0.02 S, Gosc,m(0.075) = −0.021 S, and
Gosc,m(0.1) = −0.0218 S; where the oscillation amplitude falls within the range of 52.5 to 100 mV.

Note that Gosc,m must be less than −0.02 S to drive the coupling network with input resistance
of 50 Ω. With gpm = 0.01 S, it is required that gam(0.0525) = 0.03 S, gam(0.075) = 0.031 S, and
gam(0.1) = 0.0318 S. By fitting values of Am between 52.5 and 100 mV in (29), using the least mean-
square-error method, we derive g1 = −0.029 and g2 = 0.119.

The frequency response of Yosc in (30) can be fitted with third-order polynomials as

Gosc,m(fm, Am) ' gpm − gam(Am) + a
(
fm − f (1)

m

)
+ b

(
fm − f (1)

m

)2
+ c

(
fm − f (1)

m

)3

Bosc,m(fm) ' p(fm − f (1)
m ) + q

(
fm − f (1)

m

)2
+ r

(
fm − f (1)

m

)3
(31)

where f
(1)
m and fm (in GHz) are the initial frequency and the instantaneous frequency, respectively, of

the mth VCO. Table 3 lists the coefficients, a, b, c, p, q and r, at different free-running frequencies, by
curve-fitting Yosc using the least mean-square-error method. Figure 10 shows the output admittance of
oscillator m, with the amplitude of 75mV.

Figure 11 shows the output conductance, Gosc, at a finer resolution, with the amplitude of 52.5, 75
and 100 mV, respectively. The variation of circuit parameters with amplitude and frequency has been
incorporated.



80 Lo and Kiang

Table 3. Coefficients in Yosc,m at different free-running frequencies.

f
(1)
m (GHz) 9.6 9.7 9.8 9.9 10 10.1 10.2 10.3 10.4
103 × a 2.7 1.8 0 −1.2 −3.2 −3.7 −4.1 −6.2 −7
103 × b 6.6 8.0 9.0 10.8 11.8 11.8 11.9 11.0 10.5
103 × c −2.5 −2.9 −3.2 −3.7 −3.7 −3.6 −3.6 −2.8 −2.5
103 × p 21.3 21.6 21.7 21.7 21.3 21.2 21 19.9 19.4
103 × q −8.0 −7.3 −6.5 −4.2 −1.3 0 0 3.8 4.9
103 × r 1.8 1.5 1.1 0 −1.0 −1.3 −1.6 −2.8 −3.2

4. VERIFICATION OF MODIFIED Y -PARAMETERS APPROACH

For comparison, the transient response of a three-element (N = 3) COA is simulated with the modified
Y -parameters approach, the Y -parameters approach, the Adler’s equation, and the ADS full-circuit
simulation. The governing equations of the three different behavior models are solved using the fourth-
order Runge-Kutta method.

The free-running frequencies of the oscillator at both ends are tuned to fs + ∆f0 and fs − ∆f0,
respectively; where fs is the target frequency of 10 GHz, ∆f0 is a specific frequency offset selected to
achieve the desired phase progression. The free-running frequencies of the other oscillators are tuned
to fs.

The stability of a system can be checked by perturbing its amplitude and phase, then examining
whether such perturbation will decay as time marches [1]. To find the sufficient condition of stability,
the Jacobian matrix associated with (9) and (10) can be derived [8], then checked if its eigenvalues have
negative real part [29].

An alternative to examine the stability of the COA is to observe its transient response, which
converges to a steady state if the COA is stable [30]. In this work, the stability condition is checked
by observing the time evolution of amplitude and phase in the numerical solution. When the COA is
successfully locked, the amplitudes and phases of oscillators always converge. If the COA fails to lock,
the instantaneous frequency of each oscillator wobbles around its free-running frequency, the amplitudes
and phases also wobble without convergence.

Figure 12 shows the time evolution of instantaneous frequency and phase difference of a three-
element COA, with γ = 5 dB and ∆f0 = 400 MHz, and Yosc is modeled with (31). All three oscillators
are locked into a single frequency, but slightly deviated from the planned 10 GHz. This deviation
is due to the asymmetry of Yosc about the center frequency of 10GHz, and can be corrected using
injection-locking [31] or phase-locked loop (PLL) technique [32].

Figure 13 shows the effect of ∆f0 on the phase difference, using the Adler’s equation, the Y -
parameters approach, the modified Y -parameters approach, the ADS simulation, and an estimation
formula in (A6). It is observed that weaker coupling induces larger phase difference, at a given ∆f0.

The Adler’s equation fails to predict the phase difference, θ, under strong coupling, possibly because
the amplitude variation is not considered, as in (12). A modified Adler’s equation, including amplitude
variation, can be found in [14]. It also indicates that using the coupling coefficient and the quality
factor may not be sufficient to model the COA’s behavior. The formula in (A6) does not include the
amplitude and frequency dependence of the transconductance, hence only provides a rough estimation.
The predictions with the Y -parameters approach match reasonably well with the ADS simulation when
∆f0 is small. However, as ∆f0 increases, a large difference appears between the Y -parameters approach
and the ADS simulation. The results of the modified Y -parameters approach match well with the
ADS simulation when ∆f0 is small, and the difference with the ADS simulation at large ∆f0 is smaller
compared to the conventional Y -parameters approach.

The modified Y -parameters approach is more accurate than the other two behavior models, and
takes much shorter simulation time than the ADS full-circuit simulation. Hence, the modified Y -
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parameters approach is an effective and efficient way to simulate large COA’s. Combining with the
Monte-Carlo technique, it can be used to simulate the random frequency distribution of oscillators,
which causes phase error and sometimes a loss of lock in a COA. Besides, the instantaneous frequencies of
the oscillators can be directly observed. Figure 14 summarizes the flow-chart of applying this approach.

(a)

(b)

Figure 12. Time evolution of (a) instantaneous frequency (——: f1(t), − − −: f2(t), − · −: f3(t)),
and (b) phase difference (——: ψ1 − ψ2, − − −: ψ1 − ψ3) of the three-element COA, γ = 5 dB,
∆f0 = 400MHz, Yosc is modeled with (31).

(a) (b)

(c)

Figure 13. Inter-element phase difference of a three-element COA, under different free-running
frequency offsets, ∆f0, —•—: modified Y -parameters approach (16) and (17), —◦—: Y -parameters
approach (9) and (10), —×—: Adler’s Eq. (12), − · −: ADS simulation, −−−: estimation with (A6),
(a) γ = 4 dB, (b) γ = 5 dB, (c) γ = 6 dB.
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Figure 14. Flow-chart of applying the modified
Y -parameters approach.

(a)

(b)

Figure 15. Time evolution of (a) instantaneous
frequencies (——: f1(t), − − −: f2(t), − · −:
f3(t), − ◦ −: f4(t), −∆−: f5(t)), and (b) phase
differences (——: ψ1−ψ2, −−−: ψ1−ψ3, − ·−:
ψ1 − ψ4), − ◦−: ψ1 − ψ5) of a five-element COA,
γ = 5 dB, ∆f0 = 400 MHz, Yosc is modeled with
(31).

5. SYNCHRONIZATION OF MULTIPLE COA’s

Figure 15(a) shows the time evolution of instantaneous frequencies of a five-element COA, with
fs = 10GHz, γ = 5dB and ∆f0 = 400 MHz. The free-running frequencies of the first and the last
VCO’s are set to fs + ∆f0 and fs − ∆f0, respectively; and those of the other three VCO’s are set to
f0 [1, 8].

As the COA’s are switched to the coupling network, the frequency of the second VCO is pulled
upwards by the first one, and that of the fourth VCO is pulled downwards by the fifth one. After a
while, the second VCO is pulled downwards and the fourth VCO is pulled upwards. Finally, all the
VCO’s synchronize themselves and lock into the same frequency. The associated phase differences are
shown in Figure 15(b), and it appears that the inter-element phase shift is close to a constant.

In [33], the harmonic-balance technique is applied to simulate COA’s of size 3 ≤ N ≤ 6, with
coupling resistors of 100 Ω and 300Ω. It appears that the inter-element phase difference is almost
independent of N . Figure 16 shows the inter-element phase difference with 2 ≤ N ≤ 11. The phase
difference at ∆f0 = 400MHz is larger than that at ∆f0 = 100. At smaller offset frequency, ∆f0, or
stronger coupling (lower γ), the inter-element phase difference is less sensitive to N . As the coupling
becomes weaker or the offset frequency increases, the inter-element phase difference tends to decrease
with N .

5.1. Randomness of Free-running Frequencies
In practice, the free-running frequencies of all the VCO’s bear certain randomness, which may prevent
the VCO’s from locking into one another, especially when the array size is large. The maximum
tolerable frequency deviation due to randomness has been discussed in [1, 19]. The variation of free-
running frequency depends on the process, the temperature, the stability of supply voltages, and the
configuration of oscillator array. In [34], the free-running frequency of a ring oscillator array can be self-
calibrated within a standard deviation, 2.79% of the center frequency at 1.3 GHz. In [35], the maximum
frequency deviation of a VCO at 1GHz is about 500 kHz, derived by measuring the spectrum over 30
seconds. In [6], the average oscillation frequency of 12.45 GHz is reported to have a maximum deviation
of 15 MHz.
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Figure 16. Inter-element phase difference, θ (◦),
of COA’s with size N , •: γ = 4 dB, ◦: γ = 6 dB.

Figure 17. Probability of lock, σ = 5MHz,
∆f0 = 200 MHz, ◦: γ = 5dB, •: γ = 6 dB.

Figure 18. Average and standard deviation of phase difference, σ = 5 MHz and ∆f0 = 200 MHz. •: σ
at γ = 5 dB, ¦: σ at γ = 6 dB, ◦: 〈θ〉 at γ = 5 dB, 4: 〈θ〉 at γ = 6 dB.

Assume the free-running frequencies of the VCO’s in the COA follow a normal distribution, with the
mean value of 10 GHz and a standard deviation of σ0 = 5 MHz. By applying the Monte-Carlo technique,
the free-running frequency of each VCO is simulated as a random variable. For an N -element COA, N
random variables are required in the behavior models, and a total of 5000 realizations are implemented.
In each realization, the Runge-Kutta solver is applied to trace the time evolution of the instantaneous
frequencies and phases. The COA may be locked or not, contingent upon the distribution of free-running
frequencies; It is claimed locked if the steady-state frequencies of all the VCO’s are different by less
than σ0/5. We choose σ0/5 as the locking criterion because Yosc is modeled with 2001 data points from
9 to 11GHz, rendering a frequency resolution of 1 MHz.

Figure 17 shows the probability of lock, Plock, which is the number ratio of Monte-Carlo realizations
when the COA is locked to the total number of realizations. The probability of lock decreases as
N is increased or as the attenuation level is increased. A stronger coupling strength is required to
achieve a higher probability of lock. The proposed variable-coupling network with near-constant input
conductance is capable of supporting large COA’s. A coupling network made of resistors may quench
the oscillation under strong coupling because the resistive loss is not compensated for by the transistors.

Figure 18 shows the mean phase difference, 〈θ〉, and the standard deviation, σ, derived from the
Monte-Carlo realizations with successful locking. The frequency offset of the two end VCO’s is set to
∆f0 = 200MHz, which falls within the valid range of the behavior models, as shown in Figure 13. It is
observed that a higher attenuation level leads to a larger average phase difference and a slight increase
of standard deviation.

5.2. Synchronization by Phase Injection

To extend the size of a COA when the random deviation of free-running frequencies is considered,
one may consider a concatenation of multiple sub-COA’s of smaller size. However, two sub-COA’s
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are generally locked into different phases, although a phase progression can be established among the
oscillators within each sub-COA. An injection signal is proposed to feed the center element of each
sub-COA to create phase synchronization among different sub-COA’s. Figure 19 shows the schematic
of two sub-COA’s fed with the same injection signal, but at different phases. The equation governing
the center oscillator is modified to

dψm(t)
dt

= ω(n)
m − Re

{
Fm(ω(n)

m , V̄ )
}

, m 6= Nc (32)

dψm(t)
dt

= ω(n)
m − Re

{
Fm(ω(n)

m , V̄ )
}

+
ω0,mκ

2Q
sin(ψinj − ψm(t)), m = Nc (33)

where ψinj is the phase of the injection signal, Nc = (N + 1)/2 with N an odd number without loss of
generality, κ the coupling coefficient defined in (27), and Q the quality factor of the resonant circuit.
The first two terms on the right-hand side of (33) account for the mutual coupling with the modified
Y -parameters approach, the third term accounts for the injection locking with the Adler’s equation.
A similar equation to (32) and (33) can be found in [36], in which the injection signal is fed to the
end elements, the mutual coupling and the injection locking mechanism are modeled with the Adler’s
equation.

Consider an example as shown in Figure 19. In each sub-COA, let N = 11, fs = 10 GHz,
∆f0 = 150MHz, and γ = 4 dB, which implies κ = 1.89 from Figure 7(b). As f is close to fs, (31) implies
that the admittance of the resonant circuit is Ypm = gpm + jp(fm − f0,m), where p = 0.02, and f in
units of GHz. The resonant circuit with Yp = gp + j4πC(f − f0) has a Q factor of Q = 2πf0C/gp [37].
Hence, p = 4π × 109 × C. If gp = 0.01, then Q = 10.

By substituting κ = 1.89 and Q = 10 into (32) and (33), both sub-COA’s turn out to synchronize
in frequency and phase. To establish a contiguous phase progression from one sub-COA to the other,

Figure 19. Schematic of two sub-COA’s fed by injection signals with different phases.

(a) (b)

Figure 20. Time evolution of two 11-element sub-COA’s with a common injection signal to the
center element of each sub-COA, finj = 10 GHz, ψinj,1 = 0◦, ψinj,2 = 180◦. Both COA’s operate with
∆f0 = 150MHz and γ = 4 dB.
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we set ψinj,1 = 0◦ and ψinj,2 = (N − 1)θ, where θ is the inter-element phase shift within each sub-COA.
Figure 20 shows the time evolution of frequencies and phases of two 11-element sub-COA’s,

synchronized with ψinj,1 = 0◦ and ψinj,2 = 180◦, respectively. The inter-element phase shift turns
out to be around 18◦. Both sub-COA’s are locked to the same desired frequency of 10 GHz, and their
phases progress linearly from one sub-COA to the other, doubling the total length of the COA. More
sub-COA’s can be synchronized with injection signals of proper phases to achieve a much longer COA
with linear phase progression.

6. CONCLUSION

A modified Y -parameters approach is proposed to simulate the behavior of COA’s. A variable-coupling
network with near-constant input conductance is designed to maintain oscillation under different
coupling strengths. The proposed approach has been verified with full-circuit simulations, and compared
with the conventional Y -parameters approach and the Adler’s equation. Monte-Carlo technique has been
applied to simulate random deviation of free-running frequencies, which tends to reduce the probability
of lock as the array size is increased. A phase-injection method is also proposed to synchronize multiple
COA’s into an effectively larger COA.
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APPENDIX A. RELATION BETWEEN INTER-ELEMENT PHASE DIFFERENCE
AND FREE-RUNNING FREQUENCY OFFSET

In the steady state, the voltage phasors of a three-element COA satisfy



Y11,s + Yosc,1 Y12,s 0

Y12,s 2Y11,s + Yosc,2 Y12,s

0 Y12,s Y11,s + Yosc,3







V1

V2

V3


 = 0 (A1)

where Vn = Anejψn is the voltage phasor at port n. The voltages, V1 and V3, can be solved in terms of
V2 as

[
Y11,s + Yosc,1 − (Y11,s + Yosc,3)

Y12,s Y12,s

][
V1

V3

]
=

[ 0

− (2Y11,s + Yosc,2) V2

]
(A2)

with the explicit solutions

V1 = C (Y11,s + Yosc,3)
V3 = C (Y11,s + Yosc,1)

(A3)

where

C =
− (2Y11,s + Yosc,2) V2

Y12,s (2Y11,s + Yosc,1 + Yosc,3)
= Cre

jψc

Let f0,1 = fs+∆f0 and f0,3 = fs−∆f0. Eq. (31) is simplified to have Yosc,1 ' gp1−ga1+jp(f1−f0,1)
and Yosc,3 ' gp3 − ga3 + jp(f3 − f0,3). The values of p at f0,1 and f0,3 are approximately the same, as
listed in Table 3. When the three oscillators are locked, f1 = f3 = fs, we have gp1 − ga1 ' gp3 − ga3 =
g = −0.0215. Hence, (A3) can be reduced to

A1e
jψ1 = Cre

jψc {G11,s + g + j[B11,s + p(fs − f0,3)]}
A3e

jψ3 = Cre
jψc {G33,s + g + j[B33,s + p(fs − f0,1)]}

(A4)
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where Y11,s = G11,s + jB11,s, G11,s = G33,s and B11,s = B33,s.
Due to symmetry of the COA and the coupling network with respect to the center oscillator,

A1 = A3 = A0 and B11,s = B33,s ' 0, hence (A4) can be further reduced to

A1e
jψ1 = A0e

j(ψc+θ)

A3e
jψ3 = A0e

j(ψc−θ)
(A5)

where

A0 = Cr

√
(G11,s + g)2 + (p∆f0)2

θ = tan−1 p∆f0

G11,s + g

(A6)

which an explicit relation between the inter-element phase difference, θ, and the free-running frequency
offset, ∆f0.
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