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The Research on Flux Linkage Characteristic Based on BP and RBF
Neural Network for Switched Reluctance Motor
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Abstract—The flux and torque of switched reluctance motor (SRM) have a highly nonlinear functional
relationship with rotor position and phase current, as a consequence of the double-salient structure
of the stator and rotor pole and highly magnetic saturation, which is difficult to build an accurate
analytic model. In order to achieve the SRM high-performance control, it is necessary to build an
accurate nonlinear model for SRM. On the basis of the adequate and precise sample data, by taking
advantage of neural network that has outstanding nonlinear mapping capability, this paper adopts the
Back Propagation (BP) based on Levenberg-Marquardt (LM) algorithm and Radial Basis Function
(RBF) neural network to build offline models for SRM respectively. Under different requirements of
model accuracy, two kinds of network are studied and compared with each other on accuracy, scale
and other aspects. The research results indicate that the network scale built as SRM nonlinear model
by BP neural network based on LM algorithm is smaller than the one built by RBF. Additionally, the
model accuracy is higher. In terms of the Switched Reluctance Drive (SRD) which requires real-time
controller, reducing the network scale will be beneficial to the online real-time control of the system.

1. INTRODUCTION

The switched reluctance motor has been applied in many fields due to its advantages including simple
structure, reliable operating ability, high efficiency, low cost of manufacture and flexible control. Its
double-salient structure of stator and rotor pole, highly magnetic saturation and voltage-pulse mode
of power supply lead to torque ripple, noise and other disadvantages, which limit SRM’s application
on high-performance drive field. In order to achieve high-performance drive, it is necessary to build
an accurate nonlinear model for SRM. Nevertheless, the flux linkage and torque of switched reluctance
motor have a highly nonlinear functional with rotor position and phase current so that it is difficult to
build an accurate analytic model.

The conventional model methods contain tabular, linear, quasi-linear, analytical expression
and finite-element approaches. The tabular approach finds data through interpolation or range
approximation by building a table which links current, rotor angle and flux linkage together. This
approach will occupy plenty of internal memory of the CPU in controller and its accuracy is
insufficient [1]. Because the linear model neglects the nonlinear feature in magnetic circuit and diffusion
effect at the edge of magnetic field, it is beneficial to SRM qualitative analysis, but the model has
a bigger error [2]. Roux and Morcos propose a piecewise linear method based on simplified model
of flux equation. This method ignores core saturation. Compared with linear method, its accuracy
has a little improvement though its error is still large [3]. By utilizing several SRM magnetization
curves in important positions, SRM analytic model is built. Though its model accuracy improves
compared with linear model and quasi-linear model, its error is not able to meet the requirement of
model accuracy for SRM high-performance control [4]. Ilic’-Spong et al. take use of analytical expression
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method to build SRM model. Even if it could optimize system performance in a certain extent, it is
not adequately adaptive for various loads and environment [5]. Xu and Ruchkstater combine SRM
external circuit equation and finite-element method (FEM) to simulate, which has the problems of
more calculation time and plenty of data [6]. Compared with two-dimensional finite-element analysis,
three-dimensional finite-element analysis has a great progress on the level of accuracy, however, its
calculation is quite complicated and time-wasting. Besides, the finite-element algorithm is adapted to
calculating motor performance without realizing the model requirement of SRD real-time control [7].
Sahoo et al. use tabular approach and fuzzy logic method to build current model. This method is based
on the assumption that magnetic circuit is not saturated, which could not improve accuracy [8].

The difficulty of modeling for SRM is that its flux linkage characteristic is highly nonlinear. Because
the neural network has good nonlinear mapping ability, its application in SRM modeling is of obvious
superiority. So more and more academicians put artificial intelligence into SRM model. Elmas et al.
firstly put forward building a BP neural network model for SRM by BP standard algorithm and proving
its effectiveness. However, the standard BP algorithm has some problems including slow convergence
speed and local minimum [9]. Cai et al. use RBF neural network based on boundary value constraint
improvement to model SRM’s flux linkage characteristic. The experimental results indicate that this
method can provide better fitting ability, but fail to solve the problem on necessity of more neurons [10].
Fuzzy logic and neural network are combined together which could improve convergence speed. On the
contrary, the network structure is more complicated and the amount of calculation is also very large [11].
Liang and Ding [12] and Xu et al. [13] use adaptive neural fuzzy inference system (ANFIS) to model for
SRM. Although this method has good calculation speed and generalization ability, its network structure
is too complicated to carry on motor real-time control. Si et al. use least squares support vector machine
(LSSVM) to model SRM flux linkage characteristic. This model lacks prediction precision and its
kernel function form and parameter choice are not theoretical and depend on experience and artificial
selection [14]. Shang et al. use genetic algorithm to optimize LSSVM to improve prediction precision
of the model, but this method has no sufficient data and fails to describe the motor characteristic
precisely [15]. Lachman et al. compare the methods based on neural network, fuzzy logic or neural-
fuzzy to model for SRM and conclude that the model built by neural network method has higher
accuracy [16].

The size of network scale of SRM neural network model determines whether it can be applied in
actual real-time system. Reducing the network scale is of great meaning in relieving the amount of
calculation in controller for real-time system. The SRM nonlinear model is able to be trained offline,
and then the trained network is used in SRD real-time control through DSP programs. Thus, to build
an accurate and small-scale SRM nonlinear model is crucial to SRD which requires very high real-time
performance.

This paper is based upon the sample data of flux linkage characteristic through measuring a three-
phase 12/8 SRM prototype motor [17]. The research is done on offline model for SRM flux linkage
characteristic respectively by adopting BP neural network based on improved algorithm and RBF
neural network. Under different requirements of model accuracy, two kinds of network are studied
and compared with each other at accuracy, scale and other aspects. The research results indicate that
adopting BP or RBF neural network to build SRM flux model has a higher accuracy, and increasing the
number of neurons properly can improve the precision. If the neurons in hidden layer are identical, the
accuracy of BP model is higher than RBF. In addition, compared with RBF neural network, the SRM
model of BP neural network based on improved algorithm has smaller network scale, which is good for
SRM real-time system to operate.

2. THE FLUX LINKAGE CHARACTERISTIC OF SRM AND ITS SAMPLE
ACQUIREMENT

2.1. The Mathematic Model for SRM

SRM is variable-reluctance brushless motor with stator-rotor double-salient structure. The rotor poles
have neither windings nor permanent magnet. There are concentrated windings on the stator poles. The
motor current and flux linkage serve as unidirectional pulses changing with time. Its air-gap magnetic
field is pulsatile. Due to such a geometrical structure and the nonlinear characteristic of magnetic
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circuit, the winding inductance and flux linkage in SRM are both nonlinear function with current and
rotor position.

According to basic circuit law and regardless of magnetic hysteresis and vortex and mutual
inductance between windings, the voltage balance equation in the j-th winding in SRM is shown as

Uj = Rjij +
dψj

dt
(1)

where Uj , Rj , ij , ψj respectively stand for phase voltage, phase resistor, phase current and flux linkage
in the j-th stator windings. j is the number of phases.

According to the principle of motor, the electromagnetic torque produced by each winding in SRM
is able to be expressed as magnetic co-energy’s partial derivative towards rotor position angle. That is

Tj =
∂W′

j

∂θ

∣∣∣∣
i=const

=
∂

∫ ij
0 ψj (ij , θ)dij

∂θ
(2)

The whole electromagnetic torque is the sum of torque in each phase winding

Te =
∑m

j=1
Tj(ij , θ) (3)

According to the laws of mechanics, the rotor mechanic motion equation is concluded as

Te = J
d2θ

dt2 + D
dθ

dt
+ TL (4)

where Te, TL, J, D respectively stand for electromagnetic torque, load torque, rotary inertia and
friction factor.

Although the mathematical model of SRM mentioned above describes the electromagnetic and
mechanic relation in theory completely and accurately, it is difficult for SRM to solve exactly by analysis
formulas because of its highly nonlinear characteristic of flux linkage.

2.2. The Acquirement of Flux Sample Data

Considering that neural network has excellent nonlinear mapping ability, this paper adopts neural
network to model for SRM flux linkage characteristic. In order to build an accurate model, acquiring
sufficient and precise training data is indispensable for network training. So, it firstly needs precise
flux linkage detection. The SRM flux detection can be divided into two methods that contain direct
detection and indirect detection. The direct detection method measures flux linkage directly by flux
sensor which must be installed when motor is assembled. It causes higher cost and more complicated
structure. Additionally, the measuring range of the flux sensor is limited. These problems above restrict
its practical application. The indirect detection method is that through adding a DC voltage suddenly
on a certain winding and measuring the voltage and current value in transient process, the flux linkage
is obtained by integrating transformation form of voltage balance Equation (1), the formula is as below.

ψj (t) =
∫ t

0
[Uj (t)−RjIj (t)]dt + ψj (0) (5)

By discretizing Equation (5),

ψj (k) =
{∑N

k=1
[Uj (k)−RjIj (k)]∆t

}
+ ψj (0) (6)

where ψj(0) is the initial flux value.
From Formula (6), the flux value can be obtained by measuring each transient voltage and current.

This paper uses the indirect detection method to measure the flux linkage. It takes advantage of digital
signal processor (DSP) because of its short sampling interval so as to cut down sampling period and
realize measuring flux linkage characteristic precisely.

The prototype motor is a 1.5 kW three-phase 12/8 SRM. Its flux linkage change cycle is 45◦.
Considering that flux linkage is symmetrical in accordance with stator-and-rotor salient aligned position,
it just needs to measure the flux linkage in half of a cycle (0◦–22.5◦). In order to guarantee well-
distributed flux sample, the voltage and current data are collected respectively in every 1◦ degree. The
maximum of measured current is higher than actual operating current, which assures that sample set
covers the whole operating area.
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Figure 1. The actual measured magnetization curve.

2.3. The Analysis on Magnetization Curve

The magnetization characteristic through actual measurement is shown in Figure 1, and the flux linkage
has a nonlinear function with rotor position and phase current. The characteristics are as follow.

(1). When the central line of the stator salient pole is aligned with the central line of rotor groove
(θ = 0◦), the relation between the flux linkage and current is linear.

(2). When the central lines of the stator and rotor poles are aligned (θ = 22.5◦), the air gap is so narrow
that the saturation degree of magnetization curve is the highest.

(3). The flux linkage is periodic to rotor position. That is

ψ

(
i, θ +

2π

Nr

)
= ψ(i, θ) (7)

And the magnetization curve in each cycle is symmetric to the aligned position of salient poles of
stator and rotor.

ψ

(
i,

(
2π

Nr
− θ

))
= ψ(i, θ) (8)

where Nr is the number of rotor poles.
(4). When phase current is fixed, from the aligned position of stator salient pole and rotor groove to the

aligned position of stator and rotor salient poles, the flux linkage is kept increasing monotonically.
That is

ψ(i, θ2) > ψ(i, θ1) 0◦ ≤ θ1 ≤ θ2 ≤ π

Nr
(9)

From the aligned position of stator and rotor salient poles to the next aligned position of stator
salient pole and rotor groove, the flux linkage is kept decreasing monotonically. That is

ψ (i, θ2) < ψ(i, θ1)
π

Nr
≤ θ1 ≤ θ2 ≤ 2π

Nr
(10)

(5). When rotor is fixed on a certain position, the flux linkage ψ is increasing monotonically with phase
current i. That is

ψ(i1, θ) > ψ(i2,θ) i1 > i2 (11)

(6). To each rotor position, when winding current is low, flux linkage is close to a linear relation with
current and when winding current is high, which is not at the aligned position of the two central
lines of stator salient pole and rotor groove, flux linkage appears nonlinear.

3. THE ESTABLISHMENT OF MAGNETIC MODEL BASED ON BP NEURAL
NETWORK

BP neural network is an error-back-propagation multi-layer feedforward network. Generally, it contains
input layer, hidden layer and output layer. Input layer neurons are linear, whereas neurons in the hidden
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layers have sigmoidal signal functions and output layer neurons are linear or sigmoidal. Standard BP is
a gradient descent algorithm, as the Widrow-Hoff learning rule, in which the network weights are moved
along the negative of the gradient of the performance function. Its error is propagated back layer by
layer to revise the weight value between layers. The adjusting process is as follow.

The formulae that adjust weights in output layer are

∆w2
kj = −η

∂E
∂w2

kj

= η · δkj · a1
j (12)

w2
kj (n + 1) = w2

kj (n) + ∆w2
kj (13)

δkj =
(
tk − a2

k

) · f′2 = ek · f′2 (14)

where w2
kj is the weight from j-th input to k-th output, E the network error, a1

j the j-th output in
hidden layer, tk the expected output, a2

k the network output, and f′2 the derivative of the transfer
function in output layer.

The formulae that adjust weight in hidden layer are

∆w1
ji = −η

∂E
∂w1

ji

= η · δji · pi (15)

w1
ji (n + 1) = w1

ji (n) + ∆w1
ji (16)

δji = ej · f′1 =
∑s2

k=1
δkj ·w2

kj · f′1 (17)

where w1
ji is the output weight from i-th input to j-th output, pi the i-th network input, and f′1 the

derivative of the transfer function in hidden layer.
BP neural network can achieve any nonlinear mapping from input to output and has self-learning

ability and generalization ability. But BP neural network has problems of slow convergence speed and
local minimum. In order to overcome the problem of slow convergence speed, many improved algorithms
have been proposed. Conjugate gradient algorithm is a kind of improved gradient methods which can
relieve the oscillation and bad convergence. In the conjugate gradient algorithms, a search is performed
along conjugate directions, which produces generally faster convergence than gradient descent directions.
In the conjugate gradient algorithm, the step size is adjusted at each iteration, which is a waste of
time. Newton’s method is an alternative to the conjugate gradient methods for fast optimization. It
often converges faster than conjugate gradient methods. Unfortunately, it is complex and expensive
to compute the Hessian matrix for feedforward neural networks. Quasi-Newton algorithm which is
adopted on the basis of Newton algorithm is one that need not calculate second-order derivative matrix
and its inverse matrix. The basic idea of Quasi-Newton is to use gradient information or approximate
matrix to replace Hessian matrix. It not only need not calculate second-order derivative, but also carries
on approximation well so that the fast convergence speed is kept and avoids complicated calculation
in Newton’s method. However, considering that it is inevitable to save a n-dimensional approximate
Hessian matrix, it occupies more internal memory. As a consequence, Quasi-Newton algorithm is limited
to use in small-scale neural network design. When the performance function has the form of a sum of
squares, adopting LM algorithm can avoid calculating Hessian matrix and its inverse matrix. The LM
algorithm uses this approximation to the Hessian matrix in the following Newton-like update:

w (n + 1) = w (n)− (
JTJ + µI

)−1
JTE (18)

where J is Jacobian matrix, E the network error vector, µ a certain nonnegative number that can be
self-adaptive, and I the unit matrix.

When the scalar µ is zero, this is just Newton’s method, using the approximate Hessian matrix.
When µ is large, this becomes gradient descent with a small step size. LM algorithm combines the fast
speed derived from Newton’s method and convergence characteristic from gradient descent method.
The number of its iterations during converging is fewer but the amount of calculation in each iterative
step is large. Owing to the smaller network scale of BP in SRM, it is suitable to use LM algorithm as
an optimized algorithm.

Focusing on the local minimum existing in BP algorithm, this paper uses several groups of different
initial conditions to train the network and picks out the best result in order to make errors low enough
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to be accepted. For the sake of a better generalization in the network, on the basis of accurate sample
data, the uniform process is carried out, and the aberrant point is removed. It classifies the data as
sample set and test set. The data in test set are used for verification.

When training target is set as 0.001, the network structure of magnetic characteristic through
actual training is shown in Figure 2. This is a BP neural network with dual input, single output and
single hidden layer. There are two neurons in hidden layer. The input variables are the rotor angle
position θ and current i in phase windings, both of which are uniformed through k1, k2 and then added
in the network. The output is flux linkage ψ.

The output of unit j in hidden layer is:

a1
j = f1

(∑2

i=1
w1

ji · xi + b1
j

)
j = 1, 2 (19)

where w1
ji is the weight from input unit xi (i = 1, 2) to hidden layer unit a1

j , and b1
j is the threshold

value. The activation function f1 in hidden layer is tansig function.

f1 (x) =
1− e−2x

1 + e−2x
(20)

The output of unit in output layer is:

y = f2
(∑2

j=1
w2

1j · a1
j + b2

)
(21)

where w2
1j is the weight from hidden layer unit a1

j to output layer y and b2 the threshold value.
The activation function f2 in output layer is a linear function.

f2 (x) = x (22)
Define the target error function as:

E (t) =
1
2

∑P

k=1
[tk − yk (t)]2 (23)

w1
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W2
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+ +
k2
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Figure 2. The BP neural network structure of magnetic characteristic.
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Figure 3. Comparison between BP model under different target accuracy and experimental data,
Figures (a), (b), (c) represent that the target accuracy is 0.001, 0.0001, 0.00002 respectively.
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where tk is the desired output, yk(t) the output through network calculation, and P the number of
training sample data.

When the number of neurons in hidden layer is 2, its model accuracy is 5.60∗10−4. The comparison
result between the BP neural network model of SRM and flux linkage data through actual measurement
is shown in Figure 3(a). In order to improve the accuracy of the model, it adopts the method of adding
neurons in hidden layer. When the number of neurons in hidden layer is 4 and 6, respectively, their
model accuracy is 8.84∗10−5 and 1.95∗10−5. The comparison result between the model and flux linkage
data through actual measurement is shown in Figure 3(b) and Figure 3(c). From the figure, increasing
the number of neurons in hidden layer is able to improve the level of accuracy. Evidently, the SRM
nonlinear model built by BP neural network has high precision and small scale.

4. THE ESTABLISHMENT OF MAGNETIC MODEL BASED ON RBF NEURAL
NETWORK

RBF neural network is a three-layer feedforward neural network with excellent performance. In the
structure, the input and output layer neurons are linear. The hidden layer often adopts Gauss function.
The output unit carries on linear weighting from the hidden units so as to achieve mapping from input
space to output space so that the whole network can reach the goal of function approximation. RBF
can require more neurons than BP networks, but often they can be designed in a fraction of the time it
takes to train standard feedforward networks.

The network structure of magnetic characteristic by RBF neural network training is shown in
Figure 4. This is a network with dual input and single output. The number of hidden layer neurons
is 6, and the input variables are rotor position θ and current i in phase windings, both of which are
uniformed through k1, k2 and then added in the network. The output is flux linkage ψ.

The output of unit j in hidden layer is:
a1

j = f1
(∥∥w1

ji − xi

∥∥ · b1
j

)
j = 1, 2, 3, 4, 5, 6 (24)

where ‖w1
ji − xi‖ =

√∑2
i=1 (w1

ji − xi)2 is called Euclidean distance. w1
ji is the weight from input unit

xi (i = 1, 2) to hidden layer unit a1
j . The threshold b1

j can adjust the function’s sensitivity. The transfer
function f1 in hidden layer is Gauss function.

f1 (x) = e−x2
(25)

The output of unit in output layer is:

y = f2
(∑6

j=1
a1

j ·w2
1j + b2

)
(26)

where w2
1j is the weight from hidden layer unit a1

j to output y and b2 the threshold value. The transfer
function f2 in output layer is a linear function.

f2 (x) = x (27)
Based on SRM flux linkage model of RBF neural network, when the number of neurons in hidden

layer is 6, its model accuracy is 7.92 ∗ 10−4. The comparison result between the RBF neural network
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Figure 4. The RBF neural network structure of magnetic characteristic.
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Figure 5. Comparison between RBF model under different target accuracy and experimental data,
Figures (a), (b), (c) represents that the target accuracy is 0.001, 0.0001, 0.00002 respectively.

model and flux linkage data through actual measurement is shown in Figure 5(a). To build SRM flux
linkage model based on RBF neural network, adding neurons in hidden layer can also improve the
accuracy of the model. When the number of neurons in hidden layer is 10 and 15, their accuracy is
9.20 ∗ 10−5 and 1.98 ∗ 10−5. The comparison result between the RBF neural network model and flux
linkage data through actual measurement is shown in Figure 5(b) and Figure 5(c).

5. THE CONTRAST BETWEEN THESE TWO APPROACHES FOR SRM MODEL

This paper carries out a model research with different levels of accuracy respectively based on BP of
optimized algorithm and RBF neural network. Additionally, it takes mean square error (MSE) and
correlation coefficient of linear regression as the evaluating indicator that judges the accuracy. Then,
the model built by neural network is compared with experimental data to verify its precision.

MSE is mean square error and refers to the desired value that is the square of difference of estimated
value and true value, which is a convenient way to measure mean error and is able to evaluate data’s
variety degree. The smaller MSE is, the closer the correlation coefficient gets to 1, the more precise the
experimental data that network model describes are.

MSE =
1
N

√∑N

i=1
(T (i)−E (i))2 (28)

where T(i) is the true value and E(i) is estimated value.
When target accuracy is 0.001, 0.0001 and 0.00002 respectively, the neurons and model accuracy

of SRM flux linkage model by adopting BP and RBF are listed in Table 1.
The error curves of BP and RBF neural network during training are shown in Figure 6 and Figure 7.

From the figure, we can understand that with the neurons increasing, the time that network needs to

Table 1. The comparison of flux linkage model between BP and RBF neural network under different
target accuracy.

Target accuracy Network style Neurons in hidden layer MSE Correlation coefficient

0.001
BP 2 5.60 ∗ 10−4 0.99649

RBF 6 7.92 ∗ 10−4 0.99613

0.0001
BP 4 8.84 ∗ 10−5 0.9996

RBF 10 9.20 ∗ 10−5 0.9995

0.00002
BP 6 1.95 ∗ 10−5 0.9999

RBF 15 1.98 ∗ 10−5 0.9999
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(a) (b) (c)

Figure 6. The error curves of BP neural network training under different target accuracy. (a) When
the goal is 0.001. (b) When the goal is 0.0001. (c) When the goal is 0.00002.

(a) (b) (c)

Figure 7. The error curves of RBF neural network training under different target accuracy. (a) When
the goal is 0.001. (b) When the goal is 0.0001. (c) When the goal is 0.00002.
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Figure 8. The error curves of BP model when the hidden neurons are 4 and 6. (a) When the hidden
neurons are 4. (b) When the hidden neurons are 6.

train is increasing. On the whole, the training time that RBF takes is much less than the time that BP
takes.

When BP network adopts 4 and 6 neurons, respectively, and RBF network adopts 6 and 10 neurons,
the errors between the model built by neural network and experimental data are shown in Figure 8 and
Figure 9. The maximum errors are 0.0194 Wb, 0.0104 Wb and 0.0654Wb, 0.0208 Wb correspondingly.
From the figures, when the neurons in hidden layer are identical (e.g., both are 6), the accuracy of BP
network is higher than RBF. When the neurons in hidden layer adopted by BP network are 4, the model
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Figure 9. The error curves of RBF model when the hidden neurons are 6 and 10. (a) When the hidden
neurons are 6. (b) When the hidden neurons are 10.

accuracy is higher than that built by RBF network when its neurons in hidden layer are 6. When the
neurons in hidden layer adopted by BP network are 6 compared with RBF that adopts 10 neurons in
hidden layer, the same conclusion can also be drawn. Evidently, modeling by BP network based on LM
algorithm has smaller network scale and higher model accuracy than modeling by RBF network.

By the comparison between BP and RBF neural networks used to build flux model, there are
conclusions below:

(1). Increasing the number of neurons in hidden layer can improve the model accuracy, whether using
BP or RBF neural network. Moreover, the number of added neurons in hidden layer should be
suitable. Maybe, adding excessive neurons will lead to over-fitting phenomenon.

(2). In terms of building SRM flux linkage model, if the numbers of neurons in hidden layer are equal,
BP has higher accuracy than RBF.

(3). The convergence rate of RBF training is fast, and it has the only best approximation property.
That is, if one uncertain nonlinear function f is given, there is one set of weights that can always be
found and that make regularization network better than other possible choices for f approximation.

(4). If the levels of accuracy are identical, the network scale of BP neural network is smaller than that
of RBF neural network, which is convenient for real-time control.

In brief, both BP neural network and RBF neural network can be used to build SRM model, and
the training time that RBF uses is much less than BP. However, even if the improved algorithm is
adopted, the number of units in hidden layer in RBF neural network is much larger than the units
in BP neural network that takes sigmoidal function. This is because radial basis function is a local
approximation. Its input space is little and only responses in smaller range. The bigger the input range
is (the more input data groups or wider variation range), the more neurons RBF needs. Nevertheless,
sigmoidal function is a global approximation network and can response to the whole input space. It is
the global approximation performance that makes it readjust weight in each layer during every sample
iteration, which slows down the convergence speed. Thus, the network scale of the SRM model built by
BP neural network based on optimizing algorithm is smaller than the SRM model built by RBF neural
network. The BP neural network model with the property of small scale and high accuracy is more
suitable for the requirement of real-time control.

6. CONCLUSION

This paper carries out a model research offline on SRM flux linkage characteristic respectively adopting
BP based on optimizing algorithm and RBF neural network. The research results present that the
BP neural network based on the LM improved algorithm has advantages in model accuracy and scale.
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Although RBF has the only best approximation property and its convergence rate is fast, its network
scale is larger than BP. The BP neural network model with small scale and high accuracy is beneficial
to SRM’s real-time control.
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